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Abstract: Understanding the heterogeneity over spatial locations is an important

problem that has been widely studied in applications such as economics and envi-

ronmental science. We focus on regression models for spatial panel data analyses,

where repeated measurements are collected over time at various spatial locations.

We propose a novel class of nonparametric priors that combines a Markov random

field (MRF) with the product partition model (PPM), and show that the result-

ing prior, called MRF-PPM, is capable of identifying latent group structures among

the spatial locations, while efficiently using the spatial dependence information. We

derive a closed-form conditional distribution for the proposed prior and introduce

a new way of computing the marginal likelihood that renders an efficient Bayesian

inference. Furthermore, we study the theoretical properties of the proposed MRF-

PPM prior and show a clustering consistency result for the posterior distribution.

We demonstrate the excellent empirical performance of our method using exten-

sive simulation studies and applications to US precipitation data and a California

median household income data study.

Key words and phrases: Marginal likelihood, nonparametric Bayesian method, pos-

terior consistency, spatial homogeneity.

1. Introduction

Panel data have been widely studied in applications such as economics (Pe-

saran (2015)) and climate science (Hao et al. (2016)), because they represent a

common data format in which observations are collected for each subject at differ-

ent time points. Here, we model a special type of panel data, called spatial panel

data, where each subject represents a spatial location and we need to account for

the spatial dependence between those locations. There is a growing interest in

spatial panel data analysis (Elhorst (2014); Belotti, Hughes and Mortari (2017)),

where a central question is to model the relationship between variables measured

repeatedly over a study period at various spatial locations. For example, eco-
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nomic studies, may seek to quantify the association between median household

income and other economic indicators, such as gross domestic product (GDP)

and unemployment rate over time. In environmental studies, understanding the

effect of greenhouse gas emissions on climate change is an important research

direction.

The aforementioned question can be formulated naturally as a regression

problem in statistics, and it is now well recognized that the regression parame-

ters (e.g., coefficients and variance) can be highly variable across different spatial

locations (Hsiao and Tahmiscioglu (1997); Browning et al. (2007); Su and Chen

(2013)). To account for spatial heterogeneity, it is common to assume a latent

group structure; that is, spatial locations are grouped into clusters, and those

assigned to the same cluster share the same set of regression parameters. This

strategy has several practical advantages. First, neglecting unobserved hetero-

geneity may lead to inconsistent parameter estimations and misleading results,

as demonstrated by Simpson’s paradox and other examples for spatial panel data

(Wagner (1982); Su, Shi and Phillips (2016); Hsiao (2014)). Second, the ob-

tained latent group structure is usually informative for empirical analysis, such

as finding possible unobserved confounders or performing a secondary analysis.

Another benefit is that the latent group structure provides a convenient way of

incorporating spatial dependence information in the model, which helps to im-

prove the accuracy/efficiency of the model fit and interpretation (Miao, Su and

Wang (2020)).

Several approaches have been introduced in the frequentist literature for

studying panel data regression models with a latent group structure. For example,

Lin and Ng (2012) considered a panel data linear regression model with group-

varying slopes. This method was later extended by Su, Shi and Phillips (2016) to

allow for group-varying intercepts and slopes. Several more complicated models

have also been proposed, with features such as group-specific time patterns (Bon-

homme and Manresa (2015)), time-varying grouped coefficients (Su, Wang and

Jin (2019)), and group-varying threshold variables (Miao, Su and Wang (2020)).

Despite the success of these frequentist approaches, studies have only recently

begun focusing on Bayesian frameworks (Zhang (2020); Ma, Xue and Hu (2020);

Hu, Xue and Ma (2021); Geng and Hu (2021)). Teixeira, Assunção and Loschi

(2019) introduced a Bayesian spatio-temporal clustering method, but it is not

suitable for clustering locations in a panel data analysis. Conceptually, an ideal

Bayesian approach would naturally be able to incorporate spatial dependence

and latent group structure information in the prior distribution. Inferences can

be conducted conveniently without needing to use complicated procedures such
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as a bootstrap or post-model selection. The main goal of this study is to intro-

duce a new class of nonparametric priors and to explore their computational and

theoretical properties.

Our first step toward constructing a prior distribution for spatial panel data

with a group structure is to recognize that a latent group structure is essentially

equivalent to a partition of spatial locations. Therefore, we only need a class of

priors assigned to the space of partitions, which is usually achieved by specifying a

class of partition probability functions. In this class, the product partition model

(PPM), first introduced by Hartigan (1990) and studied from a Bayesian point

of view by Quintana and Iglesias (2003), has received considerable interest. The

PPM is defined by taking the product of some nonnegative cohesion functions

h(c) over different clusters, where h(c) measures the similarity between individual

subjects assigned to the same cluster c (Yourdon and Constantine (1978)). It has

been shown that the PPM prior has strong connections to the marginal prior on

partitions induced by the Dirichlet process (DP) prior ( Green and Richardson

(2001)) and the mixture of finite mixtures (MFM) prior (Miller and Harrison

(2018)). Recently, the PPM was extended to include covariates (Park and Dunson

(2010); Page and Quintana (2015)) and spatial information (Page nd Quintana

(2016)). However, it remains unclear how to systematically incorporate spatial

dependence information into the PPM.

