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Supplementary Material

Section S1 gives proofs of Theorems 1–4, Corollaries 1.1–4.1, and the supporting Lemmas. Section S2

provides a rule of thumb to choose between our proposed model and the group-specific model in practice.

Section S3 presents additional simulation results. Section S4 contains additional results from the ADNI data

analysis. Section S5 gives the results when we apply our method to a combined microarray dataset.

S1 Proofs

S1.1 Proof of Theorem 1

For (a), we have
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∗
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ng
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′
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′Yg + Hg(

1
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′
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∗
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1
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HgF

′
gεg

= I + II + III + IV.
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Since E(y2g,i) < ∞, we have (1/ng)
∑ng

i=1 y
2
g,i = OP (1). Moreover, it follows from (4.1)

that ‖γ∗g‖ ≤ CE(y2g,i) < ∞ and ‖β∗‖ ≤ CE(y2g,i) < ∞ for some C > 0. These results

together with Lemma 1 imply that

‖I‖ ≤

√√√√ 1

ng

ng∑
i=1

‖f̂g,i −Hgfg,i‖2
1

ng

ng∑
i=1

y2g,i = OP (
1
√
ng

+
1
√
p

).

Similarly, by Lemma 2, we have

‖II‖ ≤ ‖Hg‖

√√√√ Kg∑
k=1

(
1

ng

ng∑
i=1

fg,ikf ′g,iγ
∗
g − γ∗g,k)2 = OP (

1
√
ng
‖γ∗g‖),

‖III‖ ≤ 1

ng
‖Hg‖

√√√√ Kg∑
k=1

(

ng∑
i=1

fg,iku′g,iβ
∗)2 = OP (

1
√
ng
‖β∗‖),

‖IV ‖ ≤ 1

ng
‖Hg‖

√√√√ kg∑
k=1

(

ng∑
i=1

fg,ikεg,i)2 = OP (
1
√
ng

).

Hence we conclude that

‖γ̂g −Hgγ
∗
g‖ = OP (

1
√
ng

+
1
√
p

).

For (b), let β∗λ = Σ−1u,λΣuβ
∗,Σu,λ = Σu + 2λI, and Σ̂u,λ = Σ̂u + 2λI. Since β̂ridgeλ =

Σ̂−1u,λÛ
′Y /n, we have

‖β̂ridgeλ − β‖ ≤ ‖β̂ridgeλ − β∗λ‖+ ‖β∗λ − β∗‖.
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Note that,

β̂ridgeλ − β∗λ = (Σ̂−1u,λ −Σ−1u,λ)(Û−U)′Y /n+ (Σ̂−1u,λ −Σ−1u,λ)U
′Y /n

+ Σ−1u,λ(Û−U)′Y /n+ Σ−1u,λ(
1

n
U′Y −Σuβ

∗)

= I + II + III + IV.

By Lemma 4 (a), we have

‖(Ûg −Ug)
′Yg‖ =

√√√√ p∑
j=1

{ ng∑
i=1

(ûg,ij − ug,ij)yg,i
}2 ≤

√√√√pmax
i,j
|ûg,ij − ug,ij|2

ng∑
i=1

y2g,i

= OP (
√
p log ng log p+ n3/4

g ).

Hence,

‖(Û−U)′Y ‖ ≤
G∑
g=1

‖(Ûg −Ug)
′Yg‖ = OP (

√
p log nmax log p+ n3/4

max). (S1.1)

By Lemma 3, we have

‖U′gFgγ
∗
g‖ =

√√√√ p∑
j=1
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i=1

ug,ijf ′g,iγ
∗
g

}2
= OP (

√
ngp‖γ∗g‖),
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∗‖ =

√√√√ p∑
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= OP (

√
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‖β∗‖),

(S1.2)

‖U′gεg‖ =
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j
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i=1

ug,ijεg,i
}2

= OP (
√
ngp),
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‖ 1

ng
U′gUgβ

∗‖ ≤ ‖( 1

ng
U′gUg −Σu)β

∗‖+ ‖Σuβ
∗‖ = OP

(
(

√
p

ng
+ 1)‖β∗‖

)
.

Noting that ‖γ∗g‖ = O(1) and ‖β∗‖ = O(1), we have

‖U′Y ‖ ≤
G∑
g=1

‖U′gFgγ
∗
g‖+

G∑
g=1

‖U′gUgβ
∗‖+

G∑
g=1

‖U′gεg‖ = OP (
√
nmaxp+nmax). (S1.3)

‖ 1

n
U′Y −Σuβ

∗‖ ≤ 1

n

G∑
g=1

‖U′gFgγ
∗
g‖+

G∑
g=1

ng
n
‖( 1

ng
U′gUg −Σu)β

∗‖

+
1

n

G∑
g=1

‖U′gεg‖

= OP (

√
nmaxp

n
).

(S1.4)

It follows from Theorem 1 of Fan et al. (2013) that ‖Σ̂u − Σu‖ = OP (mpωn). This

result together with (S1.1) and (S1.3) implies that

‖I‖ ≤ ‖Σ̂−1u,λ −Σ−1u,λ‖‖
1

n
(Û−U)′Y ‖ = OP

(
mpωn(

√
p log nmax log p

n
+
n
3/4
max

n
)

)
,

‖II‖ ≤ ‖Σ̂−1u,λ −Σ−1u,λ‖‖
1

n
U′Y ‖ = OP (mpωn(

√
nmaxp

n
+
nmax

n
)),

where we use the fact that

‖Σ̂−1u,λ −Σ−1u,λ‖ = OP (‖Σ̂u,λ −Σu,λ‖) = OP (‖Σ̂u −Σu‖) = OP (mpωn),

Then, applying the Weyl’s Theorem with the stated choice of λ gives

‖Σ−1u,λ‖ = λmax(Σ
−1
u,λ) = 1/λmin(Σu,λ) ≤

1

2λ+ Cmin

= O(1).
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This result together with (S1.1) and (S1.4) implies that

‖III‖ ≤ ‖Σ−1u,λ‖‖
1

n
(Û−U)′Y ‖ = OP (

√
p log nmax log p

n
+
n
3/4
max

n
),

‖IV ‖ ≤ ‖Σ−1u,λ‖‖
1

n
U′Y −Σuβ

∗‖ = OP (

√
nmaxp

n
).

Since mpωn = o(1), we have

‖β̂ridgeλ − β∗λ‖ = OP (
n
3/4
max

n
+

√
nmaxp

n
+mpωn

nmax

n
). (S1.5)

On the other hand, since β∗λ − β∗ = −2λΣ−1u,λβ
∗, we have

‖β∗ − β∗λ‖ ≤ 2λ‖Σ−1u,λ‖‖β
∗‖ ≤ 2λ

2λ+ Cmin

‖β∗‖ = O(λ‖β∗‖). (S1.6)

Then, (S1.5) and (S1.6) together with the stated choice of λ prove (b).

For (c), we rely on the general high-dimensional M -estimator theory (Negahban et al.,

2012) to prove the result. As shown in Negahban et al. (2012), to obtain the convergence

rate of ‖β̂lassoλ − β∗‖, the key is to bound ‖∇`(β∗)‖∞, where

`(β) =
1

2
β′Σ̂uβ −

1

n
Y ′Ûβ.

We have

∇`(β∗) = Σ̂uβ
∗ − 1

n
Û′Y

= (Σ̂u −Σu)β
∗ + (Σu −

1

n
U′U)β∗ − 1

n

(
(Û−U)′Y +

G∑
g=1

U′gFgγ
∗
g + U′ε

)

= I + II − 1

n
(III + IV + V ).
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From Fan et al. (2013), we have ‖Σ̂u−Σu‖ = Op(mpωn). By Lemmas 4 snd 5, we have

‖I‖∞ ≤ ‖Σ̂u −Σu‖‖β∗‖ = OP (mpωn‖β∗‖),

‖II‖∞ ≤ ‖(Σu −
1

n
U′U)β∗‖∞ = OP (

√
log p

n
‖β∗‖).

By Lemma 4 (c) and
∑ng

i=1 ‖fg,i‖2 = OP (ng), we have

‖(Ûg −Ug)
′Fgγ

∗
g‖∞ = max

j

∣∣ ng∑
i=1

(ûg,ij − ug,ij)f ′g,iγ∗g
∣∣

≤

√√√√max
j

ng∑
i=1

(ûg,ij − ug,ij)2
ng∑
i=1

‖fg,i‖2‖γ∗g‖2

= OP (
√
ngnωn‖γ∗g‖).

(S1.7)

Similarly, we have ‖(Ûg −Ug)
′Ugβ

∗‖∞ = OP (
√
ngnωn‖β∗‖) and ‖(Ûg −Ug)

′εg‖∞ =

OP (
√
ngnωn). Hence,

‖III‖∞ ≤
G∑
g=1

‖(Ûg −Ug)
′Fgγ

∗
g‖∞ +

G∑
g=1

‖(Ûg −Ug)
′Ugβ

∗‖∞ +
G∑
g=1

‖(Ûg −Ug)
′εg‖∞

= OP

(√
nnmaxωn(

G∑
g=1

‖γ∗g‖+ ‖β∗‖+ 1)
)
,

By Lemma 5, we have

‖IV ‖∞ ≤
G∑
g=1

‖U′gFgγ
∗
g‖∞ = OP (

√
nmax log p

G∑
g=1

‖γ∗g‖),

‖V ‖∞ ≤
G∑
g=1

‖U′gεg‖∞ = OP (
√
nmax log p).
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Hence, we have

‖∇`(β∗)‖∞ = OP (mpωn +

√
nmax

n
ωn).

