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Abstract: The ensemble Kalman filter (EnKF) performs well in terms of data
assimilation in atmospheric and oceanic sciences. However, it fails to converge to the
correct filtering distribution, which precludes its use for uncertainty quantification in
dynamic systems. Thus, we reformulate the EnKF under the framework of Langevin
dynamics, yielding a new particle filtering algorithm, which we call the Langevinized
EnKF (LEnKF). The LEnKF inherits the forecast-analysis procedure from the
EnKF, and uses mini-batch data from stochastic gradient Langevin dynamics
(SGLD). We prove that the LEnKF is a sequential preconditioned SGLD sampler,
like the EnKF, but with its execution accelerated by the forecast-analysis procedure.
Furthermore, the LEnKF converges to the correct filtering distribution in terms of
the 2-Wasserstein distance as the number of iterations per i stage increases. We
demonstrate the performance of the LEnKF using a variety of examples. The
LEnKF is not only scalable with respect to the state dimension and the sample
size, but also tends to be immune to sample degeneracy for long-series dynamic
data.
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1. Introduction

The integration of computer technology into science and daily life has
enabled scientists to collect massive volumes of data, such as climate data, high-
throughput biological assay data, and website transaction logs. To address the
computational difficulties that arise in Bayesian analyses of big data, several
scalable MCMC algorithms have been developed, including the stochastic gra-
dient MCMC algorithms (Welling and Teh| (2011)); Ding et al.| (2014); Chen,|
[Fox and Guestrin| (2014)); Li et al.| (2016); Ma, Chen and Fox] (2015)); Nemeth and|
Fearnhead| (2021))), split-and-merge algorithms (Scott et al.| (2016]); Li, Srivastaval
and Dunson| (2017); Srivastava, Li and Dunson (2018))), mini-batch Metropolis—
Hastings algorithms (Chen et al.| (2018); [Maclaurin and Adams| (2014)); Bardenet,|
Doucet and Holmes) (2017))), and nonreversible Markov process-based algorithms
(Bierkens, Fearnhead and Roberts (2019); Bouchard-Coté, Vollmer and Doucet|

(2018)).

*Corresponding author.
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Although scalable MCMC algorithms perform well in Bayesian learning with
static data, none can be applied directly to dynamic data. In the literature,
learning based on static data is often referred to as static or offline learning, and
that based on dynamic data is called as dynamic or online learning. Dynamic
learning is important and challenging, because dynamic data collection is general,
heterogeneous, and messy. Note that classical sequential Monte Carlo or particle
filter algorithms (e.g., see Liu and Chen| (1998)) and Doucet, de Freitas and
Gordon| (2001))) lack the scalability necessary to handle large-scale dynamic data,
where we wish to use all available data at each processing step. The ensemble
Kalman filter (EnKF) (Evensen (1994)) is efficient for high-dimensional data-
assimilation problems (e.g., [Evensen and van Leeuween| (1996)); Aanonsen et al.
(2009); [Houtekamer and Mitchell (2011)), but fails to converge to the correct
filtering distribution for general nonlinear dynamic systems (Law, Tembine and
Tempone (2016])). Thus, there is a need for statistical methods for Bayesian
on-line learning based on large-scale dynamic data.

In this study, we conduct Bayesian online learning for the following dynamic
system:

xy = g(ze_y) +up, u ~ N(0,U,),

(1.1)
ye = Hywy + Ney, M ™~ N(Ovrt)v

for stages t = 1,2,...,T, where z; € R? and y; € RY* denote the state and
observations, respectively, at stage t. The dimension p, number of stages T,
and sample size N, are all assumed to be on a large scale. For the dynamic
system , the top equation is called the state evolution equation, where
g(+) is called state propagator, and can be nonlinear. The bottom equation is
called the measurement equation, where the propagator H; relates the state
variable to the measurement variable, and yields the expected value of the
prediction, given the state and the parameters. The dynamic system is
of central importance. First, it models data-assimilation problems that have
linear measurement equations. Second, many other problems, such as the
inverse problem and data-assimilation problems that have nonlinear measurement
equations can be converted to by using appropriate transformations, as
discussed in Section 3.1 and Section 5. For simplicity, we assume that both
the model error u; and the observation error 7, are zero-mean Gaussian random
variables, and that the covariance matrices U, and I'; and the propagators g(-) and
H; are all fully specified; that is, they contain no unknown parameters. How to
extend our results to problems with non-Gaussian observations and/or unknown
parameters is discussed in Section 5.