To solve this issue, we introduce a new class of priors called Markov ran-

dom field constrained product partition model (MRF-PPM) priors. These priors

are generated by taking the product of two priors, namely, a Markov random

field (MRF) prior and a PPM prior. There is a long history of using MRF priors

defined on undirected graphs to capture the local homogeneity in image segmenta-

tion, spatial statistics, and Bayesian nonparametrics (Geman and Geman (1984);

Orbanz and Buhmann (2008); Blake, Kohli and Rother (2011)). However, to

the best of our knowledge, the MRF-PPM prior, as a general class of priors that

combines an MRF and a PPM, has not been studied systemically in the literature

in terms of its theoretical and computational properties. In particular, we show

that several commonly used nonparametric priors (Zhao et al. (2020); Hu et al.

(2023); Orbanz and Buhmann (2008)) are special cases of the MRF-PPM. The

clustering consistency result states that with posterior probability tending to one,

the posterior distribution of the MRF-PPM is capable of identifying the correct

unknown partition structure in spatial panel data. To the best of our knowledge,

this result is new in the Bayesian spatial panel model literature, and is gener-

ally applicable to regression models with well-defined posterior contraction rates

under mild identifiability conditions.
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2. Methodology

2.1. The MRF-PPM

Consider a total of N spatial locations. For location i, suppose we observe

a response Yi(t
(i)
j ) and a p-dimensional covariate vector Xi(t

(i)
j ) at time point

t
(i)
j , for j = 1, . . . , ni, where ni is the total number of time points observed for

location i. We use ci to denote the cluster assignment for location i, and for those

locations that belong to the same cluster index set c, that is, i ∈ c, we use θc to

denote the common set of modeling parameters being shared within the cluster c.

Therefore, our spatial panel data regression model with a latent group structure

can be expressed as,

Yi(t
(i)
j ) | Xi(t

(i)
j ) ∼ fθc{Yi(t

(i)
j ) | Xi(t

(i)
j )}, for j = 1, . . . , ni, and i ∈ c, (2.1)

where fθc is the regression likelihood function for cluster c. In the remainder of

this paper, we also use Yi(t) to denote the observation collected at time t for

location i, for simplicity of notation. Note that model (2.1) allows a temporal

correlation between Yi(t
(i)
j ) and Yi(t

(i)
k ) for every j 6= k. To model the clustering

structure, we consider the following prior on the partition of the index set [N ] =

{1, . . . , N} and the associated parameters sets θc:

θc
i.i.d.∼ G0, for c ∈ C, C ∼ p(C), (2.2)

where G0 is a non-atomic base measure for θc with density function g(·), C is a

partition of [N ], and p(C) is a probability mass function over C. It is common to

consider a product partition model (PPM) for p(C), that is,

p(C) ∝
∏
c∈C

h(c), (2.3)

where h(c) ≥ 0 is the cohesion function that measures the similarity between

individual units assigned to the same cluster c.

To account for the spatial correlation among different locations, we incor-

porate an MRF structure on p(C). Consider a collection of parameters {θ1, θ2, . . . ,
θN} defined on an undirected known graph GN = (VGN , EGN ), where VGN =

{θ1, θ2, . . . , θN} is the vertex set and EGN is the set of edges. In our case, θi is

the regression parameter for location i, which is equivalent to θci defined in (2.2).

Given the graphical information, a joint distribution m on VGN is called an MRF
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w.r.t GN if

m(θi | θ(−i);GN ) = m(θi | θ∂(i);GN ), (2.4)

where ∂(i) = {j : (i, j) ∈ EGN} is the collection of node i’s neighbors, θ(−i) =

{θi}Ni=1 \ {θi}, and, θ∂(i) = {θj : (i, j) ∈ EGN}. This Markov property indicates

that the distribution of θi depends only on its neighbors, that is, the vertices

connected to θi. The graphical information GN is usually determined by the

network structure in real-world applications, where the vertices VGN represent

subjects and the edges EGN represent their relationships. Here, examples include

the 51 states and their adjacency matrix in the United States, users and their

friendship connections in social media networks, and international airports and

airlines.

Inspired by the Markov property, we define an MRF joint cost function,

which is not necessarily a probability density function, as M(θ1, . . . , θN | GN ) =

Πc∈Cl(θc)k(c | GN ) (sometimes denoted by M) that satisfies

k(c ∪ {i} | GN ) = k(c | GN )ki(∂(i) ∩ c | GN ) (2.5)

for every i and every c ⊂ [N ], where l(·) is a nonnegative function, and k(· | GN )

and ki(· | GN ) are nonnegative cohesion functions defined for every c ⊆ [N ],

given the graphical information. This it satisfies k({i} | GN ) = 1 for all i, and

k(∅ | GN ) = ki(∅ | GN ) = 1. Note that (2.5) is conceptually relevant to the Markov

property, because the cohesion value of c ∪ {i} is related to the joint density of

c∪{i}. The cohesion value of c can then be interpreted as the marginal density by

integrating out the parameter of subject i from the joint density. Consequently,

ki(∂(i) ∩ c | GN ) is associated with the conditional density in the context of the

Markov property. A simple example that satisfies (2.5) is k(c | GN ) = exp(Ec),

where Ec represents the number of edges among the subjects assigned to cluster

c with respect to the adjacency matrix of these N subjects.