Next, we prove that the RE condition holds for Σ̂u with probability tending to

1. Indeed, from Fan et al. (2013), we have ‖Σ̂u − Σu‖max = OP (ωn). Hence for all

β ∈ C(S), we have

|β′(Σ̂u −Σu)β| ≤ ‖β‖1‖(Σ̂u −Σu)β‖∞ ≤ ‖Σ̂u −Σu‖max‖β‖21 = OP (s‖β‖2ωn),

as ‖β‖1 = ‖βSc‖1 + ‖βS‖1 ≤ 4‖βS‖1 ≤ 4
√
s‖βS‖ ≤ 4

√
s‖β‖. Since sωn = o(1),

it follows from (S1.1) that |β′(Σ̂u − Σu)β| = oP (‖β‖2), hence β′Σ̂uβ ≥ β′Σuβ −

|β′(Σ̂u−Σu)β| = β′Σuβ+ oP (‖β‖2), which proves the desired result. Then, it follows

from Corollary 2 of Negahban et al. (2012) that

‖β̂lassoλ − β∗‖ = OP

(√
s(mpωn +

√
nmax

n
ωn)

)
,

if we choose λ = Cωn
(
mp +

√
nmax/n

)
for some large enough constant C.

S1.2 Proof of Corollary 1.1

As the proofs for Ridge and Lasso estimators are similar, we denote Ŷg,λ = F̂gγ̂g+Ugβ̂λ,

where β̂λ can be either β̂lassoλ or β̂ridgeλ . Then, we have

1

ng

{
Ŷg,λ − E(Yg|Fg,Ug)

}
=

1

ng
(F̂gγ̂g − Fgγ

∗
g ) +

1

ng
(Ûgβ̂λ −Ugβ

∗).
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For the first term, we have

1

ng
(F̂gγ̂g − Fgγ

∗
g ) =

1

ng

{
(F̂g − FgH

′
g)(γ̂g −Hgγ

∗
g ) + FgH

′
g(γ̂g −Hgγ

∗
g )

+ (F̂g − FgH
′
g)Hgγ

∗
g + Fg(H

′
gHg − I)γ∗g

}
=

1

ng
(I + II + III + IV ),

whose dominating terms are II and III. By Theorem 1, Lemma 1, we have

‖II‖ ≤ ‖Hg‖

√√√√ ng∑
i=1

‖fg,i‖2‖γ̂g −Hgγ∗g‖2 = OP (1 +

√
ng
p

),

‖III‖ ≤ ‖Hg‖

√√√√ ng∑
i=1

‖f̂g,i −Hgfg,i‖2‖γ∗g‖2 = OP (1 +

√
ng
p

).

Therefore,

‖ 1

ng
(F̂gγ̂g − Fgγ

∗
g )‖ = OP (

1

ng
+

1
√
ngp

). (S1.1)

For the second term, we have

1

ng
(Ûgβ̂λ −Ugβ

∗) =
1

ng
(Ûg −Ug)(β̂λ − β∗) +

1

ng
Ug(β̂λ − β∗) +

1

ng
(Ûg −Ug)β

∗

= I + II + III.

By Assumption 2, ‖Σu‖ ≤ ‖Σu‖1 = O(1), hence (1/ng)
∑ng

i=1 ‖ug,i‖2 = OP (1). Then,

it follows from Lemma 4 (b) that

‖I‖ = OP

(
(

√
log ng log p

ng
+

1

n
1/4
g
√
p

)‖β̂λ − β∗‖
)
,
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‖II‖ ≤ 1

ng

√√√√ ng∑
i=1

‖ug,i‖2‖β̂λ − β∗‖2 = OP

( 1
√
ng
‖β̂λ − β∗‖

)
,

‖III‖ = OP

(√
log ng log p

ng
+

1

n
1/4
g
√
p

)
.

Since n = o(p2) and log p = o(n2/39), these results together with (S1.1) implies that

‖ 1

ng

{
Ŷg,λ − E(Yg|Fg,Ug)

}
‖ = OP

(
1
√
ng
‖β̂λ − β∗‖

)
+OP

(√
log ng log p

ng
+

1

n
1/4
g
√
p

)
.

Plugging the convergence rates of the corresponding estimators established in Theorem

1 completes the proof.

S1.3 Proof of Theorem 2

For (a), the Ridge estimator of (4.10) has

β̂ridgeg,λ =
1

ng
(Σ̂x̃,g + 2λI)−1X̃′gYg,

where Σ̂x̃,g = (1/ng)X̃
′
gX̃g. Hence, we have

β̂ridgeg,λ − β∗ =− 2λ(Σ̂x̃,g + 2λI)−1β∗ +
1

ng
(Σ̂x̃,g + 2λI)−1X̃′gFgδg

+
dp
ng

(Σ̂x̃,g + 2λI)−1X̃′gUgβ
∗ +

1

ng
(Σ̂x̃,g + 2λI)−1X̃′gεg

= I + II + III + IV.
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First, we prove that with probability tending to 1, λmin(Σ̂x̃,g) > c1/p. Indeed, by Weyl’s

Theorem, we have

λmin(Σ̂x̃,g) ≥
1

p
{λmin(Λ′gΛg) + λmin(Λ′g(

1

ng
F′gFg − I)Λg) +

1

ng
λmin(Λ′gF

′
gUg + U′gFgΛg)

+ λmin(
1

ng
U′gUg −Σu) + λmin(Σu)}.

From Assumption 3 (a), we have ‖Λg‖1 = O(1). Therefore, from Lemma 5, we have

|1
p
λmin(Λ′g(

1

ng
F′gFg−I)Λg)| ≤

1

p
‖Λ′g(

1

ng
F′gFg−I)Λg‖ ≤ ‖

1

ng
F′gFg−I‖max‖Λg‖21 = OP (

1
√
ng

),

| 1

ngp
λmin(Λ′gF

′
gUg)| = |

1

ngp
λmin(U′gFgΛg)| ≤

1

ng
‖U′gFg‖max‖Λg‖1 = OP (

1
√
ng

),

|1
p
λmin(

1

ng
U′gUg −Σu)| ≤ ‖

1

ng
U′gUg −Σu‖max = OP (

√
log p

ng
).

Thus, it follows from Assumption 2 that, with probability tending to 1,

λmin(Σ̂x̃,g)
.

≥ 1

p
λmin(Λ′gΛg) +

1

p
λmin(Σu) ≥

1

p
λmin(Σu) >

c1
p
.

This result implies that

‖(Σ̂x̃,g + 2λI)−1‖ = λmax

(
(Σ̂x̃,g + 2λI)−1

)
= 1/λmin(Σ̂x̃,g + 2λI) ≤ 1/

(
λmin(Σ̂x̃,g) + 2λ

)
≤ 1

c1/p+ 2λ
.
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It follows from Lemma 2 that

‖ 1

ng
F′gFgδg‖ ≤ ‖(

1

ng
F′gFg − I)δg‖+ ‖δg‖ =

√√√√ Kg∑
k=1

( 1

ng

ng∑
i=1

fg,ikf ′g,iδg − δg,k
)2

+ ‖δg‖

= OP (‖δg‖).
(S1.1)

By Lemma 3, we have

‖ 1

ng
U′gFgδg‖ =

1

ng

√√√√ p∑
j=1

( ng∑
i=1

ug,ijf ′g,iδg
)2

= OP (

√
p

ng
‖δg‖), (S1.2)

where |
∑ng

i=1 ug,ijf
′
g,iδg| = OP (

√
ng‖δg‖). By Lemma 2, we have

‖ 1

ng
F′gUgβ

∗‖ =
1

ng

√√√√ Kg∑
k=1

( ng∑
i=1

fg,iku′g,iβ
∗
)2

= OP (
1
√
ng
‖β∗‖), (S1.3)

where |
∑ng

i=1 fg,iku
′
g,iβ

∗| = OP (
√
ng‖β∗‖). By (S1.2) and Assumption 2, we have

‖ 1

ng
U′gUgβ

∗‖ ≤ ‖( 1

ng
U′gUg −Σu)β

∗‖+ ‖Σu‖‖β∗‖ = OP

(
(

√
p

ng
+ 1)‖β∗‖

)
. (S1.4)

By Lemma 2, we have

‖ 1

ng
F′gεg‖ =

1

ng

√√√√ kg∑
k=1

( ng∑
i=1

fg,ikεg,i
)2

= OP (
1
√
ng

). (S1.5)

By Lemma 3, we have

‖ 1

ng
U′gεg‖ =

1

ng

√√√√ p∑
j=1

( ng∑
i=1

ug,ijεg,i
)2

= OP (

√
p

ng
). (S1.6)
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Since Assumption 1 implies that ‖Λg‖ = OP (
√
p), it follows from (S1.1)–(S1.6) that

‖ 1

ng
X̃′gFgδg‖ ≤

1
√
p
‖Λg‖‖

1

ng
F′gFgδg‖+

1
√
p
‖ 1

ng
U′gFgδg‖ = OP (‖δg‖),

‖ 1

ng
X̃′gUgβ

∗‖ ≤ 1
√
p
‖Λg‖‖

1

ng
F′gUgβ

∗‖+
1
√
p
‖ 1

ng
U′gUgβ

∗‖ = OP

(( 1
√
ng

+
1
√
p

)
‖β∗‖

)
,

‖ 1

ng
X̃′gεg‖ ≤

1
√
p
‖Λg‖‖

1

ng
F′gεg‖+

1
√
p
‖ 1

ng
U′gεg‖ = OP (

1
√
ng

).

