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S1 Supplementary Material A: Proofs of Theorem 1 and 2

To facilitate expression, we introduce some additional notation. Let [[M||o1 = >°%_, [[m]]
for any matrix M/ € R™ P, where m; is the jth column of M, and ||v| is the standard L
norm for any vector v € R?. For an index set S € {1,--- ,p} and a matrix M € R"*?,
Mg denotes the submatrix of M containing columns of M with indices in .S. For a vector

v, vg denotes the subvector of v containing elements of v with indices in .S.
Lemma 1. In the event 2 = {maxi<j<, |[n"' > 1 zij(x; — Hoz)|| < Ao},
1 =, 7 :
o > IH = Ho)zil)* < 22) Aoy,
i=1 j=1
where hy; is the jth column of Hy in (6) in the main paper.
Proof of Lemma 1. By the definition of H, we have
1 n B ) q B 1 n ) q
o D llwi— Hazll> + X2 ) |hyll < o > llwi = Hozill* + X2 ) 1ol
i=1 j=1 =1 7=1

Let A = (ﬁ — Hy). After some algebra, this inequality can be written as

1 o < e = I -
o > lIAz)* < - > A (xi — Hoz) + Ao Y (|lhogll — I|B4)-
i=1 i=1 j=1
Note that
0 SELUEI TS IS 39 SLI
— Z; €T; — Zi = - Zz Zid
n =1 ' ’ n =1 j5=1 J ’ !

q

~ 01
Zn@-nnﬁzzzx — Hoz),
j=1 i=

IN
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where 5j = fzj — hy, is the jth column of A. Therefore, on the set
1 n B q B q 5 q
2n D IAZIP < A0 Y (Al + o) + A2 D (lhogll = A1) = 2X0 Y [l -
i=1 Jj=1

j=1 j=1

This proves Lemma 1. ¢

Lemma 2. [f Assumptions (Al)—~(A5) hold, and Ny > 2p(X)\/(2 + 6)log(2dq)/n, then

we have, with probability approaching one,

max ||(H — Ho) |1 < Vdspha,

1<k<d

max [[(H — Ho) ™|l S v/sihe,

1<k<d

15 = moll < VA1,

where p(X) = maxi<;j<diq 2jj, and 0 > 0 is a constant.

Proof of Lemma 2. We show the first two inequalities in both cases, that is, H is
obtained from (2.8) and (2.9) in the main paper. Then we show the last inequality.

By Theorem 1 of Raskutti et al. (2010), we have, with probability at least 1—c" exp(—cn),

I=2%0] = 9p(=2) vl v/log(q)/n,  forallv € RY,

(V'3 0)Y? >

] =

A

where ¢ and ¢ are constants, 3, is the covariance of z, 3, is the sample covariance of z,
and p(Z) = maxXj<j<q Ejj-
For an index set S C {1,---,¢} and a constant « > 1, define the cone C(S,a) =

{0 € R? : ||0sc|ly < «ffs]]1}. We say a symmetric matrix M satisfies the restricted
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eigenvalue (RE) condition over S with parameters («,y) € [1,00) x (0, 00) if
o' Muv > +?||v||?, forallv € C(S,a).

Similar to Corollary 1 of Raskutti et al. (2010), when sample size

" 2 E 1 2
n > ¢ P 6100 ),
A

the matrix ¥, satisfies the RE condition with parameters (v, ¢, /8), that is,
(v'S,0)Y? > ||v|| for all v € C(S, ),

where c, is given in the assumption (Al).
Case 1: H is obtained from (2.9) in the main paper. Note that the conditional variance

Var(Y7 ) zij(xi — Hozi) P21, z0) = S 2oy z7;. We have

max||—2zw — Hoz)|| > tlz1, - 5 2)

1<j<qg n

n

1
ij(wi — Hoz)™®
nzzj< 0%)

=1

<dq max max P <

1<k<d 1<j<q

> t/Vd|z, - zn)

2t2
<2dg max max exp 1
1<k<d1<j<q 2d% Yo 212]

2t2
<2dqexp (— ;dvo)

n2t?
- - log(2
exp ( Sdug + log( dq)) ,

where vg = maxi <p<a Maxi<j<q Sk Dy 7 < p(X) 31, 275 and p(X) = maxi<j<ap Bjj-

Since z7;/%;; — 1 is sub-exponential with mean 0, we have

n

- o[t
P(|n IZ(Z%/EJJ — 1) >t) <2exp (—cnmm (ﬁ’ E)) :

i=1
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where K = maxi<i<y [|27/5;; — 1fly. This implies that =" (22/5; — 1) <
with probability approaching one, which results in vy < (n + 1)p?(X) with probability

approaching one. Thus, we have

21 0)log(2dg) _ 1
max H—sz — Hyz)|| < p( )\/( - 0) log(2dg) <3k (SLD

1<j<q n n

with probability approaching one, where 6 > 0 is a constant. By Cauchy-Schwarz in-

equality, we have

e~ & 1
- N (z; — Hoz) <> |165]111= (s — Hoz
n;Z (z 02)_;! ] X_:ZJ 0zi)||

1
<[ Al max ||~ > zij(ws — Hoz)|

=1

1 _
<=Xo||Al|l2.1-
< XalAlly

Recall S, = {j : hoj # 0,5 = 1,--- , ¢}, which is defined in the assumption (A3). Since

Hose = 0, we have || Hol21 = || Hos, ||2,1, and

|Ho + All21 = [|Hos + Aslla1 + || Ase

21 > |[Hosll21 — [|1As]l21 + | Ase |l
From the proof of Lemma 1, we have

0<— Z 1Az]* < Z A(wi — Hoz) + Ma([[Holl2n — | H]l2.1)