To introduce the definition of the MRF-PPM, we let P (θ1, . . . , θN ) (P ) be

the prior on {θ1, . . . , θN} defined in (2.2) and (2.3), which is proportional to

Πc∈Cg(θc)h(c). An MRF-PPM prior Π can then be constructed by taking the

product of P and the MRF cost function M , with some positive normalizing

constant K0, as follows:

Π(θ1, . . . , θN | GN ) = K0M(θ1, . . . , θN | GN )P (θ1, . . . , θN ). (2.6)

The proposed MRF-PPM prior enjoys the following three attractive properties:

(P1) If l(θ)g(θ) is integrable as a function of θ, then Π(· | GN ) is still a prod-
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uct partition model, with a cohesion function equal to k(· | GN )h(·) and

a probability density function of the base measure of K1l(·)g(·), for some

normalizing constant K1.

(P2) It inherits the ability of clustering, because it provides a full support over

the entire space of partitions.

(P3) It is exchangeable, because the cohesion function is invariant under permuta-

tion (it depends only on the clustering configuration), which, by de Finetti’s

theorem (De Finetti (1929)), justifies the existence of the MRF-PPM prior.

Next, we derive the full conditional distribution of the MRF-PPM prior in The-

orem 1. The proof is given in the Supplementary Material.

Theorem 1. Suppose that l(θ)g(θ) in the MRF-PPM prior is integrable as a

function of θ. Then the conditional distribution of θi given θ(−i), the induced

partition Ci, and distinct values {θc}c∈Ci is proportional to

k({i} | Gn)h({i})
K1

L0 +
∑
c∈Ci

ki(∂(i) ∩ c | Gn)
h(c ∪ {i})
h(c)

δθc , for every i, (2.7)

where L0 is the base measure associated with the probability density function

K1l(θ)g(θ).

If l(θ) = 1, we have the base measure L0 = G0. From the second term in

(2.7), we can see that the MRF-PPM is able to account for the spatial correla-

tion, because location i has a higher probability of being assigned to a specific

cluster that includes more of its neighbors. That probability is determined by

the function ki(∂(i) ∩ c | Gn), which satisfies the Markov property in (2.4).

In addition to the PPM, we can also impose an MRF structure on an ex-

changeable partition probability function (EPPF) (Pitman (2002)), as described

in the following theorem.

Theorem 2. If the partition probability function of P is an EPPF, and the

cluster-wise parameters are i.i.d. and sampled from a base measure G0, then

the resulting MRF-EPPF satisfies Properties (P1)–(P3), and its full conditional

distribution can be obtained to (2.7).

Theorem 2 is widely applicable to many commonly used priors in the Bayesian

nonparametric literature. For example, it is well known that the partition prob-

ability function of the Dirichlet process is an EPPF. In addition, the partition

probability function of the MFM prior is an EPPF (Miller and Harrison (2018)).
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Therefore, the MRF structure can be conveniently combined with these two pri-

ors.

Note that under the MRF structure,

Π(θ1, . . . , θN−1 | GN−1) 6=
∫

Π(θ1, . . . , θN | GN )dθN ,

because the new observation θN will provide additional spatial information to the

historical data {θi}N−1i=1 . Hence, the marginal distribution of {θi}N−1i=1 will change.

As a result, we cannnot apply the Kolmogorov’s extension theorem (Durrett

(2019)) directly to show the existence of Π(θ1, . . . , θN | GN ) as N →∞. For the

same reason, the Pólya urn scheme is not available for the MRF-MFM. However,

this does not affect our method because we focus on the case of fixed N ; that is,

the number of spatial locations of interest is fixed.

2.2. Model specification

Next, we focus on the linear regression case with Gaussian errors, and demon-

strate how the proposed prior works for the model introduced in (2.1). The full

model can be formulated in the following hierarchical order:

Yi(t
(i)
j ) |

{
ei(t

(i)
j ), Xi(t

(i)
j )

}
ind∼ N{Xi(t

(i)
j )βc + ei(t

(i)
j ), σ2cαc}, i = 1, . . . , N,

ei(t
(i)
j ) ∼ N{0,Kσc,`c(·, ·)}, for every j = 1, . . . , ni, i ∈ c,

θc ≡ (βc, σ
2
c , αc, `c)

i.i.d.∼ G0, for every c ∈ C,
C ∼ pλ(C | GN ),

dG0 ≡ π0(β, σ2)π1(α)π2(l)dβdσ
2dαdl,

βc | σ2c ∼ N (µ0, σ
2
cΛ
−1
0 ),

σ−2c ∼ Gamma(a0, b0), αc ∼ Gamma(a1, b1), `c ∼ Gamma(a2, b2), (2.8)

where ei(·) is the temporal random effect for location i, and Kσc,`c is the as-

sociated squared exponential covariance kernel, defined by Kσc,`c(t
(i)
k , t

(i)
l ) =

σ2c exp{−(1/2`c)(t
(i)
k − t

(i)
l )2}. To incorporate an MRF structure, we use the prior

in (2.6) for C by choosing P to be an MFM prior and setting l(θc) = 1 and

k(c | GN ) = exp(λEc) for M , where λ is a tuning parameter and Ec denotes

the number of edges among the locations assigned to cluster c. Furthermore,

a0, a1, a2, b0, b1, and b2 are hyperparameters in their associated gamma distribu-

tions. These yield the MRF-EPPF prior defined in Theorem 2. For simplicity, we

refer this prior as the MRF-MFM prior in the rest of this paper. Note that the

choice of k(c | GN ) = exp(λEc) satisfies (2.5), and the corresponding ki(· | GN )
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function coincides with the conditional cost function defined in Zhao et al. (2020).