Hence, we have

‖I‖ ≤ 2λ

c1/p+ 2λ
‖β∗‖,

‖II‖ ≤ ‖(Σ̂x̃,g + 2λI)−1‖‖ 1

ng
X̃′gFgδg‖ = OP (

1

c1/p+ 2λ
‖δg‖),

‖III‖ ≤ ‖(Σ̂x̃,g + 2λI)−1‖‖dp
ng

X̃′gUgβ
∗‖ = OP

(
dp

c1/p+ 2λ

( 1
√
ng

+
1
√
p

)
‖β∗‖

)
,

‖IV ‖ ≤ ‖(Σ̂x̃,g + 2λI)−1‖‖ 1

ng
X̃′gεg‖ = OP

(
1√

ng(c1/p+ 2λ)

)
.

Then, by choosing λ = C/
√
p and noting that ‖β∗‖ = O(1), we have

‖β̂ridgeg,λ − β∗‖ = OP

(
√
p‖δg‖+ dp(1 +

√
p

ng
) +

√
p

ng

)
.

For (b), letting `g(β
∗) = ‖Yg − X̃gβ

∗‖2/(2ng), we have

∇`g(β∗) = − 1

ng
(X̃′gFgδg + dpX̃

′
gUgβ

∗ + X̃′gεg) = − 1

ng
(I + II + III).

It follows from Lemma 5 that

‖I‖∞ ≤
1
√
p
‖Λ′gF′gFgδg‖∞ +

1
√
p
‖U′gFgδg‖∞ = OP

(
(
ng√
p

+

√
ng log p

p
)‖δg‖

)
.
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Noting that ‖Σu‖ = O(1), we have

‖U′gUgβ
∗‖∞ ≤ max

j
|
ng∑
i=1

ug,iju
′
g,iβ

∗ − ng
p∑
`=1

σu,j`β
∗
` |+ max

j
|ng

p∑
`=1

σu,j`β
∗
` |

= OP (
√
ng log p‖β∗‖) +OP (ng‖β∗‖) = OP (ng‖β∗‖).

Therefore,

‖II‖∞ ≤
dp√
p
‖Λ′gF′gUgβ

∗‖∞ +
dp√
p
‖U′gUgβ

∗‖∞ = OP

(
dp(

ng√
p

+

√
ng log p

p
)‖β∗‖

)
,

‖III‖∞ ≤
1
√
p
‖Λ′gF′gεg‖∞ +

1
√
p
‖U′gεg‖∞ = OP (

√
ng log p

p
).

Since ‖β∗‖ = O(1), ‖∇`g(β∗)‖∞ = OP

(
(1/
√
p+

√
log p/ngp)(dp + ‖δg‖) +

√
log p/ng

)
.

Next, we verify that the RE condition holds for
√
pΣ̂x̃,g with probability tending

to 1. Indeed, we have

β′Σ̂x̃,gβ =
1

ng
β′X̃′gX̃gβ

=
1

p
β′{Λ′gΛg + Λ′g(

1

ng
F′gFg − I)Λg +

1

ng
Λ′gF

′
gUg +

1

ng
U′gFgΛg +

1

ng
U′gUg}β

≥ 1

p
β′Λ′gΛgβ +

1

p
β′Λ′g(

1

ng
F′gFg − I)Λgβ +

1

ngp
β′(Λ′gF

′
gUg + U′gFgΛg)β

=
1

p
β′Λ′gΛgβ + I + II.

(S1.7)

By Assumption 3(a), we have ‖Λg‖1 = OP (1). Hence, it follows from Lemma 5 that

‖Λ′g(
1

ng
F′gFg − I)Λg‖max ≤ ‖

1

ng
F′gFg − I‖max‖Λg‖21 = OP (

1
√
ng

),
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‖ 1

ng
Λ′gF

′
gUg‖max = ‖ 1

ng
U′gFgΛg‖max ≤

1

ng
‖F′gUg‖max‖Λg‖1 = OP (

√
log p

ng
).

For all β ∈ C(S), it follows from an analogous argument as in the proof of Theorem 1

that ‖β‖1 ≤ 4
√
s‖β‖. Therefore,

|I| ≤ 1

p
‖Λ′g(

1

ng
F′gFg − I)Λg‖max‖β‖21 = OP (

16s‖β‖2
√
ngp

),

|II| ≤ 1

ngp
(‖Λ′gF′gUg‖max + ‖U′gFgΛg‖max)‖β‖21 = OP (

16s‖β‖2

p

√
log p

ng
).

Hence, we have
√
p(|I|+ |II|) = oP (‖β‖2) since s

√
log p/(ngp) = o(1). It follows from

(S1.7) that
√
pβ′Σ̂x̃,gβ ≥ β′Λ′gΛgβ/

√
p +
√
p(|I| + |II|) = β′Λ′gΛgβ/

√
p + oP (‖β‖2).

Hence the RE condition holds for
√
pΣ̂x̃,g with probability tending to 1 as it holds on

Λ′gΛg/
√
p. Then, it follows from Corollary 2 of Negahban et al. (2012) that

‖β̂lassog,λ − β∗‖ = OP

(√
s
{

(1 +

√
log p

ng
)(dp + ‖δg‖) +

√
log p

ng

})
,

if we choose λ = C{(1 +
√

log p/ng)(dp + ‖δg‖) +
√

log p/ng}/
√
p.

S1.4 Proof of Corollary 2.1

Without loss of generality, denote Ŷg,λ = X̃gβ̂g,λ, where β̂g,λ can be either β̂lassog,λ or

β̂ridgeg,λ . Then,

1

ng

{
Ŷg,λ − E(Yg|Fg,Ug)

}
=

1

ng

{
X̃g(β̂g,λ − β∗)− Fgδg − dpUgβ

∗}.
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Since ‖E(x̃g,ix̃
′
g,i)‖ < ∞, it implies that (1/ng)

∑ng

i=1 ‖x̃g,i‖2 = OP (1). Similarly,

(1/ng)
∑ng

i=1 ‖fg,i‖2 = OP (1) and (1/ng)
∑ng

i=1 ‖ug,i‖2 = OP (1). Hence,

‖ 1

ng

{
Ŷg,λ − E(Yg|Fg,Ug)

}
‖ ≤ 1

ng

√√√√ ng∑
i=1

‖x̃g,i‖2‖β̂g,λ − β∗‖+
1

ng

√√√√ ng∑
i=1

‖fg,i‖2‖δg‖

+
1

ng

√√√√ ng∑
i=1

‖ug,i‖2‖β∗‖

= OP

(
1
√
ng

(‖β̂g,λ − β∗‖+ ‖δg‖+ ‖β∗‖)
)
.

Plugging the convergence rates of ‖β̂g,λ − β∗‖ established in Theorem 2 completes the

proof.

S1.5 Proof of Theorem 3

For (a), the Ridge estimator of (4.11) has

β̂ridgeλ,global =
1

n
(Σ̂x̃ + 2λI)−1X̃′Y ,

where Σ̂x̃ = 1
n
X̃′X̃. Then,

β̂ridgeλ,global − β
∗ = −2λ(Σ̂x̃ + 2λI)−1β∗ +

1

n
(Σ̂x̃ + 2λI)−1

G∑
g=1

X̃′gFgδg

+
1

n
(Σ̂x̃ + 2λI)−1

G∑
g=1

dpX̃
′
gUgβ

∗ +
1

n
(Σ̂x̃ + 2λI)−1

G∑
g=1

X̃′gεg

= I + II + III + IV.
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Since

λmin(Σ̂x̃) =
G∑
g=1

ng
n
λmin(Σ̂x̃,g) >

c1
p
,

it follows from Weyl’s Theorem that

‖(Σ̂x̃ + 2λI)−1‖ ≤ 1

c1/p+ 2λ
,

with probability tending to 1. Using similar arguments as in the proof of Theorem 2,

we have

‖I‖ =
2λ

c1/p+ 2λ
‖β∗‖,

‖II‖ ≤ ‖(Σ̂x̃ + 2λI)−1‖
G∑
g=1

‖ 1

n
X̃′gFgδg‖ = OP (

1

c1/p+ 2λ

nmax

n

G∑
g=1

‖δg‖),

‖III‖ ≤ ‖(Σ̂x̃ + 2λI)−1‖
G∑
g=1

‖dp
n

X̃′gUgβ
∗‖ = OP

(
dp

c1/p+ 2λ

(√nmax

n
+
nmax

n
√
p

)
‖β∗‖

)
,

‖IV ‖ ≤ ‖(Σ̂x̃ + 2λI)−1‖
G∑
g=1

‖ 1

n
X̃′gεg‖ = OP (

1

c1/p+ 2λ

√
nmax

n
).