=1
n

1 - - .
<- ZiIN(x; — Hozi) + 2| As, |21 — A2|Ase |21
n ; " " (S1.2)

1 . N N
§§>\2HA||2,1 + A2l As, ll21 — Aol|Ase 21

3 1
§§>\2HAsth,1 — §>\2HAS,§Hz,1a
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which implies that ||A5ﬁ 21 < 3||Ag, ||21 and A € C(Sy, 3), and consequently that

dec2
AIIAII2 <—ZHAZZI|2

§§)\2HAHZ1 + Xo(|[Holl2,1 — || H [|2,1)

1 ~ ~ ~
§§A2||A||2,1 + A2l|As, [[21 — A2l Ase |21

3. 1% 1 <
§§A2‘|A5h’|2,1 - 5)\2||Asg 2,1
3 -
<5AevsullAll
This concludes that
N 96
Al < — A
” ” = dci@ 2
and further
1All2x < 4l1As, 120 < 4v/ElIA] S sphe,
which implies that with probability approaching one,
lglggdH(Ho 7)), < Z I(Ho — )|y < VA||Al|21 < Vidspha,
and

q

I (k)2< '_~‘2: ~2< 2

max [|(Ho — H)®|* < Z;Hhoj Bl = AP Ssuhl.
j:

Case 2: H is obtained by (2.8) in the main paper, which implies that H consists of d

standard lasso estimators. Similar to (S1.1), we have

max max ]— Zz” Tik — zl)] < (E)\/(2 +9) log(2) < %/\2.

1<k<d1<j<q M n B
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Recall that S, = {7 : hox; # 0,1 < j < ¢} for 1 < k < d, which is defined in the
assumption (A3), where hy; is the (k, j)th element of H,. Similar to Lemma 1, it is easy

to see that by Cauchy-Schwarz inequality,

—ZA zilwa — Hyz) <|A®| max ||—Zzw zo— Hy 2|

1<5<q

1 .
§§A2||A(k)||1a

and

n

A0z < ZA% e — HOz) + Mo (1 HO | — [HO]))

1

1

2nZ

<3 >\2||A(k ||1+>\2||A ||1—)\2||A

Sh,k

<IMIAL, I~ Sl AY

which implies that A®) ¢ C (Sh.k,3). and consequently
GIAR < L3 @0
64 — 2n —

It follows from above that

A 1A - .
1A <3 AWz — 192) + a1~ A1)

i=1

<= )\2||A(k ||1+)\2||ASM||1 ,\2||A(Sljcl)k )

A (k
<InlAY, I

“Xoy/Enall AW,
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and then

N 96
1AM < 5 Ao /5,
CA
and further
IAB < 4AY 11 < 45l AP < s xho.
It is obvious that we have, with probability approaching one,

_i)®|, = AB, <
max [[(Ho — H)™ [l = max [AT][ S spa,

and

max ||(Hy — H)®|| = max |A®|| <\/3\,.

1<k<d 1<k<d

For the last inequality, we need to verify Conditions D1-D4 of Theorem 2 of Belloni
and Chernozhukov (2011). Condition D1 is satisfied under Assumption (A4). Since
is just some constants, we only need to verify the sparsity condition, which holds under
Assumption (A2). Condition D3 is satisfied because we consider 67]2- needed in Belloni and
Chernozhukov (2011) as a constant in (2.2) and (2.8) of our manuscript. Condition D4
holds under Assumption (A1). Thus, by Theorem 2 of Belloni and Chernozhukov (2011),

we have
17 =m0l S Vs

This completes the proof.c
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Proof of Theorem 1.

Let P, be the empirical measure of (y;, z;,2),1 < i < n,w = (y,z,2), U, = {n €
RY [l — noll < Clslog(a)/m) " llnlle = O(s)}, and Uy = {H € RI=0 ; |[(H —
Ho)D|ly < Csp(log(q)/n)'/2, | (H—Ho) V|| < C'(splog(q)/n)"/?,j =1, d}, where
M) denotes the jth row of a matrix M. Write o (w; 3,1, H) = Y {y—2'f—2n}(z—Hz).

By Theorem 2.10 of Kosorok (2008), it suffices to show that

n

le(wi;ﬁ,n,H)—ZPz/z(wi;ﬁ,n,H)Hi>0. (S1.3)
=1

i=1

n1 sup
BER? neUy, HEUy

Let 1 = {¢,(y; — @8 — zin) : B € R, n € U,}, FD = {(x — H)Y) : H € Uy},
and F = F; - (U?Zl}g(j )), where £U) denotes the jth component of a vector £. Since 1, (-)
is monotone and bounded, the VC index of F; is O(d + s) by Lemma 2.6.15 of van der

Vaart and Wellner (1996), which implies that the uniform entropy numbers is
sup log N(ellFillgz: Fuy |l - llgz2) < Cld + 5)log(1/e),

forall 0 < ¢ < 1, where F; = 1 is the envelope of F;. Let F;, = ||z — Hz||~ be the
envelope function of ]-"20 ). The VC index of }"Q(j ) is O(sp), forall j = 1,--- d, and then

the uniform entropy numbers obey

sup log Nl Fallga, S || - o) < C(d+ sp)log(1/e),
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which results in that the uniform entropy numbers of F obeys