Throughout this paper, we let ¢ be an index of the stage of the dynamic
system, let f(y;|x;) denote the likelihood function of y;, let m(x|y;.+) denote
the filtering distribution at stage ¢ given the data v, = {y1,v2,...,4:}, and let
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T(ze|yre—1) = [ m(@|zi—1)m(24-1|y14—1)dz;—1 denote the predictive distribution
of z; given y1.4_1.

Our results contribute to the literature in two ways. First, We develop a
new particle filter, the so-called Langevinized EnKF (LEnKF), by reformulating
the EnKF under the framework of Langevin dynamics. The LEnKF is not only
scalable with respect to the state dimension and sample size, but also tends to
be immune to the sample degeneracy problem often encountered by conventional
particle filters. The LEnKF works well in a big data scenario in which the stage
number T, state dimension p, and sample sizes N, are all large scale. Second, we
prove that the LEnKF is a sequential preconditioned SGLD sampler; however,
its execution is accelerated by the forecast-analysis procedure, and it converges
to the correct filtering distribution in terms of 2-Wasserstein distance as the
number of iterations per stage increases. The LEnKF can be used efficiently
for uncertainty quantification in large-scale dynamic systems. We illustrate the
performance of the LEnKF using several examples, including the Lorenz-96 model
(Lorenz (1996)) and the long short-term memory (LSTM) model (Hochreiter,
and Schmidhuber| (1997)). To conserve space, the latter is presented in the
Supplementary Material. To the best of our knowledge, this work represents
the first development of a scalable particle filter under a rigorous probabilistic
framework.

The remainder of this paper is organized as follows. Section 2 provides a
brief review of the EnKF, and explains its scalability with respect to the state
dimension. Section 3 describes the LEnKF for dynamic learning and studies
its convergence. In Sections 4, we demonstrate the performance of the LEnKF
using a variable selection example and the Lorenz-96 model. Section 5 discusses
possible extensions of the LEnKF. Section 6 concludes the paper.

2. Why is the EnKF Efficient for High-Dimensional Problems?

Consider the dynamic system . To estimate the state variables
X1, Ta,..., o7, Evensen| (1994) proposed the EnKF algorithm, as described in
Algorithm 1. If U, T, g(+), and H; contain unknown parameters, we can use the
state augmentation method (Anderson (2001); Baek et al.| (2006)); Gillijns and
De Moor| (2007))), where the state vector is augmented with unknown parameters,
and the state and parameters are estimated simultaneously.

The EnKF has two attractive features that help it perform well in high-
dimensional data-assimilation problems, such as those encountered in reservoir
modeling (Aanonsen et al. (2009))), oceanography (Evensen and van Leeuween
(1996)), and weather forecasting (Houtekamer and Mitchell (2011))). First, the
EnKF approximates each filtering distribution 7(z;|y;.;) using an ensemble of
particles. Because the ensemble size m is typically much smaller than p, it leads
to better dimension reduction and computational feasibility than that of the



1074 ZHANG, SONG AND LIANG

Algorithm 1 EnKF Algorithm.

e s . e 1 2 , .
Initialization: Initialize an ensemble {xy", xg", ..., 5"} of size m.

fort=1to T do _ '
(i) Forecast: For i = 1,2,...,m, draw u} ~ N(0,U;) and set z;"* = g(x{"}) + ul;
calculate the sample covariance matrix of x{ ’1, . ,x{ ™ and denote it by Cj.
(ii) Analysis: Fori=1,2,...,m, draw i ~ N(0,T;) and set z}"* = x{’l + Ki(y: —
Hyal' — ) = ol + Ky (ye — yl™"), where Ky = C,HT (H,C,HF +T;)~! forms
an estimator for the Kalman gain matrix Ky = S H} (H;S;H! +T;)~! and
S; denotes the covariance matrix of x,{ .
end for