Hence, by choosing λ = C/
√
p we have

‖β̂ridgeλ,global − β
∗‖ = OP

(
nmax
√
p

n

G∑
g=1

‖δg‖+ dp(
nmax

n
+

√
nmaxp

n
) +

√
nmaxp

n

)
.

For (b), letting `(β∗) = (2n)−1‖Y − X̃β∗‖2, we have

∇`(β∗) = − 1

n
(
G∑
g=1

X̃′gFgδg +
G∑
g=1

dpX̃
′
gUgβ

∗ +
G∑
g=1

X̃′gεg) = − 1

n
(I + II + III).
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Similarly as in the proof of Theorem 2,

‖I‖∞ ≤
1
√
p

G∑
g=1

‖Λ′gF′gFgδg‖∞+
1
√
p

G∑
g=1

‖U′gFgδg‖∞ = OP

(
(
nmax√
p

+

√
nmax log p

p
)

G∑
g=1

‖δg‖
)
,

‖II‖∞ ≤
dp√
p

G∑
g=1

‖Λ′gF′gUgβ
∗‖∞+

dp√
p

G∑
g=1

‖U′gUgβ
∗‖∞ = OP

(
dp
(nmax√

p
+

√
nmax log p

p

)
‖β∗‖

)
,

‖III‖∞ ≤
1
√
p

G∑
g=1

‖Λ′gF′gεg‖∞ +
1
√
p

G∑
g=1

‖U′gεg‖∞ = OP (

√
nmax log p

p
).

Therefore,

‖∇`(β∗)‖∞ = OP

((nmax

n
√
p

+
1

n

√
nmax log p

p

)(
dp +

G∑
g=1

‖δg‖
)

+
1

n

√
nmax log p

p

)
.

Next, we show that the RE condition holds for hold for
√
pΣ̂x̃ with probability

tending to 1. Indeed, it follows from the proof of Theorem 2 that the RE condition holds

for
√
pΣ̂x̃,g with probability tending to 1 for any g ∈ [G]. Since Σ̂x̃ =

∑G
g=1(ng/n)Σ̂x̃,g,

the same RE condition also holds for Σ̂x̃. Then, with the stated choice of λ, it follows

from Corollary 2 of Negahban et al. (2012) that

‖β̂lassoλ,global − β∗‖ = OP

(√
s
{(nmax

n
+

√
nmax log p

n

)(
dp +

G∑
g=1

‖δg‖
)

+

√
nmax log p

n

})
.
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S1.6 Proof of Corollary 3.1

The proof follows similar arguments as in the proof of Corollary 2.1, by noting that for

Ŷg,λ = X̃gβ̂λ,global,

‖ 1

ng

{
Ŷg,λ − E(Yg|Fg,Ug)

}
‖ ≤ 1

ng

{
‖X̃g(β̂λ,global − β∗)‖+ ‖Fgδg‖+ ‖dpUgβ

∗‖
}

= OP

(
1
√
ng

(‖β̂λ,global − β∗‖+ ‖δg‖+ ‖β∗‖)
)
.

S1.7 Proof of Theorem 4

For (a), by the same arguments as in proving Theorem 1(a), we conclude that

‖γ̂g −
1
√
p
HgΛgβ

∗
g‖ = OP (

1
√
ng

+
1
√
p

).

For (b), letting β∗g,λ = Σ−1u,λΣuβ
∗
g and β̂ridgeλ = Σ̂−1u,λÛ

′Y /n, for any g ∈ [G] we have

β̂ridgeλ − 1
√
p
β∗g,λ =

1

n
(Σ̂−1u,λ −Σ−1u,λ)(Û−U)′Y +

1

n
(Σ̂−1u,λ −Σ−1u,λ)U

′Y

+
1

n
Σ−1u,λ(Û−U)′Y + Σ−1u,λ(

1

n
U′Y − 1

√
p
Σuβ

∗
g)

= I + II + III + IV.

Similarly as in the proof of Theorem 1, ‖(Û −U)′Y ‖ = OP (
√
p log nmax log p + n

3/4
max).

From Assumption 3 (a), we have ‖λg,j‖ < ∞, for all j ∈ [p]. Since ‖Λgβ
∗
g/
√
p‖ ≤
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(1/
√
p)
√∑p

j=1 ‖λg,j‖2‖β∗‖ = O(1), from (S1.2), (S1.4) and (S1.6), we have

‖U′Y ‖ ≤
G∑
g=1

‖U′gFgΛgβ
∗
g/
√
p‖+

G∑
g=1

1
√
p
‖U′gUgβ

∗
g‖+

G∑
g=1

‖U′gεg‖

= OP (
√
nmaxp) +OP (

√
nmax +

nmax√
p

) +OP (
√
nmaxp)

= OP

(√
nmaxp+

nmax√
p

)
.

Moreover, from (S1.2) and Assumption 2, we have

‖ 1

n
U′Y − 1

√
p
Σuβ

∗
g‖ ≤

1

n

G∑
g′=1

‖U′g′Fg′Λg′β
∗
g′/
√
p‖+

G∑
g′=1

ng′

n
√
p
‖( 1

ng′
U′g′Ug′ −Σu)β

∗
g′‖

+
G∑

g′=1

ng′

n
√
p
‖Σu‖‖β∗g′ − β∗g‖+

1

n

G∑
g′=1

‖U′g′εg′‖

= OP (

√
nmaxp

n
) +OP (

√
nmax

n
) +

G∑
g′=1

OP (
ng′

n
√
p
‖β∗g′ − β∗g‖) +OP (

√
nmaxp

n
)

= OP (

√
nmaxp

n
) +

G∑
g′=1

OP (
ng′

n
√
p
‖β∗g′ − β∗g‖).

Since ‖Σ̂−1u,λ −Σ−1u,λ‖ = OP (mpωn) and ‖Σ−1u,λ‖ = O(1), we have

‖I‖ ≤ ‖Σ̂−1u,λ −Σ−1u,λ‖‖
1

n
(Û−U)′Y ‖ = OP

(
mpωn

(√p log nmax log p

n
+
n
3/4
max

n

))
,

‖II‖ ≤ ‖Σ̂−1u,λ −Σ−1u,λ‖‖
1

n
U′Y ‖ = OP

(
mpωn

(√nmaxp

n
+
nmax

n
√
p

))
,

‖III‖ ≤ ‖Σ−1u,λ‖‖
1

n
(Û−U)′Y ‖ = OP

(√
p log nmax log p

n
+
n
3/4
max

n

)
,

‖IV ‖ ≤ ‖Σ−1u,λ‖‖‖
1

n
U′Y − 1

√
p
Σuβ

∗
g‖ = OP

(√
nmaxp

n

)
+

G∑
g′=1

OP

(
ng′

n
√
p
‖β∗g′ − β∗g‖

)
.
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By the assumption that mpωn = o(1), and n = o(p2), we have

‖β̂ridgeλ − 1
√
p
β∗g,λ‖ = OP

(√
nmaxp

n
+
n
3/4
max

n

)
+

G∑
g′=1

OP

(
ng′

n
√
p
‖β∗g′ − β∗g‖

)
.

Since

‖β∗g − β∗g,λ‖ ≤ 2λ‖Σ−1u,λ‖‖β
∗
g‖ = O(λ‖β∗g‖),

and

‖β̂ridgeλ − 1
√
p
β∗g‖ ≤ ‖β̂

ridge
λ − 1

√
p
β∗g,λ‖+

1
√
p
‖β∗g,λ − β∗g‖,

it follows from the stated choice of λ that

‖β̂ridgeλ − 1
√
p
β∗g‖ = OP

(√
nmaxp

n
+
n
3/4
max

n

)
+

G∑
g′=1

OP

(
ng′

n
√
p
‖β∗g′ − β∗g‖

)
.

For (c), we first bound ‖∇`(β∗g)‖∞. We have

∇`(β∗g) =
1
√
p
Σ̂uβ

∗
g −

1

n
Û′Y

=
1
√
p

{
(Σ̂u −Σu)β

∗
g +

G∑
g′=1

ng′

n
(Σu −

1

ng′
U′g′Ug′)β

∗
g′ +

G∑
g′=1

ng′

n
Σu(β

∗
g − β∗g′)

}

− 1

n

{
(Û−U)′Y + U′ε+

G∑
g′=1

U′g′Fg′Λg′β
∗
g′/
√
p

}

=
1
√
p

(I + II + III)− 1

n
(IV + V + V I).

Similarly as in the proof of Theorem 1,

‖I‖∞ ≤ ‖Σ̂u −Σu‖‖β∗g‖ = OP (mpωn‖β∗g‖),
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‖II‖∞ ≤
G∑

g′=1

ng′

n
‖(Σu −

1

ng′
U′g′Ug′)β

∗
g′‖∞ = OP (

√
nmax log p

n

G∑
g′=1

‖β∗g′‖),

‖III‖∞ ≤
G∑

g′=1

ng′

n
‖Σu‖‖β∗g − β∗g′‖ = OP (

nmax

n

G∑
g′=1

‖β∗g − β∗g′‖).