£
suplog N (el Folloz: 7. - la2) <suplog N (Sl Fillga 7. - loz)
log N (|| Fyllg, U2, F, | -
+ suplog SI2llo2, Ujei P Il - llo.2
£
<suplog N (5 1F oz 71,1 o)
8 .
+log(d) suplog N (1 Pallga, 74, I lz)
<C(d+ sV sp)log(1/e).
It is obvious by Assumption (AS) that
lv = Helloo <l = Hozlloo + max [[(H — Ho)P|illzlloe S lle = Hozlloo + lI2llsosn Az,
which implies that by Assumption (A1)
1Eolle 2 S (Elllz = HozlPDY? + Gasnda S Gusno. (S1.4)
And it follows Assumption (A1) that
sup || fl|p2 < sup Elllz — Hzlf’]
feF Hely
<E[||z — Hoz|*] + sup E[|(H — Ho)z||"]
Heluy

(S1.5)

<C + st log(q)/n
<1

Y

where C and C’ are some constants.
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Therefore, by Assumption (AS) and Theorem 5.2 of Chernozhukov et al. (2014) with

0% = || F3||} 5, we have
1 n n
—=E sup Y(wis B,m, H) — ) Pib(wi; B, H)
\/ﬁ {BeRd,neu,,,HeuH ; ;

SCusna(s Vi) 2+ 072 (s v sy)

—o(n'/?).

Thus, combining this with Theorem 5.1 of Chernozhukov et al. (2014), we have

nt sup

BERY ey, HEUY

Z¢(wi;5anv H) - ZP¢(Wi;B777a H)H = OP<1)'
=1 =1

This completes the proof. ¢

Lemma 3. If Assumptions (Al)—(AS) hold, then with probability approaching one,

18 = Boll S VsV su(M V Aa).

Proof of Lemma 3. Note that

Pl (w; B, 77, H) — v (w; Bo, o, Ho)) = —Pub(w; By, 10, Ho)

Since P, (w; Bo, no, Ho) = Op(n~"/?) and P (w; 3,7, H) ~ 0, and we have shown in

Theorem 1 that

(Pr, = P) {9 (w; Bo,mo, Ho) — 1 (w; 3,1, H)} Sn 2 (s sp) s,
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we obtain that

Pl (w; B, 71, H) — v (w; Bo, o, Ho)] S (s V 55) /2 G A
It is clear by Lemma 2 and Assumption (A4) that
Ex,z{w(wv BJ 777 f{) - w(wa ﬁOa Mo, HO)}

=f(0lz, 2){a' (6 = o) + 2'(7] — m0) + (H — Ho)z}( — Hoz){1 + 0,(1)}

= (0, 2)2' (5 = Bo)(1 + 0,(1)) + Op(v/5M1) + Op(y/510a),

which implies the result of Lemma 3, where E,, . denotes the conditional expectation of w

given x and 2. ©

Proof of Theorem 2.

Let
U(w; B,n, H) = dr{y — 2B — '}z — Hz).
With common notations in the empirical process literature, we can write
Vo (B) = B (3 8,0, H),
and
(B, n, H) =P B,n,H).

We first need the claim that

(P — P){(5 B, 71, H) — (s Bo, mo, Ho) } = 0,(n /). (S1.7)
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It is clear that
(P = PY{p(; 8,77, H) — (- Bo, o, Ho) Y| < Sup (P = PYHI,
where

]:3 = Ulgjgd ]_—3(3')’ and
F ={(:Bon ) = (5 Bo,mo. Ho)Y : |8 = Boll < Oy € Uy, H € Unt}
for sufficiently large constant C, and 7,, = /s V s,(A1 V \2). We need to prove that
sup P||f]|* < 7. (S1.8)
Jers

Recall
(B, H) =Pr(y — 2’ — 2'n)(z — Hz) = E{E[Y{y — 28 — 2'n}|z, 2](z — H2)}.
Let g(x, 2;8,n) = E[Yr(y — 2’8 — 2'n)l|z, 2], A = 2'(B — fo) + 2'(n — mo). Since
9(, 25 8,m) = B{r(y — 2'Bo — 2'no — A) |z, 2} = f(0lz, 2) A{1 + 0,(1)},
and

E{lyy_wp—2m<oyL{y—o'go—zmo<ol, 2} = B{I{c<n}[(e<0y |7, 2} = min{ F(A), F(0)},
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it then follows from Lemma 2 and Theorem 1 that
PHQ/}(’ B7 n, HO) - 1/}() /807 Mo, HO)H2
=P{¢r(e — A) — - (e)}*||lz — Hozl?

:{PI{SSA} + P]{Ego} — QPI{ESA}I{SSO}}H'I - H()Z||2

(S1.9)
=P [F.(A) + 7 —2min{F.(A), 7}] |z — Hyz|*
<P{f(0lz, 2)(l2"(8 = Al + [|2"(n = m0) )} x [z = Hoz|[*(1 + 0,(1))
<Tp.
It then follows from Lemma 2 that
Pll(5 8., H) — (5 8., Ho)|[* < 2P| (H — Hp)z|* < 72 (S1.10)

Therefore, by (S1.9) and (S1.10), and the triangle inequality, (S1.8) holds. We define the

envelope function of F3 as

Fy = sup sup 2¢(; 8, n, H)YY.
1<G<d ||B—Bo||<CTn €Uy, HEUR
By Assumption (AS5) and Lemma 2, we have, for all H € Uy,
(z — Hz)9| < |(z — Hoz2)V| + || (Ho — H)D |1 [|z]|00 < [(& — Hoz)P| + sndall]| 2],
which implies that
| Fs][p2 S Cusne.