The partition probability function induced by the MRF-MFM prior, denoted by

pλ(C | GN ), is equal to

pλ(C | GN ) =
VN (|C|)Πc∈Cγ

(|c|) exp(λEc)∑
C′∈P VN (|C′|)Πc∈C′γ(|c|) exp(λEc)

, (2.9)

where P is the set of all possible partitions of [N ]. As discussed in Miller

and Harrison (2018), γ is the parameter of the symmetric Dirichlet distribu-

tion defined in the MFM prior, and VN (t) =
∑∞

k=1(k(t)/(γk)(N))pK(k), with

x(m) = Γ(x+m)/Γ(x), x(m) = Γ(x+ 1)/Γ(x−m+ 1), and x(0) = x(0) = 1.

In practice, we let λ ≥ 0, with a larger value of λ representing a higher

spatial correlation. When λ = 0, pλ(C | GN ) can recover the partition probabil-

ity function induced by the MFM prior without any spatial correlation between

locations. When λ → ∞, it degenerates to the Dirac delta function δ[N ], that

is, there is only one cluster. The term exp(λEc) changes the prior’s preference

on different partitions, and the prior mass concentrates on those partitions with

more within-cluster edges. Therefore, λ is referred to as the spatial smoothness

parameter in Zhao et al. (2020).

Because the partition probability function of an MFM is an EPPF, the closed-

form full conditional distribution for our model can be conveniently obtained

using Theorem 2, as shown in the following lemma. We omit the proof here

because it is based on a very similar calculation to that of Theorem 2.1 in Zhao

et al. (2020).

Lemma 1. For model (2.8), the conditional distribution of θi given θ(−i), the

induced partition Ci, and the distinct value {θc}c∈Ci is proportional to

VN (|Ci|+ 1)

VN (|Ci|)
G0 +

∑
c∈Ci

exp

{
λ

∑
j∈c∩∂(i)

1(θj = θi)

}
(|c|+ γ)δθc . (2.10)

3. Theoretical Properties

In this section, we investigate the asymptotic property of the proposed method

and show a clustering consistency result. Note that the asymptotics in our model

refers to the situation in which the number of spatial locations N is fixed and

the number of observed time points, denoted by ni for location i, goes to in-

finity. Then, our clustering consistency result provides a useful justification for

our method in the sense that as we collect more data over time for each spatial

location, the proposed method correctly identifies the true unknown clustering
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structure with posterior probability tending to one.

We first introduce some notation. Let C0 be the true unknown partition

(clustering) structure, P0 = {C0}, and P be the collection of all partitions of

[N ]. Let P1 be the collection of over-clustering partitions, that is, P1 = {C1 :

C1 6= C0 and ∀c′ ∈ C1,∃ c ∈ C0, s.t., c′ ⊆ c}, and P2 = P \ (P0 ∪ P1) be

the collection of mis-clustering partitions. We focus on the model defined in

(2.2), and denote the response and covariates for location i by {Yi, Xi}. Let

BFC,C0 = Πc∈Cm(Yc | Xc)/Πc∈C0m(Yc | Xc) be the Bayes factor by comparing the

regression models given partition C with the true model C0, where m(Yc | Xc)

is the conditional marginal likelihood of {Yi, Xi} for all i ∈ c. Furthermore, for

any partition probability function p(C), we consider its MRF-constrained version

modified by the joint cost function introduced in (2.8), namely,

pλ(C | GN ) ∝ p(C)
∏
c∈C

exp(λEc). (3.1)

Define pmax = maxC∈Pp(C) and let Emax be the total number of edges among

these N locations. Note that both Emax and pmax are finite, because the loca-

tion number N is finite. Let nmin = min{n1, . . . , nN}. We make the following

assumptions:

(A0) No isolated island: for every c ∈ C0, we assume that |∂(i)∩ c| ≥ 1 for every

i ∈ c.

(A1) Model identifiability: we assume θ and θ′ are within the support of G0.

Moreover, it holds that fθ(y | x) = fθ′(y | x) for any y and x in their

domain implies that θ = θ′.

(A2) Control the mis-clustering partitions: for every C ∈ P2, there exists a se-

quence of numbers qC(nmin) such that BFC,C0 = op{qC(nmin)} and qC(nmin)

→ 0 as nmin →∞.

(A3) Control the over-clustering partitions: BFC,C0 = Op(1) as nmin → ∞, for

every C ∈ P1,

(B3) Control the over-clustering partitions: BFC,C0
p→ 0 as nmin →∞, for every

C ∈ P1.

Selecting a clustering partition structure can be viewed as a model section prob-

lem. Under the Bayesian framework, correctly identifying the true model usually

requires that the Bayes factor between the true and incorrect models converges

to zero, which is why Assumptions (A2) and (B3) are needed. In particular,
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(A2) can be interpreted as only needing to find an upper bound qC(nmin) for the

contraction rate of the Bayes factor between the true and the incorrect models,

which is a reasonable assumption, because the true model usually has a faster

posterior contraction rate than that of an incorrect model if the Bayes factor is

consistent (Chib and Kuffner (2016)).

Assumption (A1) is needed for a consistent estimation of the cluster-wise

parameters. This assumption is satisfied for generalized linear models with iden-

tity, logarithm, and logistic link functions. A proof is given in the Supplementary

Material, Section S5. Assumptions (A0) and (A3) are alternatives replacements

for (B3) that allow a weaker rate condition on the Bayes factor between the true

and the over-clustered models. Assumption (A1) is needed for model identifia-

bility, and is satisfied for many regression problems. Let Π(· | GN , {Yi, Xi}Ni=1)

be the posterior distribution given the collected data and the spatial graphic

information. Then, we can state the following clustering consistency theorem.