By an analogous argument as in proving (S1.7), ‖(Ûg−Ug)
′FgΛgβ

∗
g/
√
p‖∞ = OP (

√
ngnωn‖β∗g‖),

‖(Ûg − Ug)
′Ugβ

∗
g‖∞ = OP (

√
ngnωn‖β∗g‖), and ‖(Ûg − Ug)

′εg‖∞ = OP (
√
ngnωn).

Hence,

‖IV ‖∞ = ‖(Û−U)′Y ‖∞

≤
G∑

g′=1

‖(Ûg′ −Ug′)
′Fg′Λg′β

∗
g′/
√
p‖∞ +

G∑
g′=1

‖ 1
√
p

(Ûg′ −Ug′)
′Ug′β

∗
g′‖∞

+
G∑

g′=1

‖(Ûg′ −Ug′)
′εg′‖∞

= OP

(√
nnmaxωn(

G∑
g′=1

‖β∗g′‖+ 1)
)
.

Then, it follows from Lemma 5 that

‖V ‖∞ ≤
G∑

g′=1

‖U′g′εg′‖∞ = OP (
√
nmax log p),

‖V I‖∞ ≤
G∑

g′=1

‖U′g′Fg′Λg′β
∗
g′/
√
p‖∞ = OP

(√
nmax log p

G∑
g′=1

‖β∗g′‖
)
.

Since ‖β∗g‖ = O(1) and mpωn = o(1), we have

‖∇`(β∗g)‖∞ = OP

(√
nmax

n
ωn +

nmax

n
√
p

G∑
g′=1

‖β∗g − β∗g′‖
)
.

Then, given the RE condition on Σ̂u, which was proved in Theorem 1, it follows from
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Corollary 2 of Negahban et al. (2012) that

‖β̂lassoλ − 1
√
p
β∗g‖ = OP

(√
s
(√nmax

n
ωn +

nmax

n
√
p

G∑
g′=1

‖β∗g − β∗g′‖
))
,

if we choose λ = C{ωn
√
nmax/n+ nmax/(n

√
p)
∑G

g′=1 ‖β∗g − β∗g′‖}.

S1.8 Proof of Corollary 4.1

Similarly as in the proof of Corollary 1.1, we have

1

ng

{
Ŷg,λ − E(Yg|X̃g)

}
=

1

ng
(F̂gγ̂g −

1
√
p
FgΛgβ

∗
g + Ûgβ̂λ −

1
√
p
Ugβ

∗
g).

First,

‖ 1

ng
(F̂gγ̂g −

1
√
p
FgΛgβ

∗
g)‖ = OP (

1

ng
+

1
√
ngp

). (S1.1)

On the other hand,

1

ng
(Ûgβ̂λ −

1
√
p
Ugβ

∗
g) =

1

ng
(Ûg −Ug)(β̂λ −

1
√
p
β∗g) +

1

ng
Ug(β̂λ −

1
√
p
β∗g)

+
1

ng
√
p

(Ûg −Ug)β
∗
g

= I + II + III.

By Lemma 4 (b),

‖I‖ = OP

((√log ng log p

ng
+

1

n
1/4
g
√
p

)
‖β̂λ −

1
√
p
β∗g‖

)
,

‖II‖ = OP (
1
√
ng
‖β̂λ −

1
√
p
β∗g‖),
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‖III‖ =
1

ng
√
p
‖(Ûg −Ug)β

∗
g‖ = OP

(
1

ng

√
log ng log p

p
+

1

n
1/4
g p

)
.

Therefore, for any g ∈ [G],

‖ 1

ng
(Ûgβ̂λ −Ugβ

∗
g)‖ = OP

(
1
√
ng
‖β̂λ −

1
√
p
β∗g‖

)
+OP

(
1

ng

√
log ng log p

p
+

1

n
1/4
g p

)
.

(S1.2)

Then, (S1.1) and (S1.2) together imply that

‖ 1

ng
{Ŷg,λ − E(Yg|X̃g)}‖ = OP (

1

ng
) +OP (

1
√
ngp

) +OP

(
1
√
ng
‖β̂λ −

1
√
p
β∗g‖

)
.

S1.9 Supporting Lemmas and their proofs

Lemma 1. Under Assumptions 1–3, for any g ∈ [G], we have

(a) (1/ng)
∑ng

i=1 ‖f̂g,i −Hgfg,i‖2 = OP (1/ng + 1/p).

(b) ‖H′gHg − I‖ ≤ Kg‖H′gHg − I‖max = OP (1/ng + 1/p).

(c) ‖H′gHg − I‖F = OP (1/
√
ng + 1/

√
p)

(d) ‖Hg‖ = OP (1).

Proof. These results directly follow from Lemmas 10, 11 (b) in Fan et al. (2013) and

Lemma C.1 (iv) in Fan et al. (2018).

Lemma 2. Under Assumption 1, for any k ∈ [Kg], j ∈ [p], and g ∈ [G], we have

(a) |(1/ng)
∑ng

i=1 fg,ikf
′
g,iγ

∗
g − γ∗g,k| = OP (‖γ∗g‖/

√
ng).

(b) |
∑ng

i=1 fg,iku
′
g,iβ

∗| = OP (
√
ng‖β∗‖).
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(c) |
∑ng

i=1 fg,ikεg,i| = OP (
√
ng).

(d) |(1/ng)
∑ng

i=1 fg,ikf
′
g,iδg − δgk| = OP (‖δg‖/

√
ng).

Proof. (a) Since both {fg,ik}i≤ng and {f ′g,iγ∗g}i≤ng are i.i.d. sub-Gaussian random vari-

ables, {fg,ikf ′g,iγ∗g}i≤ng are i.i.d. sub-exponential (Vershynin, 2018), with E(fg,ikf
′
g,iγ

∗
g ) =

γ∗g,k. Hence for a sufficiently small positive number s, there exists a sufficiently large

constant C > 0, such that

P(
∣∣ 1

ng

ng∑
i=1

fg,ikf
′
g,iγ

∗
g − γ∗g,k

∣∣ > s) ≤ 2e
−Cngs

2

‖γ∗g‖2 ,

which concludes the result.

(b) Since both {fg,ik}i≤ng and {u′g,iβ∗}i≤ng are i.i.d. sub-Gaussian random variables,

hence {fg,iku′g,iβ∗}i≤ng are i.i.d. sub-exponential with mean zero. Since we have ‖Σu‖ =

O(1), hence for a sufficiently small positive number s, there exists a constant C > 0,

such that

P(
∣∣ ng∑
i=1

fg,iku
′
g,iβ

∗∣∣ > s) ≤ 2e
− Cs2

ng‖β∗‖2 ,

which concludes the result.

The proofs of (c) and (d) follow similar arguments as in (a) and (b).

Lemma 3. Under Assumption 1, for any j ∈ [p] and g ∈ [G], we have

(a) |
∑ng

i=1 ug,ijf
′
g,iγ

∗
g | = OP (

√
ng‖γ∗g‖).

(b) |(1/ng)
∑ng

i=1 ug,iju
′
g,iβ

∗ −
∑p

`=1 σu,j`β
∗
` | = OP (‖β∗‖/√ng).

(c) |
∑ng

i=1 ug,ijf
′
g,iδg| = OP (

√
ng‖δg‖).



HIGH-DIMENSIONAL FACTOR REGRESSION 25

(d) |
∑ng

i=1 ug,ijεg,i| = OP (
√
ng).

Proof. (a) Since both {ug,ij}i≤ng and {f ′g,iγ∗g}i≤ng are i.i.d. sub-Gaussian random vari-

ables, {ug,ijf ′g,iγ∗g}i≤ng are i.i.d. sub-exponential random variables with mean zero. Since

we have ‖Σu‖ = O(1), it implies that for a sufficiently small positive number s, there

exists a constant C > 0, such that

P(
∣∣ ng∑
i=1

ug,ijf
′
g,iγ

∗
g

∣∣ > s) ≤ 2e
− Cs2

ng‖γ∗g‖2 ,

which concludes the result.

(b) Since both {ug,ij}i≤ng and {u′g,iβ∗}i≤ng are i.i.d. sub-Gaussian random variables,

{ug,iju′g,iβ∗}i≤ng are i.i.d. sub-exponential random variables with E(ug,iju
′
g,iβ

∗) =∑p
`=1 σu,j`β

∗
` . Hence for a sufficiently small positive s, there exists a constant C > 0,

such that

P(
∣∣ 1

ng

ng∑
i=1

ug,iju
′
g,iβ

∗ −
p∑
`=1

σu,j`β
∗
`

∣∣ > s) ≤ 2e
−Cngs

2

‖β∗‖2 ,

which concludes the result.

The proofs of (c) and (d) follow similar arguments as in (a) and (b).

Lemma 4. Under Assumption 3, we have

(a) maxi,j |ûg,ij − ug,ij| = maxi,j |(F̂gΛ̂g − FgΛg)ij| = OP (
√

log ng log p/ng + n
1/4
g /
√
p).