Since F3 C F — F with F defined in the proof of Theorem 1, we then obtain that

suplog N(ell Fllgz . |- lg2) 5 (5 v )/ log(1/2). (SL11)
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Combining the above inequality with Assumption (AS5) and Theorems 5.1 and 5.2 of Cher-

nozhukov et al. (2014) by applying o = 7,,, we have that

sup [[(P, — P)(f)|| 5\/7'”(5 V sp)log(1/6,)/n+n"t(sV sh)1/2 log(1/0,)
fers (S1.12)

:Op(n_1/2)7

which implies that (S1.7) holds, where §,, = \/7,/((nsn2).

~

With (S1.7), we rewrite the equation U,,(3) = P4 (+; 3,7, H) ~ 0 as follows.

0 =(P,, — P){¢(~s B33, H) — ¥(+; Bo, 10, Ho) } + Pt (- Bos mo, Ho)
+ P{(; 8,71, H) — (-3 Bos o, Ho) }

—0,(nY2) + Potb(+; Bo, o, Ho) + P{ (- 3,77, H) — b(+; Bo, no, Ho)}-
Then we have
W(3,71, H) = W(So, 10, H) = —Putb (-5 Bo, 1o, Ho) + 0p(n~"/?).
Let V,,(A) = n /23" (F(A;) — 7)(z: — Hz) — W(B,n, H). Since PV,, = 0 and
Var(V,,(A)) =Var{(F(A;) — 7)(z; — Hz;) — V(8,1, H)}
<E[f*(@|wi, 2i)(wi — Hz) (2 — Hz)TA]
=08 = Boll + [l = noll),

where w; is between A; and 0, we have by Assumption (A5), V,,(A) = o(1), for any

18 = Boll + lIn — noll = 0p(1) and || H — Hy|| = 0,(1), and furthermore,

(3,7, H Z{F — 1} (wi — Hz) + o,(n~ ).



16 Chao Cheng, Xingdong Feng, Jian Huang, Xu Liu

According to Taylor’s expansion, we have

. Z{F — o= fz) = > S, 2) o~ Ha)al(5 - )

+ % > Fbila, 2) (2 — Hzi) 2, — o),

i=1

n

where w; is between A; and 0. The second term on the right is 0,(1). In fact, by Assump-

tion (AS5) and Theorem 2 of Belloni and Chernozhukov (2011), we have

Zf Wiz, 2i) (s — Hz)z

<17 = moll max |~

I, . - _
- > flabilas, ) (i — Hz) 277 — o)
=1

=op(shis~{log(q)} /)

—op(n1/2).
This implies that
%i flailas, ) (i — Hzi)xi(B = Bo) = U (Bo,mo, H) + op(n~"2),
i=1
and by the law of large numbers and the continuity of f(u|z, z),
E{f(0lxs, 2) (i — Hz:)x[}(B = Bo) = W(Bo, mo, H) + 0p(n"/?).
Also, under Assumptions (A1), (A2), (A4), and (A6), and Lemma 2, we have

[B{f(0lz, z)(x — Hz)a"} — E{f(0|z, 2)(z — Hoz)2'}|| <CE{||(H — Ho)za'||}
<CE{||(H — Ho)z|}E{||=(|}

=o(1),
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so it follows that

B=Py = —n"" E{f(Olz,2)(x — Hyz)2'}] 7Y ¥r(ei)(wi— Hozi)+0,(n?), (S1.13)

where ¢; = y; — fByx; — 1z Therefore, the result holds under Assumptions (A4) and

(A6). ¢
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S2 Supplementary Material B: Refitted wild bootstrap

Let n; = [n/2] and ny = n — ny, where [u] denotes the integer not greater than the
positive number u. We randomly split the original dataset into two even parts V; and V5.
Without loss of generality, we assume that V; = {(y;,2,2) : n1 +1 < i < n} and
Vo =A{(yi,zi,2;) : 1 <i <my}. Let (3, and 71 be the estimator from

n

~ ) 1
(Br,7) = argmin — Y~ pr(y; — 28 — 2in) + M|l (S2.1)

n
B 2 i=ni+1

which is similar to (2.2) in the main paper where the original sample is replaced by its first
part of the dataset V;.
Let S1 = {j :7j1; # 0,0 < j < i = (ur, -+ i) "} 81 = [Sil, and Ty = {v €

R?:v; =0,Vj € S¢}. Let 3, and 7, be the estimator from

. R
(B2, 72) = argmin — Z pr(y; — xi 8 — zin), (52.2)
BERE neTy n i=1
which is the regular quantile regression estimation based on the second part of the dataset
Va.

Let (33 and 77 be the estimates which satisfy

% sk 1 - *
(85, 7;) = angmin - > pelyr — 28— 2m) + Mlinllu, (S2.3)

which is similar to (S2.2) where y; is replaced by its bootstapped sample provided in (B4).

Then the regularized projection score based on the boostrapped sample for 3 is given by

- - 1 & -
VL(8) = (8.5, ) = - > e (yr — 28 — i) (@ — Haz), (S2.4)
=1
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which is similar to (2.10) of the main paper where the original sample and 7 are replaced
by its resample and 7); from (S2.3), respectively. Note that H, in (S2.4) is estimated from
(2.8) in the main paper by only using data V5. The estimator B* based on bootstrapped

dataset is the solution to the equation
T* () = 0. (S2.5)

Lemma 4. If Assumptions (Al)-(AS) hold, then with probability approaching one, we have

172 = moll S /s log(p)/n,

15> — Boll Sy

Proof of Lemma 4. According to Theorems 2 and 3 of Belloni and Chernozhukov

(2011), we have, with probability approaching one, § < s, and then

172 — M| S /slog(p)/na.

Along the lines of Lemma 2, we have

|7 =m0l =< v/slog(p)/n2.