Kalman filter; see, for example, Shumway and Stoffer| (2006). In particular,
it approximates S; using C}, so the storage for the matrix C; is replaced with
particles, and is much reduced. Second, by generating particles from filtering
distributions, it avoids covariance matrix decomposition. It is known that an
LU-decomposition of a covariance matrix has computational complexity O(p*).
Instead, the EnKF employs a forecast-analysis procedure to generate particles,
which has computational complexity O(max{p*N;, N}} + mpN;), for m particles
at stage t. That is, the forecast-analysis procedure reduces the computational
complexity of the particle generation when m and N, are smaller than p. This
explains why the EnKF is so efficient for high-dimensional problems. On the
other hand, this also implies that the EnKF may be inefficient when NV, is large.

Despite its success in dealing with high-dimensional dynamic systems, the
performance of the EnKF is sub-optimal. As shown by [Law, Tembine and Tem-
pone (2016)), it converges only to a mean-field filter, which provides the optimal
linear estimator of the conditional mean, but not the filtering distribution, except
for linear systems in the large-sample limit. Similar results can be found in
Le Gland, Monbet and Tran (2009)), Bergou, Gratton and Mandel| (2019), and
Kwiatkowski and Mandel (2015)).

Using the state augmentation approach (Iglesias, Law and Stuart| (2013))),
the EnKF can also be used to solve the inverse problem, that is, determining the
parameter x for the system

y=6(x)+n, (2.1)

where G(-) is the forward response operator mapping the unknown parameter
x to the space of observations, n ~ N(0,T") is Gaussian random noise, and y
denotes the observed data. However, as mentioned previously, the EnKF does not
converge to the filtering distribution; thus, we cannot approximate the posterior
distribution 7(x|y) well using this approach. Numerically, Ernst, Sprungk and
Starkloff (2015) show that for nonlinear inverse problems, the large-sample limit
does not lead to a good approximation of the posterior distribution.
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3. Langevinized Ensemble Kalman Filter

To motivate the development of the LEnKF, we first consider a linear inverse
problem, and then extend it to the data-assimilation problem , and others.
Note that, as implied by , estimating x; at each individual stage is essentially
a linear inverse problem, but with some “prior” information passed on from the
preceding stage.

3.1. Linear inverse problem

Consider a Bayesian inverse problem for the regression
y=Hz+mn, (3.1)

where H is a known matrix, n ~ N(0,T) for some covariance matrix I', y € RV,
and z € RP is an unknown continuous parameter vector. To accommodate the
case that the sample size N is extremely large, we assume y can be partitioned
into B = N/n independent and identically distributed (i.i.d.) blocks {@1,...,75},
where each block is of size n and has a positives-definite covariance matrix V', such
that I' = diag[V,...,V]. Note that this is a trivial assumption for independent
samples, as considered here.

Let 7(z) denote the prior density function of z, which is assumed to be
differentiable with respect to x. Let 7(z|y) denote the posterior distribution. To
develop a scalable algorithm for simulating from 7(z|y) under the scenario that
both N and p are large, we reformulate the model as a state-space model
using subsampling and Langevin diffusion:

n
Ty =Ti1+ etﬁVk)g T(2i1) + Wy,
Yr = Hyzy + vy, (3.2)

where w; ~ N(0, (n/N)e:l,) = N(0,(n/N)Q:), that is, Q; = €:1,, y: denotes a
block drawn randomly from {gi,...,9g}, vy ~ N(0,V), and H, is a submatrix of
H extracted using the corresponding ;. In the state-space model, at each stage
t, the state (i.e., the parameters of model ) evolves according to an Euler-
discretized Langevin equation of the prior distribution, and the measurement
equation varies with subsampling.

To simulate from the dynamic system , we propose Algorithm 2, which
uses both subsampling and the forecast-analysis procedure, and is thus scalable
with respect to both the sample size N and the state dimension p. Theorem 1
shows that the proposed algorithm is a parallel preconditioned SGLD algorithm;
the proof is given in the Supplementary Material. Then, following from the
general recipe of stochastic gradient MCMC (Ma, Chen and Fox| (2015)), each
chain of the algorithm converges to the target posterior m(z|y) as t — oo, provided
that ¢, — 0 as t — oco. As mentioned in Remark S1, the convergence of the
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Algorithm 2 LEnKF for Linear Inverse Problems.