Theorem 3. Consider model (2.1) with independent samples (i.e., no temporal

correlation across different time points) and the prior pλ(C | GN ) specified in

(3.1). Assume that p(C0) > 0, and that Assumptions (A1), (A2), and (B3) hold.

Then, for any λ ≥ 0, we have

Π(C = C0 | GN , {Yi, Xi}Ni=1)
p→ 1, as nmin →∞. (3.2)

If (A0) and (A3) hold instead of (B3), then there exists a sequence of numbers

λnmin
→∞ as nmin →∞ such that (3.2) holds.

Theorem 3 implies that if the Bayes factor is consistent (for a definition,

see Chib and Kuffner (2016)) and the true model contracts at a faster rate than

that of the over-clustered model, then for any partition probability function that

assigns a positive probability to the true partition, the weak consistency of clus-

tering holds. Moreover, if spatial information is available, we can achieve the

same clustering consistency result, even when the true model contracts at the

same rate as that of the over-fitted model. This finding provides a theoretical

explanation of the advantage (in terms of weaker conditions needed to obtain

the same clustering consistency result) by appropriately modeling the spatial

information.

In the next theorem, we choose fθc(y | x) as the linear regression model and

show that clustering consistency can be obtained under weaker conditions by

applying Theorem 3. The proof is given in the Supplementary Material.
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Theorem 4. Consider the following linear regression model:

Yi(t
(i)
j ) | Xi(t

(i)
j )

ind∼ N{Xi(t
(i)
j )βc, σ

2
c}, for j = 1, . . . , ni, i ∈ c,

βc | σ2c ∼ N (µ0, σ
2
cΛ
−1
0 ), σ2c ∼ IG(shape = a0, rate = b0), for c ∈ C,

C ∼ pλ(C | GN ). (3.3)

Under additional assumptions on the design matrix, listed in Section 1.4 of the

Supplementary Material, Assumptions (A1), (A2), and (B3) hold. As a result,

as nmin →∞, Π(C = C0 | Gn, {Yi, Xi}Ni=1)
p→ 1.

Based on the clustering consistency result in Theorems 3 and 4, we can also

obtain the usual posterior consistency result for the regression parameters within

each cluster. Note that model (3.3) considered in Theorem 4 is slightly different

to (2.8), because of the extra Gaussian process structure in ei(t
(i)
j ) that accounts

for the temporal random effect. However, the clustering consistency results can

still shed light on model (2.8), especially when σc and lc take small values, for

example, model (2.8) becomes equivalent to (3.3) if lc = 0. In future work, we

will extend the results in Theorems 3 and 4 by allowing for temporal random

effects.

4. Bayesian Inference

We refer to Algorithm 8 of Neal (2000) by letting φc = (αc, `c), the posterior

distribution of which is intractable. The detailed algorithm is provided in Section

S1 of the Supplementary Material.

Next, we decide on the value of the spatial smoothness parameter λ, which

plays an important role in our model. It is common to use the marginal likeli-

hood function as a selection criterion. However, its value is intractable for many

Bayesian complex models, including the one we study here. Several posterior

sampling-based approaches have been proposed in the literature, such as loga-

rithm of the pseudo-marginal likelihood (LPML) (Lewis et al. (2014)) and the

marginal likelihood computed using the harmonic mean (Newton and Raftery

(1994)). However, these methods usually suffer from the pseudo-bias issue (Lenk

(2009)), which tends to prefer more complex models. The sequential impor-

tance sampling method (Basu and Chib (2003)) is another popular approach for

marginal likelihood estimation, but it cannot be applied to an MRF-PPM because

the Pólya urn scheme is not available.

Our solution is to consider a prior sampling-based approach to estimate the

marginal likelihood as follows:
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m̂(Y | X) =
1

M −M ′
M∑

k=(M ′+1)

Πc∈C(k)
f(Yc | Xc, αk, `k), (4.1)

where C(k), αk, and `k are the associated parameters sampled from the partition

probability function at the kth iteration, and f(Yc | Xc, αk, `k) is the likelihood

function after integrating out (β, σ2) on its prior. More specifically, C(k) at each

iteration is sampled using the Gibbs sampler defined by (2.10). To account for

the potential high level of variation in the prior sampling estimate, we follow the

suggestion in Basu and Chib (2003), and let C(0) (the initial partition) be equal

to the last sample from our algorithm, with niter = 1000. The first 500 iterations

are burn-in iterations, M = 106, M ′ = 104 (burn-in procedure), and we set the

same random seed for different λ values. In both the simulation and the real-data

analysis, we choose λ from {0, 0.1, . . . , 1}. We find that this range works quite

well, because the selected optimal λ is always inside (0, 1).

5. Simulation

In this section, we compare the empirical performance of our MRF-MFM

model with that of four approaches: including two Bayesian methods that do

not account for spatial correlation, namely, the DP and MFM, and the two fre-

quentist methods in Lin and Ng (2012) and Su, Shi and Phillips (2016). In our

numerical analysis, we use Dahl’s method (Dahl (2006)) to summarize the pos-

terior samples and obtain a deterministic result for both the cluster assignment

and the cluster-wise parameter. The Rand index (RI; Rand (1971)) is used as

a metric to evaluate the discrepancies between partitions. All computations are

performed on 10 servers. Each server has 94.24 GB RAM and 24 processing cores.