By triangle inequality, it holds that

172 — 1ol < Il — |l + |7 — moll < v/ $log(p)/n1 + /slog(p)/na,

which implies that |72 — no|| < +/slog(p)/n by noting that § < s. This leads to the first

equation.
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Now we prove the second equation. With the similar argument of the proof of Lemma

2, we have

max H(Hz Ho)V|| < v/snlog(q)/n1,
and consequently, BQ — o is normally distributed with the similar argument of the proof
of Theorem 2. This gives the second equation. ¢

Lemma 5. If Assumptions (Al)-(AS) hold, then with probability approaching one, we have

17" = 7|l S /s 10g(g) /na-

Proof of Lemma 5. Note that P* takes expectation on bootstrapped sample { (v}, z;, ;) :
1 <i < nq}. It can be shown by Theorem 3 of Belloni and Chernozhukov (2011) that with
probability approaching one we have § < s. The results follow with the similar argument
of the proof of Lemma 2. ¢

Let P! be the empirical measure of (y},x;,2),1 < i < n, and Y (w*;B,n, H) =
Ay — 2’ — 2'n}(x — Hz), where w* = (y*, z, 2).

Lemma 6. If S C S, and &, = O(s), we have
N 1
B" = By = — [E{f(0]z,2)(x — Hpz)2'}]™" Zm GlP1) (s — Hoz) + 0y (ny %),
Proof of Lemma 6.Consider the following identity

P*{y(w*; B, 715, Ha) — (w; Ba, 72, Ho)} = —P{p(w*; B, fla, Ho) }

+ P {(w; 57,75, Ha)} + (B, = P){0(w; Ba, 7o, Ho) — w(w™; 5,5, Ha)}. (S2.6)
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To show that /iy (P* — P){w(w*; Ba, 7la, Ho) — (w*; B*, 75, Ha)} = 0p+(1), it suffices

by Theorems 5.1 and 5.2 of Chernozhukov et al. (2014) to show that

~

P*||sb(w*; Ba, o, Ho) — t(w*; 8%, 5, Ho)|* < Ty (S2.7)

and the uniform entropy numbers of F35 under the bootstrapped sample are not greater than

Clog{(sV sp)/c}.

Let e = (;|ry|], fori = 1,---  n, where the random weights (; are independently
drawn from the distribution G. Let g*(z, z; 5,n) = E{u, (y* — 2/ — 2'n)|F, x, 2}, A* =
¥ (B =) + 2 (n— 1), and A* = &/ (B* — ) + 2/ (75 — 7).

Since

A~
*

A‘ {140, (1)},

g*(i, 273*777;) = E*{¢T(y* - 1”52 - Z/ﬁQ - A*)|f7$, Z} = G/(O|TA7$72) ‘TA

and

Bl ot —orir <Lty —wpr—sinol®s 2} =EU e can I <y, 2}

=min{G(A*/|#]), G(0)},
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we have, by Lemmas 4 and 5,

P* ([ (w; B*, 73, Ho) — v (w"; Ba, fia, Ho)|)?
=P*{¢p-(c* = A%) — 9 (£") 12|z — Hoz|
:{P*]{E*SA*} + P*]{a*go} - 2P*[{5*§A*}I{E*§O}}”x - H02||2
(S2.8)
=P* |G(A*/|f]) + 7 — 2min{G(A*/|#]), 7} | ||z — Hoz||?

<P{f(0lz, 2)(ll" (3" = Bo) | + 1" (715 — 7i2) D} x [l = Hoz|*(1 + 0,(1))

<

~'n:

Lemma 2 indicates that

[y (w; 7,715, Ha) — o (w"; 57,75, Ho)||* <2P||(Hy — Ho)z|* S m. (S29)

By the triangle inequality together with (S2.8) and (S2.9), the inequality (S2.7) holds when
conditions in Lemma 2 are satisfied. With the same lines along (S1.11), we can show that

the uniform entropy numbers of F3 under the bootstrapped sample are not greater than

C'log{(s V s)/e}, and /ny (P — P){(w*; Ba, 12, Ho) — th(w*; B, 175, Ha)} = 0, (1).

With the approximated equation P, 1) (:; B*, 75, I—L) ~ 0, we have

mp*{¢<w*;3*,ﬁ;, ]:-’2) - ¢(W*§32,ﬁ27 Ho)}
= — VP {(w*; By, 7o, Ho)} + 0p-(1). (S2.10)
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It is clear that

P*{sp(w*; 5%, 775, H) — ¢ (w*; Ba, 7, H) }
(52.11)

=P [ {C[P| = @' (B" = B2) = 2'(15 — 7o)} — ¥ (CIFD) (& — H):

For any vector u;, us € R? and v, vy € RY, we have, by Assumptions (A4) and (B3),

P* {1, (Cle — 2'uy — 2'v1] — 2'ug — 2'vg) — ¥ (Cle — 2'uy — 2'vq])}
= / / I{Og(\sfx/ulfz/vl\<x’u2+z/v2}dF(5)dG(C>I{x’u2+z’v220}
- //I{$’U2+z’v2<cla—x’u1—Z’v1|<0}dF(g)dG<O]{x’u2+z’v2<0}
“+oo
:/ [F{z'uy + 2'v; + (@ ug + 2'vy)} — F{a'uy + 2'v1 — H(a"ug + 2'v2)}]
0
X dG(C)I{x’u2+Z'U2>0}
0
— / [F{x'uy + 2'vy + N2 ug + 2'v2)} — F{a'uy + 2'vy — (1 (2"ug + 2'09)}]
X dG(C)I{x’u2+z’v2§0}
oo
5 / G F (O, 2)(ts + Zv0) oy s renoy
0
0
i / CHGC)F (O], ) (2'1ts + 2v5) [y s roy<)