PSR e 1 a2 , .
Initialization: Set ¢ = 0 and initialize an ensemble {zg ", 2", ..., 25"} of size m.

fort=1to T do
(i) Subsampling: Draw y; from {g1,...,9p}. Set Q; = €I, R, = 2V, and the
Kalman gain matrix K; = Q:H (H;Q:H! + R;)™L.
for :=1tom do
(ii) Forecast: Draw w! ~ N, (0, (n/N)Q;) and set

i ai n a,i i
el =+ etﬁVIOgﬂ(zt_l) + wy. (3.4)
(iii) Analysis: Draw v} ~ N, (0, (n/N)R;) and set

a,i i i iy A fi 5
Ty :xf' + Ki(y: — Hyxy’ _vt):x{ +Kt(yt_ytf )- (3.5)

end for
end for

algorithm (measured in terms of 2-Wasserstein distance) also follows directly
from Corollary S1.

Theorem 1. For Algorithm 2, if V' is positive definite, then the algorithm reduces
to a parallel preconditioned SGLD algorithm that converges to the target posterior
distribution w(z|y) as t — oo, provided e, — 0 as t — oo, that is, for each chain
ie{1,2,...,m},

a,i a,i € — a,i
xt = x4 ;EtVIOg m(xi y) + es, (3.3)

where ¥y = (n/N)(I — KyH;) is a constant matriz of x, e, is a zero-mean
Gaussian random error with covariance Var(e,) = %, and Vlogm(z|y) =
(N/n)HIV,  (y, — Hizd')) + Vog () represents an unbiased estimate of
Vlogm(x;™[y).

The major advantage of such a reformulation from an inverse problem to
a state-space model lies in the computation. For a high-dimensional prob-
lem, suppose we set the mini-batch size n much smaller than p; then, the
computational complexity of LEnKF for T iterations is O((n*p + mnp)T). In
contrast, if is simulated directly as a preconditioned algorithm for the
original inverse problem, the computational complexity is O((p® + np?)mT),
where O(p®) and O(np?) represent the costs of generating e, and computing
DAV log w(z§_,|y), respectively. The former requires an LU-decomposition of ¥;,
which has computational complexity O(p?®). The LEnKF avoids this problem by
using a forecast-analysis procedure, making it scalable with respect to the state
dimension p.

Note that the computational complexity of LEnKF is the same as that of the
parallel SGLD algorithm (Welling and Teh (2011))). The latter algorithm consists
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of m chains and each chain evolves via the iteration

. ) € ~ ) .
Ty =x,_ 4+ évm logm(z,_4|ly) + €&, i =1,2,...,m,

where V, logw(zi_,|y) = (N/n)HIV Y (y, — Hyzi_,) + Viog(zi_,), as defined
in , é ~ N(0,¢1,), and, at each iteration ¢, all chains are updated based
on the same mini-batch data y;. As implied by Theorem 1 of [Li et al. (2016),
the LEnKF converges more quickly than the parallel SGLD does, because all
eigenvalues of the preconditioner ¥; can be much less than one by noting that
¥ = (n/N)I—-KH;)) = (n/N)I—eH!(e.HH +2V) ' H,). This is illustrated
in Figure 2, and in Figure S1 and Figure S2 (in the Supplementary Material).

3.2. Data assimilation with linear measurement equations

Consider the dynamic system . Similarly to the linear inverse problem,
we assume that at each stage t, y, can be partitioned into B, = N,/n; ii.d.
blocks {¥:.1, ..., Ji.5, }, where each block has size n;, and §; , = Hy 2t + vy, for
k=1,2,...,B;; N, is the total number of observations at stage ¢, v, ~ N(0, V),
for all k; and v, are mutually independent; that is, I';, = diag[V}, ..., V,]. Again,
we assume that V; is positive definite. Let y; ; denote a block of n; observations
drawn randomly from the set {g;1,..., 9.5, }-