We distributed our simulation tasks to 100 workers (10 cores for each server). It

took approximately 20 hours to finish each simulation scenario with 100 Monte

Carlo replications, including the tuning procedure.

5.1. Simulation setting

To generate the simulation data, we consider two partition scenarios (see

Figure 1) with 48 states in the United States, excluding Hawaii, Alaska, and the

District of Columbia. Both partition scenarios indicate strong spatial correlation,

because most individual units assigned to the same cluster are spatially contigu-

ous. The main difference between these two partition settings is that the first

partition is more complex, because it allows two spatially noncontiguous blocks

to belong to the same cluster.
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Figure 1. Simulation partition scenarios 1 and 2.

For each partition scenario, we generate data from the following model:

Yi(t
(i)
j ) |

{
ei(t

(i)
j ), Xi(t

(i)
j )

}
ind∼ N{Xi(t

(i)
j )βci + ei(t), σ

2
ciαci},

ei(t
(i)
j ) ∼ N{0,Kσ2

ci
,`ci

(·, ·)}, for j = 1, . . . , ni, i ∈ c,
(5.1)

where Kσ2
c ,`c is the squared exponential kernel, as defined in (2.8), Xi = (1,xi),

with each entry in xi independently sampled from Unif(−5, 5) and {ti}20i=1 equally

spaced in [−1, 1]. We consider eight data-generating processes (DGPs) with dif-

ferent cluster-wise parameters; see in Section S1 of the Supplementary Material.

DGPs 1, 2, 5, and 6 are for partition scenario 1, and the other four are for

scenario 2. Because of the different variance (σ2i , for i = 1, 2, 3) magnitudes of

the random error, we call DGPs 1, 3, 5, and 7 the strong noise design, and DGPs

2, 4, 6, and 8 the weak noise design.

In both the simulation and the real-data analysis, we set γ = 1 and pK(·) =

10k−1e−10/(k − 1)!, which corresponds to a Poisson(10) distribution truncated to

positive integers. Empirically, the MFM prior with this parameter setting tends

to slightly over cluster locations, with the cluster size evenly distributed. We set

the hyperparameters as µ0 = 0p×1, Λ0 = 10−6Ip×p, a0 = 0.1, and b0 = 1. The

results of our numerical studies are not sensitive to the choices of these values. In

addition, we set a1 = a2 = 2 and b1 = b2 = 1 to encourage α and ` to concentrate

around small values.

5.2. Results

We conduct 100 Monte Carlo replications for eight DGPs, and summarize

the mean and the median of the RI obtained by comparing the partition from

Dahl’s estimate with the ground truth. For the Bayesian methods without spatial

smoothness, we let the concentration parameter α = 1 for the DP, and set the
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Table 1. Median (mean) of the random index over 100 Monte Carlo replications for our
MRF-PPM method and four competing methods, MFM, DP, CK-means (Lin and Ng
(2012)), and PLS (Su, Shi and Phillips (2016)).

DGP MRF-MFM MFM DP CK-means PLS
1 0.973 (0.924) 0.879 (0.886) 0.909 (0.894) - -
2 1.000 (0.929) 0.968 (0.928) 0.969 (0.926) - -
3 1.000 (0.981) 0.915 (0.917) 0.938 (0.934) - -
4 1.000 (0.990) 0.979 (0.954) 1.000 (0.966) - -
5 0.914 (0.916) 0.889 (0.901) 0.911 (0.909) 0.835 (0.837) 0.373 (0.373)
6 1.000 (0.982) 1.000 (0.975) 1.000 (0.979) 0.969 (0.973) 0.373 (0.373)
7 0.949 (0.934) 0.917 (0.915) 0.936 (0.929) 0.880 (0.881) 0.493 (0.493)
8 1.000 (0.984) 1.000 (0.970) 1.000 (0.975) 0.880 (0.880) 0.493 (0.493)

Table 2. Median (standard error) `1 error of the regression coefficient estimates over 100
Monte Carlo replications for three Bayesian methods.

DGP MRF-MFM MFM DP
1 1.78 (3.29) 2.46 (1.88) 2.61 (2.35)
2 1.64 (3.58) 2.23 (2.35) 2.21 (2.93)
3 1.44 (0.80) 1.79 (1.15) 1.83 (0.99)
4 1.31 (0.76) 1.83 (1.00) 1.43 (1.04)
5 2.21 (0.79) 2.28 (1.01) 2.22 (0.91)
6 1.56 (0.89) 1.54 (0.90) 1.62 (0.95)
7 1.60 (1.00) 1.84 (1.11) 1.90 (1.03)
8 1.23 (0.86) 1.65 (0.94) 1.27 (1.01)

parameters of the MFM to be the same as those of the MRF-MFM in Section

5.1. For the method in Lin and Ng (2012), we follow their default settings, which

assume that the number of clusters |C| is within {2, 3, 4}, and select |C| using

the BIC. The partition is determined using the conditional K-means (CK-means)

criterion, which the authors note is more robust than the other methods when

nmin is small. For the method in Su, Shi and Phillips (2016), we use the penalized

least squares approach (PLS) to fit the model, and follow their default settings,

which assume that |C| is within {1, . . . , 5}. Because both frequentist models can

only discriminate latent groups when they have different slopes, they are only

implemented for DGPs 5–8.