+ O(|x'ug + 2'va|(|2"ur + 2'v1| + |2"us + z’v2|)1/2)

=£(0]x, 2)(z'uy + 2'vg) + O(|a"ug + 2'va|(|2'uy + 2'v1| + |2ug + 2'va|)Y?),

where the last equation holds by Assumption (A4). Note that P*{¢)(w*; B2, 7z, Hy) —
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Y(w* ﬂAQ, n2, Ho)} = 0. Thus, it follows from (S2.11) that for the left side of (S2.10)

P*{sp(w*; 5%, 775, Hy) — b(w*; Ba, 7la, Ho)}

:P*{¢<W*a B*aﬁ; ﬁ?) - 7/}(11)*7 327 ﬁ?a Ij[Q)} + P*{w(w*v BQ? ﬁ2> [:12) - ¢(w*> BQ? ﬁ2> HO)}

=P {w(w'; 5,753, Hz) = (w'; By, 7, H2)}
=E{f (0], 2)a' (5" = Bo) (@ — Ha2)} + B{f (0l 2)2'(7; — 7o) (w — Hp2)}

+O((|2' (B2 — Bo) + 2 (2 — mo)| + |2/ (B" = Ba) + 2 (i — 712)) /%)

x O(Ja' (8" = Bo) + /(715 — 7o)llw — Haz]))

=E{f(0la, 2)a’ (5" = Bo) (@ — Ha2)} + E{f (O, 2)(7l; — ila)'2(x — Haz)} + 0 (n; ),
(S2.12)

where the last equation holds by Lemmas 2, 4 and 5.

LetU, = {v € R?: ||v|| = Op+(sA1)}. Forany v € U, and H € Uy, we have, by
Assumption (AS),
1 n
E{f(0lz,2)(x — Hz)z'v} =— 3 " f(Oa;, 2:)(x; — Hzi)zjv + Op (n”"|0]])
n
i=1

=0, (sM15 H{log(q)} V%) + O, (slog(q)n2).

Combining this and (S2.12), we have

VP (w*; 5, 7, Hy) — 9 (w*; B, fia, Ho)}
=V E{f(0lz, 2)2'(B" — Bo)(x — H22)} + 0, (1).
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Inserting above equation to (S2.6), we further have
VIE{f (02, 2)a’ (8" = Bo) (& — Ha2)} = = Py {db(w"; B, 2, Ho) } + 0 (1)
-1 f;mim)m - Hyz) + o (1),
(S2.13)

Since || Hy — Ho|| = 0,(1) by (S1.8), it then follows from (S2.13) and Assumption (A6)

that

A

B — By = — [B{f(0lz, 2)(w — Hoz)2'}] nil D (Gl (i — Hoz) + 0pe (n77?).
=1

This completes the proof of Lemma 6. ¢

Proof of Theorem 3.

Lemma 6 implies that

~

V(B = Ba) 55 N(0,Q7'DQ),

where Q = E{f(0|x, z)(x — Hoz)a'} ,and D = 7(1—7)E{(x — Hyz)(x — Hypz)'} . This

completes the proof of Theorem 3 by Theorem 2 and the asymptotic result above. ¢
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S3 Supplementary Material C: One-step estimator

Lemma 7. If Assumptions (Al), (A2) and (A4) hold , we have, with probability approach-
ing one,
13 = Boll S v/sA1.
Proof of Lemma 7. By (S1.3) and Theorem 2.10 of Kosorok (2008), we have
3 L B. (S3.1)
Since Py, (y — 2’8y — 2'ng)xr = 0, by Lemma 2 and Assumption (A4), we have with
probability approaching one,
Ee o A¢r(y — /B — 2z — e (y — 2 Bo — 2o )}
=f(0lz, 2)a’ (5 = Bo){(1 + o(1)} + f(Oz, 2)2'(7 — mo){1 + (1)} (53.2)
=£(0]x, 2)2"(B — Bo){1 + 0o(1)} + O(v/s\1).
Since
P{tp-(y — /B — 2'f)x — ¥, (y — 2'Bo — Z'mo)x} = Pt (y — 2'Bo — 2'mo)

+ Prthr (y — I,B - Z/ﬁ)x + (P — P){r(y — ' Bo — Z'no)r — Y. (y — JI/B -2z},
(S83.3)
and P, (y — 2’ Bo — 2'1o) = O, (n~"/2) and P, (y — o' B — 2'7}) ~ 0, it suffices to show

that

(P = P){vr(y — 2'Bo — 2'mo)z — r(y — ' — Z')a} $ Vshi. (S3.4)
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Let Fiy = Ur<jeaFy with FY = {(6r (s — 24 — 2ln) — s (s — 2o — )y < 5 €
RY,n € U, }, where xz(j ) is the jth component of x;. As the same lines along the proof of

Theorem 1, we have
Sup log N(el[FillQz2, Fas || - lg.2) < C(d + s)log(1/e),
where F = 2||z|| is the envelope of F, with || Fy|[p> < 1 by Assumption (Al), and
sup IF1IP2 S 1.