To motivate the development of the algorithm, we first consider the Bayesian

formula

_ S (el m (2| y1e-1)
7T(xt|y1:t) B ff(yt|xt)77(xt|y1:t71>dxt, (3.6)

which suggests that in order to get the filtering distribution 7(x4|y;.¢), we first
need to use the predictive distribution m(z|y;..—1) as the prior at stage t.
To estimate the gradient V,, log m(z|y1.+—1), we employ the following identity
established in |Song et al.| (2020):

Vslog (8 | D) = / Vs log (8 | v, D)n(y | B, D)d, (3.7)

where D denotes data, and S and  denote two parameters of a posterior
distribution 7 (5, ~|D). By this identity, we have

Va, log 7T(l”t|y1:t—1) = /th log 7T($t|It—17 yl:t—l)ﬂ'(xt—l‘xt’ yl:t—l)det—l

W(xt—l |§Ct7 yu_l)
7T<37t—1 ‘ylzt—l)

W(wt—l ’ylzt—l)dxt—l

= / V., logm(xs|xi—1)

= / Ve log m(zy|ai—1)w(@i—1|z) 7 (21 |y1a—1)dzi—1,
(3.8)

where w(z;_1|zy) = m(rio1|@y, yru—1)/m(@—1|y1-1) = 7(xe|mi—1)/m(@|yr.0-1)
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o m(x¢|zi_1), because m(xi|ly14_1) is a constant with respect to z; i, given
the particle x; and the data y;.,_;. Therefore, given a set of samples X;,_; =
{zi-11,%4-12,- -, T4—1,m } drawn from the filtering distribution 7(z;_1|y1..1), we
can use an importance resampling procedure to draw a sample from m(x,_;|x;,
Y1.+—1). The importance resampling procedure can be executed very fast, because
calculating the importance weight w(x;_;|z;) does not involve any data.

Using the above formulae, we can construct a dynamic system, similar to
, for the data-assimilation problem at stage t, as

Ny -
Tig = Ty p—1 — etT\tht 1(11%,1@71 —9(Z4—14-1)) + Wik,
2N (3.9)

Ytk = Ht,kl't,k + Vi ks

for £ = 1,2,..., where x;9 = g(2;-1) + W, T4—1,-1 represents a sample of
m(xi—1|Tek—1,Y1.4—1) and is drawn from X, ; using an importance resampling
procedure, wyx ~ N(0,(n¢/Ny)erxl,), Qir = €xlp, and p is the dimension of
x;. Applying Algorithm 2 to at each stage t leads to Algorithm 3. The
convergence theory of the algorithm is studied in Theorem 2, the proof of which
is given in the Supplementary Material.

Theorem 2. We consider a dynamic system with t = 1,2,...,T stages. Let
7y = m(x¢|y1.¢) denote the filtering distribution at stage t. Suppose Assumptions
S1- S8 (given in the Supplementary Material) hold, and Ny is larger than a
certain threshold. If € o« (1/nflogKk™7), for some w € (0,1) and any
ke {1,2,...,K}, then uniformly with dominating probability, for any t €
{1,2,...,T}, m?fc follows a probability law 7, and limy_,o, Wa (7, ) = 0, where
Wy (-, -) denotes the 2-Wasserstein distance between two distributions.

The following remarks relate to Algorithm 3 and Theorem 2.

Remark 1. (On asymptotic regime). Theorem 2 studies the convergence of
Algorithm 3 under the asymptotic regime that the number of iterations at each
stage (i.e., K) diverges. Such a result is similar to the convergence theory of a
sequential Monte Carlo algorithm as the number of particles increases to infinity
(see, e.g., [Beskos et al.[(2016);|Crisan and Doucet|(2000)). Under this asymptotic
regime, we provide a rigorous study for the convergence of the algorithm; in
particular, we account for the approximation error of 7, to 7, for each stage t in
establishing the convergence of the algorithm. See equations (S2.23), (S2.25) and
(52.27) of the Supplementary Material for further detail.