(b) sup{‖(Ûg −Ug)α‖ : α ∈ Rp, ‖α‖ = 1} = OP (
√

log ng log p+ n
3/4
g /
√
p).

(c) maxj≤p(1/n)
∑G

g=1

∑ng

i=1(ûg,ij − ug,ij)2 = OP (ω2
n).

Proof. Statements (a) and (c) directly follows from Corollary 1 and Lemma 12 of Fan
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et al. (2013).

For (b), let α ∈ Rp be a vector such that ‖α‖ = 1. Then, we have for all i ∈ [n],

|((Ûg −Ug)α)i| = |
p∑
j=1

(ûg,ij − ug,ij)αj| ≤

√√√√ p∑
j=1

(ûg,ij − ug,ij)2α2
j ≤

√√√√max
i,j

(ûg,ij − ug,ij)2
p∑
j=1

α2
j

= OP

(√
log ng log p

ng
+
n
1/4
g√
p

)
.

Hence, we have

‖(Ûg −Ug)α‖ = OP

(
√
ng
(√ log ng log p

ng
+
n
1/4
g√
p

))
= OP

(√
log ng log p+

n
3/4
g√
p

)
.

Lemma 5. Under Assumptions 1 and 2, for any g ∈ [G], we have,

(a) ‖Λ′gF′gFgδg‖∞ = OP (ng‖δg‖).

(b) ‖Λ′gF′gUgβ
∗‖∞ = OP (

√
ng log p‖β∗‖).

(c) ‖Λ′gF′gεg‖∞ = OP (
√
ng log p).

(d) ‖U′gFgδg‖∞ = OP (
√
ng log p‖δg‖).

(e) ‖((1/ng)U′gUg −Σu)β
∗‖∞ = OP (

√
log p/ng‖β∗‖).

(f) ‖U′gFgγ
∗
g‖∞ = OP (

√
ng log p‖γ∗g‖).

(g) ‖U′gεg‖∞ = OP (
√
ng log p).

(h) ‖(1/ng)F′gFg − I‖max = OP (1/
√
ng).

(i) ‖(1/ng)U′gUg −Σu‖max = OP (
√

log p/ng).

Proof. (a) Note that the j-th element of Λ′gF
′
gFgδg satisfies |{Λ′gF′gFgδg}j| = |

∑ng

i=1 f ′g,iλg,jf
′
g,iδg|.
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By Assumptions 2 and 3, f ′g,iλg,j is sub-Gaussian with a finite since var(f ′g,iλg,j) =

λ′g,jλg,j ≤ KgM
2 <∞ as it is assumed in Assumption 3 that ‖λg,j‖∞ < M . Similarly,

f ′g,iδg is sub-Gaussian. Then, f ′g,iλg,jf
′
g,iδg is sub-exponential with E(f ′g,iλg,jf

′
g,iδg) =

λ′g,jδg. Hence, we have

P(max
j

∣∣ 1

ng

ng∑
i=1

f ′g,iλg,jf
′
g,iδg − λ′g,jδg

∣∣ > s) ≤ 2pe
− Cngs

2

KgM2‖δg‖2 ,

which implies that maxj
∣∣ 1
ng

∑ng

i=1 f ′g,iλg,jf
′
g,iδg − λ′g,jδg

∣∣ = OP (
√

log p/ng‖δg‖). This

result together with ‖λg,j‖ < KgM implies that

‖Λ′gF′gFgδg‖∞ = max
j

∣∣ ng∑
i=1

f ′g,iλg,jf
′
g,iδg

∣∣ ≤ max
j

∣∣ ng∑
i=1

f ′g,iλg,jf
′
g,iδg − ngλ′g,jδg

∣∣+ max
j

∣∣ngλ′g,jδg∣∣
= OP (

√
ng log p‖δg‖) +OP (ng‖δg‖) = OP (ng‖δg‖).

The proofs of (b) and (c) follow similar arguments as in (a).

(d) For any g ∈ [G] and j ∈ [p], since {ug,ij}i≤ng and {f ′g,iδg}i≤ng are i.i.d. sub-Gaussian

random variables, {ug,ijf ′g,iδg}i≤ng are i.i.d. sub-exponential with mean zero. Since we

have ‖Σu‖ = O(1), for a sufficiently small positive number s, there exists a constant

C > 0, such that

P(max
j

∣∣ ng∑
i=1

ug,ijf
′
g,iδg

∣∣ > s) ≤
p∑
j=1

P(
∣∣ ng∑
i=1

ug,ijf
′
g,iδg

∣∣ > s) ≤ 2pe
− Cs2

ng‖δg‖2 ,

which concludes the result.

(e) For any g ∈ [G] and j ∈ [p], since {ug,ij}i≤ng and {u′g,iβ∗}i≤ng are i.i.d. sub-Gaussian

random variables, {ug,iju′g,iβ∗}i≤ng are i.i.d. sub-exponential with E(ug,iju
′
g,iβ

∗) =



28 PEIYAO WANG, QUEFENG LI, DINGGANG SHEN AND YUFENG LIU∑p
`=1 σu,j`β

∗
` . Hence, for a sufficiently small positive number s, there exists a constant

C > 0, such that

P
(

max
j

∣∣ 1

ng

ng∑
i=1

ug,iju
′
g,iβ

∗ −
p∑
`=1

σu,j`β
∗
`

∣∣ > s
)
≤

p∑
j=1

P
(∣∣ 1

ng

ng∑
i=1

ug,iju
′
g,iβ

∗ −
p∑
`=1

σu,j`β
∗
`

∣∣ > s
)

≤ 2pe
−Cngs

2

‖β∗‖2 .

Hence, we have maxj |(1/ng)
∑ng

i=1 ug,iju
′
g,iβ

∗ −
∑p

`=1 σu,j`β
∗
` | = OP (

√
log p/ng‖β∗‖).

The proofs of (f) – (i) follow similar arguments as in (d).

S2 A Rule of Thumb for Model Selection

In practice, it is desirable to have some guidance on choosing between the proposed

factor regression model and the group-specific model. To this end, we propose a rule of

thumb to choose between them. We define

R =

∑G
g=1 γ̂

′
gF̂
′
gF̂gγ̂g∑G

g=1 γ̂
′
gF̂
′
gF̂gγ̂g + β̂′Û′Ûβ̂

, (S2.1)

where F̂g, γ̂g and Û are as described in Section 3.1 of the main manuscript and β̂ is the

solution to (3.4). We recommend to choose our model over the group-specific model

when R < 0.95. More explicitly, we first run our method and check if R < 0.95. If so,

we use our method. Otherwise, we switch to the group-specific model.

To assess the effectiveness of this rule of thumb, we rerun simulations in settings 1

and 2 by using our model only, the group-specific model only, and an adaptive model
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(a) Setting 1

(b) Setting 2

Figure S1: The MSE curves given by our model, the group-specific model, the adaptive model using
the rule of thumb The left panel represents results for a sparse β∗ or β∗

g and the right panel represents
results for a dense β∗ or β∗

g .

that follows the rule of thumb. Figure S1 gives the MSE curves of the three methods.

Figure S1(a) shows that, the adaptive model can almost always catch the better per-

former between our and the group-specific models. This means that the rule of thumb

can correctly pick the better performer in this setting. Figure S1(b) demonstrates a
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similar finding, even though its left panel shows that, when h is big, the adaptive model

is a bit worse than the group-specific model but still much better than the proposed

model. This indicates that, in Setting 2 when the underlying true model is the group-

specific model, the rule of thumb can correctly choose to use group-specific model most

of the time.

S3 Additional Simulation Studies

S3.1 Sensitivity Analysis on the Choice of D

To investigate the role of D in our proposed method, we apply our method to Setting

1 in Section 5.1 using different values of D and λ. In Figure S2, we present heatmaps

of out-of-sample MSEs from both sparse and non-sparse cases with h = 0, 2, 4. In each

heatmap, each grid point represents the MSE from the corresponding combination of

D and λ. We find that our model’s performance is much less affected by D than by λ,

as colors change more along the vertical axis than along the horizontal axis. With an

appropriate choice of λ, the minimal out-of-sample MSE is often attained when D = 0.

This shows that when p < n, as in Setting 1 in Section 5.1, it is safe to choose D = 0.

Next, under the same setting, we further compare the prediction performance using

D = 0 versus tuning D by ten-fold cross validation. In particular, in one case we fix

D = 0 and tune λ by ten-fold cross validation and in another case we tune both D

and λ by ten-fold cross validation. We summarize the out-of-sample MSEs by these
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two methods in Table S1. We find that the prediction performance by fixing D = 0

is comparable to that by tuning D. Thus, to save computational time, we recommend

choosing a fixed D instead of tuning it.