The simulation results are summarized in Table 1, Table 2, Figure 2, and

Figure 3. In Table 1, we find that the proposed MRF-MRF performs consistently

better than the other four methods in terms of having a higher RI value under all

scenarios, which confirms the benefit of appropriately incorporating the spatial

correlation across locations. All three Bayesian methods provide a more accurate

clustering partition result than those of the two frequentist methods, because the
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Figure 2. Histograms for the number of clusters selected by the MRF-MFM and four
competing methods (DGPs 1–4).

Bayesian methods correctly specify the covariance structure. In general, when

the noise level is high (DGPs 1,3,5,7) or the true partition structure becomes

more complex (DGPs 1,2,5,6), the RI becomes lower, as expected. To evaluate

the parameter estimation accuracy, we compute the `1 error for the estimated

regression coefficients, defined by (1/N)
∑N

i=1 ‖β̂i − βi‖1, where βi is the set of

true regression coefficients for location i, and β̂i is the corresponding estimate.
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Figure 3. Histograms for the number of clusters selected by the MRF-MFM and four
competing methods (DGPs 5–8).

In Table 2, we summarize the average (median) `1 error for the MRF-MFM and

two other Bayesian methods. We find that our method has a smaller coefficient

estimation error than those of the two Bayesian methods in most scenarios. For

the first two DGPs, the MFM has a smaller average `1 error than that of our

method, although the advantage is minor. Among the eight DGPs, DGP 5 is

the most challenging case because the cluster-wise regression parameters are less

separable compared with those in the other DGPs. This is also reflected by the

lowest average random index in Table 1 and the highest estimation error in Table

2.
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We also compare the CK-means method with the PLS method in Table 1, and

find that PLS, in general, cannot accurately identify the latent group structure

in this simulation because the generated data have a strong temporal correlation

at each location, owing to large ` and small α values. This creates trouble for

the PLS method (Su, Shi and Phillips (2016)), which uses a z-transformation on

both Y and x, and the estimation of the slope becomes equivalent to estimating

the correlation coefficient. As a result, the difference between the slopes of the

clusters cannot be fully captured using their method, because the correlation

coefficient is close to one for all clusters, owing to the high serial correlation. On

the other hand, the CK-means method is more robust because it is distance based.

Similar findings are observed in Figure 2 and Figure 3, where we show histograms

for the selected number of clusters. In general, the MRF-MFM performs well

in terms of selecting the correct number of clusters for all scenarios. When

the partition structure is complex (e.g., DGPs 1,2,5,6), both the DP and the

MFM tend to overestimate the number of clusters, as expected, because they

do not account for the spatial correlation between locations. We also conducted

a sensitivity analysis for the choices of the covariance kernel function and the

hyperparameter values (α and γ). Our results, summarized in Section S6 of the

Supplementary Material (both clustering and parameter estimation), are quite

stable under different covariance kernels and hyperparameter values.

6. Real-Data Analysis

We present two real-data applications to demonstrate our proposed method-

ology. In the data analysis, we choose the spatial smoothness parameter λ from

{0, 0.1, . . . , 1} based on the criteria described in Section 4.

6.1. Precipitation data analysis

We first consider the annual precipitation and average temperature data

available at https://www.ncdc.noaa.gov/cag/statewide/mapping/110/pcp/

201812/12/value, collected for 48 states (excluding Washington, D.C., Alaska,

and Hawaii) for the period 2000 to 2019. The main goal is to study the relation-

ship between annual precipitation and average temperature, and to understand

its heterogeneity in different states. It is well known that precipitation is strongly

associated with convection, which is influenced by topography (Parsons and Daly

(1983)). To account for the spatial heterogeneity, we apply the model in (2.8),

treat each state as a spatial location i, rescale the years from 2000 to 2019 onto

equally spaced points between [−1, 1], and let Yi be a 20-by-1 response vector of

https://www.ncdc.noaa.gov/cag/statewide/mapping/110/pcp/201812/12/value
https://www.ncdc.noaa.gov/cag/statewide/mapping/110/pcp/201812/12/value
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Figure 4. From top to bottom: (a) the estimated partition; (b) the average annual
precipitation map; (c) estimated intercepts; (d) estimated slopes for the annual temper-
ature.

Table 3. Cluster-wise parameter estimates (standard deviation) for the precipitation
data.

Cluster β̂intercept β̂tempreature σ̂2 ˆ̀ α̂
1 40.78 (5.99) 0.12 (0.11) 11.91 (6.99) 1.83 (1.65) 4.20 (1.21)
2 47.94 (4.60) -0.65 (0.10) 6.05 (2.82) 5.27 (1.32) 1.11 (0.39)
3 56.77 (7.54) -0.53 (0.14) 19.00 (7.27) 5.09 (1.36) 0.88 (0.65)

the annual precipitation and Xi be a 20-by-2 matrix that includes an intercept

term and the average temperature as another covariate.

Based on the estimated marginal likelihood, we find the optimal value for λ

is λ = 0.1. We run 10,000 MCMC iterations and discard the first 5,000 as a burn-

in. The final partition is obtained using Dahl’s method. The average RI between

the reporting partition and the 100 replications is 0.9362, which indicates that

the final partition is representative.

We summarize the results in Figure 4. We find that, in general, the estimated

partition in (a) matches the pattern observed in the average annual precipitation

map in (b) quite well. More specifically, the first cluster contains most states with

humid continental and humid subtropical climate types, which usually receive

plenty of rainfall annually. On the other hand, the climate types of most states



IDENTIFYING LATENT GROUPS IN SPATIAL PANEL DATA 2299

in the second cluster are desert and semi-arid, which naturally associate with a

low level of precipitation.