Remark 2. (On sample degeneracy). It is known that sample degeneracy is
an inherent problem with sequential importance sampling (Cappé et al.| (2004))),
especially when the dimension of the system is high. When it occurs, the
importance weights concentrate on a few samples, the effective sample size is low,
and the resulting importance sampling estimate is heavily biased. Fortunately,
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Algorithm 3 LEnKF for Data-Assimilation Problems.

2 . .
Initialization: Initialize an ensemble {xl 0> L1005 -+ 17 } of size m by drawing

from the prior distribution m(z1). Set X; = 0, for t = 1,2,...,T; set the learning
rate sequence {e; 1t =1,2,...,T, k=1,2,...,K}, where K denotes the number of
iterations performed at each stage; and set kg as the common burn-in period of each
stage.
fort=1to T do
for k=1to K do
(i) Subsampling: Draw a mini-batch sample y;  from the set {g;1,..., %5, }-
Set Qur = e rly, Re = 2V, and the Kalman gain matrix K, =
Qt,kHtT,k(Ht,th,ng:k + Ry)™?!
for i =1 tom do
(ii) Importance resampling: If ¢ > 1, calculate importance weights wiyk,_m
= (@ qlri-1y) = d(@_159(wi-14),Up), for § = 1,2,...,|X],
where ¢(-) denotes a Gaussian density, and x;_ 1; € X;_1 denotes the
a, 7

jth sample in X;_q; if & = 1, set scfo = g(z}” 1)C) + u® and u;u N
(0 Ur). Resample s € {1,2,...,|X_1|} with a probability o wi,_, .

P(Siki = s) = wtk 15/2:' 5 llwzjk_w, and denote the sample
drawn from X;_1 by Ty g1

(iii) Forecast: Draw wj; ~ N,(0,(n/N)Q;x). If t = 1, set xfk = xt e —
€t k(nt/ZNt)Vlogw(:z:?’; 1) + wj,, where m(-) denotes the prior distri-
bution of x1; otherwise, set a:f’ = 33?’7271 — euk(nt/ZNt)U{l(x?”,iil —

9(F_q 1)) +wi .

(iv) Analysis: Draw v; , ~ N,(0, (n/N)R;) and set

a,t fii i
J’715 k= xt k L+ Kt p (Yo — Ht,kxt,k - vt,k)

A ,
ol Kew(yer — uln).

(v) Sample collection: If k > kg, add the sample x?,; to the set X;.
end for
end for
end for

the LEnKF is essentially immune to this problem. In the LEnKF, the importance
resampling procedure draws a particle from X,_; that matches a given particle
x; in terms of state propagation, such that the gradient V,, log 7(z¢|y;.+_1) can
be reasonably well estimated. Then, this gradient estimate is combined with the
gradient of the likelihood function of the new data y; to update x;. By ,
7(x¢|y1.4—1) works as the prior distribution of z; for the filtering distribution
m(x¢|y1.¢). Therefore, the effect of the importance resampling procedure on the
performance of the algorithm is limited if the sample size N; is reasonably large
at each stage t. In contrast, the importance resampling procedure in sequential
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importance sampling draws a particle from X;_;, and treats the particle as though
it were from the filtering distribution 7(x;|y;.;). For high-dimensional problems,
the overlap between the high-density regions of neighboring stage-filtering dis-
tributions can be very small, which naturally causes sample degeneracy. In
summary, the importance resampling step of the LEnKF draws a sample for the
prior distribution 7 (x;|y;.s_1) used at each stage t, whereas sequential importance
sampling draws a sample for the target filtering distribution m(x;|y;.). Therefore,
the LEnKF is less affected by the sample degeneracy problem than is sequential
importance sampling; refer to Section S1.2 for a numerical illustration.

Remark 3. (On uncertainty quantification). The LEnKF is run in an
ensemble, which provides a convenient way of quantifying the uncertainty. At
each stage and for each chain, the state can be estimated by averaging over
iterations, as prescribed for the SGLD estimator in [Teh, Thiery and Vollmer!
(2016) (weighted version) or [Song et al.| (2020]) (unweighted version). The state
estimates can then be further averaged over the chains. It is easy to see that
the central limit theorem holds for this chain-averaged estimator approximately,
given the weak dependence between different chains, and we can quantify the
uncertainty accordingly.