(a) h = 0 (b) h = 2 (c) h = 4

Figure S2: Heatmaps of testing prediction MSEs from both the sparse and non-sparse case with
h = 0, 2, 4 from setting 1 where data are generated from the proposed model. The top and bottom
panels of plots are from dense and sparse β∗ case respectively.
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Table S1: Out-of-sample MSEs by different choices of D under Setting 1.

setting D by CV D = 0

dense
h = 0 6.700 (0.088) 6.695 (0.085)
h = 2 7.544 (0.103) 7.520 (0.107)
h = 4 11.395 (0.294) 11.417 (0.290)

sparse
h = 0 5.563 (0.073) 5.557 (0.076)
h = 2 6.559 (0.112) 6.530 (0.116)
h = 4 10.348 (0.316) 10.310 (0.312)

S3.2 Sensitivity Analysis on Spiked Eigenvalues

In Section 5.1 and 5.2, we choose the values of λg,1, . . . , λg,Kg to simulate the top Kg

eigenvalues of Xg. In this way, Xg generated from our simulations can satisfy the perva-

siveness condition in Assumption 1, which is to ensure the latent factors can be well es-

timated by the PCA method in Section 3.1. More specifically, our λg,1, . . . , λg,Kg are cho-

sen as follows: (λ1,1, λ1,2, λ1,3) = (1,Γ(2),Γ(3))∗7, (λ2,1, λ2,2, λ2,3) = (1,Γ(2.25),Γ(3.25))∗

10, (λ2,1, λ2,2, λ2,3) = (1,Γ(2.5),Γ(3.5)) ∗ 13, where Γ(·) represents the gamma function.

As suggested by one of our reviewers, in this section, we conduct a sensitivity study

on choice of λg,1, . . . , λg,Kg . In particular, we conduct two additional sets of simulations

with new choice of λg,1, . . . , λg,Kg on whole numbers:

(i) (λ1,1, λ1,2, λ1,3) = (10, 5, 2), (λ2,1, λ2,2, λ2,3) = (7, 2, 1), (λ2,1, λ2,2, λ2,3) = (12, 3, 1);

(ii) (λ1,1, λ1,2, λ1,3) = (5, 3, 1), (λ2,1, λ2,2, λ2,3) = (6, 3, 2), (λ2,1, λ2,2, λ2,3) = (7, 4, 2).

For each set of λg,1, . . . , λg,Kg , we conduct the same simulations for both Settings 1 and

2 as in Sections 5.1 and 5.2. We visualize the MSE curves for (i) and (ii) in Figures S3

and S4 respectively. In particular, each figure contains both the sparse and dense cases
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from both Settings 1 and 2. We can see very similar patterns of the plots from (i) and

(ii) compared to the MSE curves given by the original choice of λg,1, . . . , λg,Kg . Hence,

we conclude that our simulation results are not sensitive to the choice of eigen values

λg,1, . . . , λg,Kg .

Figure S3: The MSE curves given by the four models for settings 1 and 2 with choice of λg,1, . . . , λg,Kg

on (i). The left panel represents results for a sparse β∗ or β∗
g and the right panel represents results for

a dense β∗ or β∗
g . The top and bottom panels represent the MSE curves from setting 1 and setting 2

respectively.
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Figure S4: The MSE curves given by the four models for settings 1 and 2 with choice of λg,1, . . . , λg,Kg

on (ii). The left panel represents results for a sparse β∗ or β∗
g and the right panel represents results

for a dense β∗ or β∗
g . The top and bottom panels represent the MSE curves from setting 1 and setting

2 respectively.

S3.3 Other settings of fg,i and ug,i

As suggested by one of the reviewers, in this section, we consider the same settings as in

Sections 5.1 and 5.2, except that we generate {fg,i}i≤ng and {ug,i}i≤ng as i.i.d. samples

from a t-distribution with 10 degrees of freedom. Figures S5 and S6 show the MSE
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curves of four methods in Settings 1 and 2 respectively. We have similar conclusion as

in the cases where data are generated from a multi-normal distribution. Under setting

1, it is seen from Figure S5 that our method still outperforms the other methods when

h is small. When h becomes larger, the between-group heterogeneity increases. In

that case, our model’s performance gets worse than the group-specific model, which is

also observed when fg,i and ug,i follow multi-normal distribution. Under setting 2, it is

seen from Figure S5 that our method still has similar performance as the group-specific

model, when the group-specific model is the truth.

Figure S5: The MSE curves given by the four models under setting 1 when fg,i and ug,i follow the
t-distribution with 10 degrees of freedom. The left panel represents results for a sparse β∗ and the
right panel represents results for a dense β∗.

S3.4 Other choices of Kg

As suggested by one of the reviewers, in this section, we let Kg = g for g = 1, 2, 3

so that it varies across groups. We consider two data generating schemes similar to
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Figure S6: The MSE curves given by the four models for under setting 2 when fg,i and ug,i follow the
t-distribution with 10 degrees of freedom. The left panel represents results for a sparse β∗ and the
right panel represents results for a dense β∗.

Settings 1 and 2 described in Sections 5.1 and 5.2. In both cases, we keep choosing

G = 3, p = 200, ng = 100, µ∗g = g for g = 1, 2, 3 and generate ε as i.i.d. samples from

N (0, 4).

For Setting 1, we use the same method to generate Λg as in Section 5.1, and let

λ1,1 = 10, (λ2,1, λ2,2) = (9, 4), (λ3,1, λ3,2, λ3,3) = (8, 3, 2). Moreover, we let Σu be the

diagonal matrix with all diagonal elements equal to 2/15. We set γ∗1 = h, γ∗2 = (h, h)′

and γ∗3 = (h, h, h)′. For a sparse β∗, we let β∗ = (0.710,090,−0.710,090)
′. For a dense

β∗, we set β∗ = (0.380,020,−0.380,020)
′.

For Setting 2, we use the same method to generate Λg and Σu as in Section

5.2, and use the same λg,1, . . . , λg,Kg as in Setting 1 in above. For a sparse β∗g , we

set β∗1 = (10h, 0, 0,0.255,0187,−0.255)
′, β∗2 = (−10h, 10h, 0,0.255,0187,−0.255)

′ and
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β∗3 = (10h,−10h, 10h,0.255,0187,−0.255)
′. For a dense β∗g , we set β∗1 = (10h, 0, 0,0.2580,

037,−0.2580)
′, β∗2 = (−10h, 10h, 0,0.2580,037,−0.2580)

′ and β∗3 = (10h,−10h, 10h,

0.2580,037,−0.2580)
′.

Figures S7 and S8 show MSE curves of the four methods in Settings 1 and 2 respec-

tively. We observe similar finding as in Sections 5.1 and 5.2. For Setting 1, the global

model and the Factor-0 model cannot capture between-group heterogeneity, hence are

significantly worse than the proposed model and the group-specific model. When the

between-group heterogeneity is moderate, our proposed model is able to provide the

best prediction by capturing the globally-shared and group-specific signals. The group-

specific model gradually improves as h increases. For Setting 2, the differences among

the three models other than the global model are small when h is small. As h in-

creases, the predictions from the Factor-0 model and our model get worse, though the

former deteriorates much faster. This is due to model mis-specification and the fact

that between-group heterogeneity increases as h gets larger. Such a finding agrees with

Corollary 4.

S3.5 Estimation errors

In this section, we provide parameter estimation errors from our, group-specific and

global models in Tables S2 – S4 for both Settings 1 and 2. Tables S2 and S3 are

for Setting 1, where data are generated from our proposed model. Table S4 is for

Setting 2, where data are generated from the group-specific model. Table S2 summarizes
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Figure S7: The MSE curves given by the four models under Setting 1. The left panel represents results
for a sparse β∗ and the right panel represents results for a dense β∗.

Figure S8: The MSE curves given by the four models under Setting 2. The left panel represents results
for a sparse β∗ and the right panel represents results for a dense β∗.

estimation errors of γ̂g in terms of ‖γ̂g−Hgγ
∗
g‖, where Hg is the rotation matrix defined

in Theorem 1. Tables S3 and S4 summarize estimation errors of β∗ (Setting 1) and

β∗2 (Setting 2) respectively, where we denote the global model estimator as β̂λ,global,

the group-specific model estimator as β̂g,λ for g = 1, 2, 3; and our estimator as β̂λ.
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For each simulation setting, we pick three h values to represent low, medium and high

between-group heterogeneity.

For Setting 1, as can be seen from Table S2, the estimation errors from our proposed

estimator γ̂g are reasonably small considering the corresponding scales of true parame-

ters γ∗g . In Table S3, our estimator β̂λ always achieves the best performance compared

to estimators from the group-specific and global models, for all levels of between-group

heterogeneity.

For Setting 2, it is expected that our proposed estimator β̂λ does not always per-

form the best, because we generate the underlying data from a mis-specified model.