Therefore, as the same lines along the proof of Theorem 1 and 2, by Theorem 5.1 and 5.2

of Chernozhukov et al. (2014) with 0% = || F4||} ,, we have

sup || (B, — P)(f)ll = 0,(n"/?),

fe€Fu

which implies that (S3.4) holds. We complete the proof of Lemma 7 by combining (S3.2)

with (S3.3) and (S3.4). ¢

Lemma 8. If Assumptions (Al)—(A4) hold , we have

A p
Bone — 60'

Proof of Lemma 8. This Lemma can be shown with the similar argument of the proof

of Theorem 1.¢

Lemma 9. If conditions of Theorem 4 hold , we have

fone = o = = [ELS Ok, 2)(w = Hoz) o = Hoa) V™ 3 he(e0) (o = Hoze) + oy~ 7).
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Proof of Lemma 9. Let ¢ (w; 8, 3,1, H) = ,{y— (x — Hz)'f — (Hz)' 3 — 2'n}(x —
Hz), where w = (y,2’,2')’. Tt is obvious that &(w;ﬁ,ﬁ,n, H) = ¢(w; B,n, H), where
(w; B,n, H) = v {y — 2’8 — 2/n}(x — Hz) is defined in the proof of Theorem 2. As

similarly considered in the proof of Lemma 6, we use the following identity
P{&(“@ Bonea Ba ﬁa [j[) - w(ﬂh ﬁOa To, HO)} = _]P)nw(w; 507 Mo, HO)

+ Both (w3 Bones 5,77, H) + (P — P){ip(w; Bo, 110, Ho) — $(w: Bone, 5,71, H)}. (S3.5)
We first show /n(P,, — P) {4 (w; Bo, 110, Ho) — ¥ (w; Bone, B, 71, H)} = 0,(1), which results
in that

P{@Z(u% Bonm Ba 77}7 F[) - ¢(wa 607 Mo, HO)} = _]P)nw(w; BOa Mo, HO)
+ ]Pﬁ(ﬁ(ﬂ) ﬁoney ﬁ 7, ) + Op< 1/2). (S3.6)

As the same lines along the proof of Theorem 2, by Theorem 5.1 and 5.2 of Chernozhukov

et al. (2014), it suffices to show that
Pl (w; fo, o, Ho) = (w; Bone, B, H) [P S 7o (83.7)
and
Sup log Nl F5llQ.2, 5, [| - [l2) S (d + sV sn)log(1/e), (S3.8)
where
Fs = Ui<j<d Féj), and

={0(; B, B,m, H)D — (-5 Bo, o, Ho) + |18 — Bol| V1|18 = Boll < CTymp € Uy, H € Up}.
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Since (S3.8) can be shown by the similar argument as that of (S1.11), we only give the

proof of (S3.7) below. By triangle inequality, we have

Pl (w; Bo, mo, Ho) = 9(w; Bone, 5,71, H) |
<P|[¢)(w; Bo, 0, Ho) = ¥ (w; Bone, B, 71, Ho)|I?
+ Pl (w; Bone, B, 71, H) — U(w; Bone, B, 71, Ho) || (83.9)
<P|[(w; Bo, o, Ho) = (w; Bone, B, 71, Ho)||* + 2P||(H — Ho)z|

:P‘W(w; 507 Mo, HO) - &(wv Bonev B? ﬁa HO)H2 + 7_7%7

where the last equation follows from Lemma 2. Let g(z, z; 3, 3, n) = E[¢Y.{y — (x —
Hyz)'8 — (Hoz)'B — Zm}la,z], A = 2/(B — fo) + 2'(n — mo) + (Hoz)' (B — B). and

A =2'(B = Bo) + 2/ (1 — no) + (Hoz)' (B — [3). We have that

g(@, 2B, 5,7) = E{yr(c = Az, 2} = f(0lz, 2)A + 0,(1),

and

E{Ly (o to2y - (02y <oy L y—o'Bo-=mo<ol ¥, 2} =EU e cpy I ey |, 2}

—min{F(A), F(0)}.



30 Chao Cheng, Xingdong Feng, Jian Huang, Xu Liu

Therefore, by Assumptions (Al) - (A4) and Lemmas 2 and 8, we have

P¢)(w; Bones B, 11, Ho) — 4 (w: Bo, 1m0, Ho)?

=P{¢r(e = A) = (o) |lw — Hoz|?

={PI__ay + Pliecoy — 2P pyTie<op Hiz — Hoz|

—P | F.(A) + 7 — 2min{F.(A), 7} |lz - Hoz? (S3.10)
<P{f(0lz, 2)(Il2' Bone = B)I| + 112"( = o)l + (Hoz)' (Bone — 5))}

x [l — Hoz[*(1+ 0,(1))

<Th.

Thus, (S3.7) holds by substituting (S3.10) into (S3.9).

Since P, (w; Bone, B, 7, FI) ~~ 0, (5§3.6) can be rewritten as

P{d}(w;BOTw?B?f/? ]:‘I) - 1/’(“’?5077707[']0)} = _Pn¢(w;507n07H0> + Op(n_l/Q)‘

(S3.11)

Revoking the definitions of A and A, as the same way as the proof of Theorem 2, we have
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by Lemmas 2 and 7 that

P A B ) 3 i )= )= 2 e )
S CERRORS S ERTS
o Z F(isles, =) (e — )2 = o) + 0p(n~"?)
n Z filwi, 2) (@ — Ha) (i — Hz) (Bone — Bo) + 0p(n /%),
i=1
where 1; is between A; and 0. This combing (S3.11) implies that

% Z f(wi|$z‘7 Zi)(ilfi—lffzi)(%—ﬁzi),(gone—ﬁo) = —Pn¢(w; Bo, Mo, H0)+0p(n_1/2)-
i=1

The rest of the proof of Lemma 9 can be completed as the lines along the proof of

Theorem 2. ¢

Proof of Theorem 4.
Lemma 9 implies that
5 L A
\/n_l(ﬁone - ﬁO) — N<O7Q 1DQ 1)7

where Q = E {f(0|z, z)(x — Hoz)(z — Hyz)'} ,and D = 7(1—7)E {(z — Hoz)(z — Hoz)'} .