In Table 3, we summarize the estimated regression parameters for each of the

three clusters. The results clearly demonstrate a high level of heterogeneity in

both the regression coefficients and the variance parameter over the three clusters,

which again highlights the benefit and necessity of considering the heterogeneity

in spatial panel data. Scientifically, the precipitation mechanism is a complex

system, and is known to be more relevant to some other factors, such as the

vertical thermal gradient and wind speed. Therefore, for the first and third

cluster, σ̂2 is considerably large, demonstrating that there may be other latent

confounders that are not accounted for in our model.

In our study, we interpret the predictor “average annual temperature” as a

hybrid indicator. For example, for the second cluster, the annual temperature

seems to indicate aridness, in the sense that a high level of aridness, which is

usually implied by a higher annual temperature, usually leads to less annual pre-

cipitation. We also implement the MFM prior (without the spatial consideration)

and present the results in Table 1 and Figure 1 of the Supplementary Material.

By comparing the estimated partition maps obtained using our method and the

MFM, we find that our partition map is spatially more “smooth,” which naturally

allows an easier interpretation.

6.2. Median household income data analysis

Next, we analyze a California State county-level household income data set,

available in the Supplementary Material. The data consist of annual measure-

ments of median household income, total gross domestic product (GDP), and the

unemployment rate between 2011 and 2018. We conduct a regression analysis

of the median income on the GDP and unemployment rate, and study the het-

erogeneity pattern in the regression parameters across counties. Before applying

our method, we perform a logit transformation on the unemployment rate and a

z-transform on the median income and the GDP.

We apply our proposed method under the same setting as that described in

Section 6.1. The spatial smoothness parameter is selected as λ = 0.1, based on

the maximum marginal likelihood. The average RI between the final cluster as-

signment and those from 100 replications is 0.9114, which confirms that the final

cluster partition is representative. We present the clustering map in Figure 5 and

summarize the regression parameter estimates for each of the three clusters in

Table 4. Here, we find a uniform pattern in which the annual household median

income is negatively associated with the unemployment rate and positively asso-
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Figure 5. From top to bottom: (a) the estimated partition; (b) visualized intercepts; (c)
visualized slopes for GDP; (d) visualized slopes for log odds of the unemployment rate.

ciated with the GDP in all three clusters, which agrees with common sense. Of

the three clusters, Cluster 1 (see Figure 5) has the strongest negative association

between unemployment and median income; most of the counties in the Bay Area

(including Santa Clara and San Mateo) belong to this cluster. For Cluster 3, in

which GDP has the lowest impact on household income, most counties are blue

counties (Democrat votes ≥ 60% during the 2020 presidential election), includ-

ing Napa, Sonoma, Yolo, Los Angeles, San Diego, and Imperial. These results

suggest that political opinions and industrial structure may be potential con-

founders that can be included in future analyses. We also implement the MFM

prior (without the spatial consideration) and present the results in Table 2 and

Figure 2 of the Supplementary Material. By comparing the estimated regression

coefficients obtained from our method and the MFM, we find that our method

is better at differentiating between the three clusters in terms of the estimated

regression coefficients, for example, the estimated coefficient for DGP is more

distinct across the three clusters in our results.
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Table 4. Cluster-wise parameter estimates (standard deviation) for the income data.

Cluster β̂intercept β̂GDP β̂unemployment σ̂2 ˆ̀ α̂

1 -1.76 (0.39) 0.80 (0.16) -1.29 (0.15) 0.25 (0.01) 1.79 (0.06) 0.08 (0.01)

2 -1.20 (0.20) 1.17 (0.12) -0.37 (0.07) 0.12 (0.01) 2.36 (0.11) 0.04 (0.002)

3 -1.45 (0.16) 0.02 (0.05) -0.65 (0.06) 0.15 (0.01) 8.28 (0.29) 0.11 (0.01)

7. Discussion

We have proposed a general Bayesian spatial clustering method based on

a PPM equipped with an MRF structure for panel data analyses. We have

studied the fundamental properties of the MRF-PPM, and proved a clustering

consistency result under mild conditions on the MRF structure. We have also

introduced a computationally tractable MCMC algorithm and a model selection

method based on the marginal likelihood. Numerical studies confirm that the

MRF-PPM effectively avoids the over-clustering issue and is more robust than

the classical PPM to model misspecification.

Several work directions remain open. First, it is challenging to study the

asymptotic behavior of the MRF-PPM prior whenN →∞, because Kolmogorov’s

extension theorem does not hold, in general, after accounting for spatial infor-

mation. It would be of interest to prove a Bayesian clustering consistency result

when N → ∞, as obtained in Su, Shi and Phillips (2016) and Bonhomme and

Manresa (2015) for their frequentist approaches. Second, we assume no temporal

correlation between Yi(t
(i)
j ) and Yi(t

(i)
k ), for j 6= k, when proving Theorem 3 for

general regression models. Relaxing this assumption is of interest. Our prior can

also be extended to allow more generic forms of the regression functions, such

as nonparametric or semiparametric models. Developing an efficient posterior

computation and understanding the theoretical properties of this prior are left to

future work.

Supplementary Materials

The online supplementary material contains a detailed description of our

proposed algorithm, proof of main theorems, derivation of the full conditional

distribution and the marginal likelihood introduced in Section 4, and additional

numerical results for the simulation study and real data analysis.
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