Unsurprisingly, when there is no between-group heterogeneity, i.e. h = 0, the estimator

from the global model performs the best. Moreover, there is only a marginal gap from

our proposed estimator to the best one. When there is high between-group hetero-

geneity, the estimator from the group-specific model achieves the smallest estimation

errors. As indicated by Theorem 4, the estimation error from our proposed model is

influenced by an extra term introduced from between-group heterogeneity, which ex-

plains the performance gap between our proposed estimator and group-specific model’s

estimator.
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setting ‖γ̂1 −H1γ
∗
1‖2 ‖γ̂2 −H2γ

∗
2‖2 ‖γ̂3 −H3γ

∗
3‖2

dense
h = 0 0.088 (0.008) 0.082 (0.008) 0.092 (0.010)
h = 2 0.411 (0.049) 0.380 (0.045) 0.308 (0.036)
h = 4 1.151 (0.162) 1.478 (0.161) 1.307 (0.178)

sparse
h = 0 0.079 (0.008) 0.065 (0.008) 0.056 (0.006)
h = 2 0.386 (0.046) 0.370 (0.044) 0.309 (0.038)
h = 4 1.163 (0.165) 1.434 (0.155) 1.260 (0.169)

Table S2: The estimation errors of γ∗
g from our model in Setting 1.

setting ‖β̂λ,global − β∗‖2 ‖β̂1,λ − β∗‖2 ‖β̂2,λ − β∗‖2 ‖β̂3,λ − β∗‖2 ‖β̂λ − β∗‖2

dense
h = 0 0.434 (0.006) 0.670 (0.011) 0.674 (0.010) 0.673 (0.013) 0.400 (0.005)
h = 2 0.832 (0.013) 0.671 (0.011) 0.715 (0.010) 0.677 (0.010) 0.410 (0.007)
h = 4 2.221 (0.052) 0.832 (0.013) 0.964 (0.016) 0.724 (0.007) 0.438 (0.005)

sparse
h = 0 0.252 (0.007) 0.424 (0.015) 0.394 (0.005) 0.405 (0.012) 0.247 (0.005)
h = 2 0.807 (0.018) 0.373 (0.003) 0.413 (0.005) 0.396 (0.002) 0.237 (0.006)
h = 4 2.649 (0.085) 0.507 (0.003) 0.624 (0.004) 0.449 (0.001) 0.270 (0.007)

Table S3: The estimation errors of β∗ from the three models in Setting 1.

S4 Additional ADNI Data Analysis Results

We further represent brain connections using precision matrices estimated from Gaus-

sian graphical models (Cai et al., 2011). Let Ωx,g = Σ−1x,g, ΩΛ′Λ,g = (Λ′gΛg)
−1 and

Ωu = Σ−1u . In Figure S9, we demonstrate the heatmaps of adjacency matrices corre-

sponding to estimated precision matrices for the NC and AD groups. We choose two

tuning parameters (ν = 0.2 and ν = 0.3) in the Gaussian graphical model to give

graphs at different sparsity levels. The top, middle and bottom panels correspond to

Ω̂x,g, Ω̂Λ′Λ,g and Ω̂u,g respectively, where Ω̂u,g is the Gaussian graphical estimators of

Ωu by only using data from group g. We can see that the heatmaps of Ω̂u,g in NC and

AD groups are much more similar than those of Ω̂x,g. In both plots, it is interesting
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setting ‖β̂λ,global − β∗
2‖2 ‖β̂2,λ − β∗

2‖2 ‖β̂λ − β∗
2‖2

dense
h = 0 0.004 (0.000) 0.014 (0.005) 0.006 (0.001)
h = 3 0.072 (0.000) 0.082 (0.008) 0.077 (0.001)
h = 6 0.271 (0.001) 0.244 (0.002) 0.276 (0.002)

sparse
h = 0 0.025 (0.001) 0.047 (0.007) 0.028 (0.001)
h = 2.5 0.077 (0.001) 0.091 (0.005) 0.082 (0.003)
h = 5 0.215 (0.004) 0.181 (0.011) 0.223 (0.005)

Table S4: The estimation errors of β∗
2 from the three models in Setting 2.

to note that the heatmaps of Ω̂Λ′Λ,g from the NC group are much denser than those

from the AD group. This shows that the AD patients may have a significant loss of

brain connections. To further investigate this difference, we explore the ROI connec-

tions that are selected in the NC group but not in the AD group on Ω̂Λ′Λ,g. We find

that the frontal, parietal and occipital lobes suffer significant loss of connections in the

AD group, which is consistent with the previous findings in the Alzheimer’s disease

literature (Johnson et al., 2012; Zhang et al., 2015). We list the detected regions in

Table S5.

S5 Application to Microarray Data Analysis

To further illustrate the effectiveness of our model, we apply it to the analysis of three

microarray data and compare it with global and group-specific models. The microarray

data come from three related cardiovascular disease studies on finding the key genes

that mediate atherosclerotic and inflammatory process. The three microarray data are

publicly available on Gene Expression Omnibus via the accession names as GSE12288,
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Table S5: ROIs with loss of connections on Ω̂Λ′Λ,g from AD group compared to NC group.

ROI1 ROI2
1 frontal lobe WM right angular gyrus right
2 frontal lobe WM right frontal lobe WM left
3 angular gyrus right frontal lobe WM left
4 angular gyrus right superior parietal lobule left
5 frontal lobe WM left superior parietal lobule left
6 frontal lobe WM right occipital lobe WM left
7 angular gyrus right occipital lobe WM left
8 frontal lobe WM left occipital lobe WM left
9 frontal lobe WM right postcentral gyrus left

10 angular gyrus right postcentral gyrus left
11 frontal lobe WM left postcentral gyrus left
12 superior parietal lobule left postcentral gyrus left
13 occipital lobe WM left postcentral gyrus left
14 frontal lobe WM right precentral gyrus left
15 angular gyrus right precentral gyrus left
16 frontal lobe WM left precentral gyrus left
17 superior parietal lobule left precentral gyrus left
18 occipital lobe WM left precentral gyrus left
19 postcentral gyrus left precentral gyrus left
20 frontal lobe WM right angular gyrus left
21 angular gyrus right angular gyrus left
22 frontal lobe WM left angular gyrus left
23 occipital lobe WM left angular gyrus left
24 postcentral gyrus left angular gyrus left
25 precentral gyrus left angular gyrus left
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Ω̂x,g

Ω̂u,g

Ω̂Λ′Λ,g

NC AD

(a) ν = 0.2

NC AD

(b) ν = 0.3

Figure S9: Heatmaps of the adjacency matrices corresponding to Ω̂x,g, Ω̂u,g and Ω̂Λ′Λ,g for NC and
AD groups with the tuning parameter (a) ν = 0.2, (b) ν = 0.3. Each black dot in the plot indicates
that the corresponding two covariates are partially correlated.

GSE16561 and GSE20129. There are 222, 63 and 119 samples in these three datasets.

It was identified by Li et al. (2014) that the gene “IFNA4” plays a key role in the

process. In order to understand how this gene connects to the other 464 genes in the 20

immunity-related signaling pathways, we propose to regress the expression of IFNA on

the expression of the rest genes using four models. For the global model, we concatenate

three datasets and run a single regression on the combined data. The group-specific

model is applied separately to each of the three datasets. We also run the proposed

and Factor-0 models on the three datasets together.
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We randomly partition all samples into 75% for training and 25% for testing. We

repeat the random split for 50 times. The overall and groupwise Mean Squared Errors

(MSEs) with corresponding standard errors are reported in Tables S6 and S7 respec-

tively. For each model, we use three penalty functions, namely the `2-penalty (Ridge),

the `1-penalty (Lasso), and the Elastic Net (EN) penalty with the bridging parameter

equals to 0.5.

As shown in Table S6, our proposed model outperforms the other three competitors

by a fair margin in terms of the overall MSE. The global model performs poorly as it

ignores the heterogeneity among the three studies and the group-specific model fails

as the sample sizes in each study are not large. On the contrary, our method can find

a good balance between the two and achieves better prediction. The Factor-0 model

adjusts for group-specific means. Compared with our model, its prediction is still worse,

which suggests that there are some additional latent factors need to be adjusted as done

by our method. These factors could potentially be due to the batch effects. In terms

of the groupwise MSE, our model performs the best in two of the three studies, even

though the group-specific model has the best performance in GSE20129.

Table S6: Overall MSEs for the four models.

Penalty Global Group-specific Factor-0 Proposed

Ridge 1.509 (0.029) 1.504 (0.031) 1.524 (0.030) 1.461 (0.029)

EN 1.735 (0.031) 1.692 (0.039) 1.643 (0.032) 1.582 (0.032)

Lasso 1.727 (0.031) 1.708 (0.042) 1.659 (0.032) 1.619 (0.033)
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Table S7: Groupwise MSEs for the four models.

Global Group-specific Factor-0 Proposed

Penalty = Ridge

GSE12288 2.016 (0.050) 2.059 (0.049) 2.082 (0.052) 2.000 (0.050)

GSE16561 1.334 (0.092) 1.501 (0.098) 1.308 (0.082) 1.223 (0.080)

GSE20129 0.638 (0.025) 0.452 (0.020) 0.578 (0.023) 0.562 (0.021)

Penalty = Elastic Net

GSE12288 2.259 (0.055) 2.361 (0.063) 2.234 (0.057) 2.179 (0.058)

GSE16561 1.640 (0.102) 1.598 (0.139) 1.438 (0.089) 1.277 (0.099)

GSE20129 0.790 (0.030) 0.472 (0.023) 0.628 (0.027) 0.609 (0.025)

Penalty = Lasso

GSE12288 2.233 (0.058) 2.386 (0.069) 2.254 (0.058) 2.244 (0.060)

GSE16561 1.714 (0.112) 1.581 (0.134) 1.464 (0.091) 1.267 (0.089)

GSE20129 0.773 (0.031) 0.487 (0.024) 0.632 (0.027) 0.615 (0.025)
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