This completes the proof of Theorem 4. ¢



32 Chao Cheng, Xingdong Feng, Jian Huang, Xu Liu

S4 Simulation Study

Two sample sizes n = 50, 100 and two penalties are used, and two quantile levels 7 = 0.5
and 7 = (.75 are considered.
We simulate data from the model
3 199
Yi :M+Z$ijﬁj+zziwk+€i> =1 n,
j=1 k=1
where the covariate (x;, z;), and the model error e; are independently generated from the

multivariate normal distribution with mean zero and covariance Y., and the standard normal

distribution, respectively. We consider a sparsity structure with coefficients given as

(Maﬁlaﬁ?aﬁ&nlvn%ni’n e 777199) = (37373a3737370a e 70)

We refer to Section 7.1 of the main paper for the method used here.

We conduct a simulation according to two estimators of H, obtained from (2.8) and
(2.9) in the main paper. The settings are the same as those of Section 7.1 in our main paper
except the covariance of covariate (x, z) is 3, which may not be the identity matrix. We
generate 1000 bootstrap samples for each among 1000 replicates to estimate covariance
matrix. Table 1 and 2 report the simulation results. The biases, the estimated relative
efficiencies and coverage probabilities of the method with those two penalties are similar
as indicated in Tables 1-2. If the covariate is correlated, the biases of parameter estimates

increase, but larger sample size can dramatically reduce these biases.
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Table 1: Estimated coverage probability (CP) at 95% confidence level, and the estimated relative efficiencies (RE) and
biases (Bias) of the proposed estimator (EC) and the oracle estimator (Oracle), where correlation Cov(z, z) = (Z;;)
with 3;; = 0.2if 7 # j and 3;; = 1if i = j, and H is estimated by column-wise lasso penalty (glasso) given in (9) of

main paper and element-wise lasso penalty (lasso) given in (8) of this response.

penality (n,7) Parameter Bias of EC (x10~3) Bias of Oracle (x10~3) RE CP (x100%)

51 -9.608 -0.971 0.811 95.9

(50,0.5) B2 0.945 1.993 0.701 95.8
Bs -3.486 -8.541 0.813 96.2

51 -2.744 -6.880 0.697 99.0

(50,0.75) B2 2.891 -0.413 0.617 97.8
B3 -4.957 -12.802 0.690 98.7

glasso Parameter Bias of EC (x1073) Bias of Oracle (x1073) RE CP (x100%)

51 -2.245 -1.684 0.992 95.6

(100, 0.5) B2 -2.913 0.455 0.919 96.5
B3 -7.060 -6.316 0.948 96.2

51 -5.663 -0.863 0.854 97.2

(100, 0.75) B2 1.615 1.790 0.927 97.7
B3 -8.156 -2.809 0.938 97.8

51 -9.663 -0.971 0.811 95.8

(50, 0.5) B2 0.792 1.993 0.701 95.6
B3 -3.232 -8.541 0.813 96.6

B 1.462 -5.257 0.580 98.3

(50,0.75) B2 4.563 0.439 0.620 98.5
B3 -2.773 -11.627 0.688 98.7

lasso Parameter Bias of EC (x1073) Bias of Oracle (x1073) RE CP (x100%)

5 -2.250 -1.676 1.007 95.8

(100, 0.5) Bo -3.421 -0.511 0.918 96.7
B3 -6.641 -5.651 0.937 96.5

5 -4.736 -0.079 0.864 97.1

(100, 0.75) Bo 1.661 1.978 0.934 97.6

B3 -8.247 -2.895 0.934 97.7
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Table 2: Estimated coverage probability (CP) at 95% confidence level, and the estimated relative efficiencies (RE) and
biases (Bias) of the proposed estimator (EC) and the oracle estimator (Oracle), where correlation Cov(z, 2) = (3;;) =
I, and H is estimated by column-wise lasso penalty (glasso) given in (9) of main paper and element-wise lasso penalty

(lasso) given in (8) of this response.

penality (n,T) Parameter Bias of EC (x1073) Bias of Oracle (x1073) RE CP (x100%)
51 46.196 2.490 0.809 95.9
(50,0.5) B2 59.432 5.938 0.680 95.1
B3 47.222 -6.525 0.758 95.9
51 72.762 -3.514 0.717 97.8
(50,0.75) B2 71.994 1.025 0.566 97.1
B3 60.511 -11.403 0.702 98.2
glasso Parameter Bias of EC (x1073) Bias of Oracle (x1073) RE CP (x100%)
51 27.805 -0.900 0.913 95.6
(100, 0.5) B2 29.157 0.346 0.852 95.2
B3 21.411 -5.985 0.913 96.3
51 30.019 -0.062 0.866 97.5
(100, 0.75) B2 35.170 -0.247 0.877 97.7
B3 28.490 -2.543 0.891 98.0
51 46.759 1.019 0.807 96.0
(50, 0.5) B2 54.662 4.431 0.658 95.8
B3 43.509 -7.917 0.584 96.8
51 74.170 -2.546 0.707 98.2
(50,0.75) B2 71.452 6.504 0.542 97.8
B3 57.725 -10.903 0.624 98.3
lasso Parameter Bias of EC (x1073) Bias of Oracle (x1073) RE CP (x100%)
5 26.810 -0.824 0.917 96.2
(100, 0.5) Bo 28.900 1.417 0.851 96.2
B3 21.657 -6.674 0.908 96.1
5 30.275 0.784 0.869 97.6
(100, 0.75) Bo 35.051 1.044 0.872 97.5
B3 26.188 -3.872 0.893 98.3
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