Finally, as implied by Theorem 1, Algorithm 3 is essentially a sequential
preconditioned SGLD sampler. From the proof of Theorem 2, a lower approxi-
mation error (measured in W5 (7, 7;)) obtained at one stage of the LEnKF helps
to reduce the approximation error of the subsequent stage, and the approximation
error becomes negligible as the number of stages increases.

4. Numerical Studies
4.1. Bayesian variable selection for large-scale linear regression

Consider the linear regression
Y =ZpB+¢, (4.1)

where Y € RY is the response, Z = (Zy,2s,...,%,) € RN*? are covariates,
B €RP and e ~ N(0,Iy). An intercept term is included implicitly in the model.
We generate 10 data sets from this model, with N = 50000, p = 2000, and
B = (b1,B2,...,0,) = (1,1,1,1,1,—1,-1,—-1,0,...,0). That is, the first eight
variables are true, and the others are false. Each variable Z; has a marginal
distribution of N(0,Iy), but they are mutually correlated with a correlation
coefficient of 0.5.

To conduct a Bayesian analysis for the model, we consider the following
hierarchical mixture Gaussian prior distribution, which, with the latent variable
& € 40,1}, can be expressed as
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Bil& ~ (1 = &)N(0,77) + &N(0,73),
P(&=1)=1-P(&§ =0) = po,
for © = 1,2,...,p. Such a prior distribution is widely used in the literature on
Bayesian variable selection; see, for example, George and McCullloch! (1993). To

apply the LEnKF to this problem, we first integrate out &; from the prior (4.2)),
which leads to the marginal distribution

(4.2)

BiN(1_100)N(077_12)+p0N(017—22)7 i:1727---7pa

such that the log-prior density function logw(3) is differentiable. Algorithm
2 is applied to simulate from the posterior 7(3|Y,Z). In the simulation, we
set po = 1/p = 0.0005, 77 = 0.01, and 73 = 1 for the prior distribution, and
set the ensemble size m = 100, mini-batch size n = 100, and learning rate
€; = 0.2/ max{ty, t}°%, where t, = 100. As implied by Lemma S6, the convergence
of the LEnKF suffers from an elbow phenomenon with respect to the mini-batch
size; that is, using an extremely large mini-batch size will not lead to a much
better convergence rate than using a reasonably large one. On the other hand,
as discussed in Section 3.1, a large batch size can significantly increase the CPU
cost of the algorithm. Therefore, a reasonably large value of n is preferred for the
LEnKF. For this example, we tried n = 100, n = 200, n = 500, and n = 1000,
and found that n = 100 leads to comparable results to those of the other three,
but with a shorter CPU time. Algorithm 2 was run for 10,000 iterations, which
cost 375 CPU seconds on a personal computer with a 2.9 GHz Intel Core i7 CPU
and 16 GB RAM. All computations reported here were performed on the same
computer.

For variable selection, we consider the factorization of the posterior dis-
tribution 7(8,£|Y,Z) x n(Y|3, Z)n(B|§)n(§), where § = (&,&,...,&,). By
assuming that §8; and &; are a prior: independent, we draw posterior samples of
£ from the distribution

7w =1pu, Y, Z)= ———, i=1,2,....,p, (4.3)
where a;; = (po/72) exp(—B32/273), by = (1 —po)/71)exp(—B2/272), and By
denotes the posterior sample of 3; drawn by Algorithm 2 at stage t. Here, we
denote by B; = (B, Bz, - - -, Bip) & posterior sample of 3 drawn by Algorithm 2
at the analysis step of stage t.

Figure 1 summarizes the variable selection results for one data set. The
results for the other data sets are similar. Figure 1(a) shows the sample
trajectories of B, 0Bs,...,089, which are averaged over the ensemble and the
iterations. All the samples converge weakly to their true values in 100 iterations,
taking about 3.7 CPU seconds. Figure 1(b) shows the marginal inclusion
probabilities of the covariates Z;, Z,, ..., Z,. From this graph, each of the eight
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Figure 1. The LEnKF for large-scale linear regression: (a) Trajectories of fi,..., O,

where 1 = -+ = 5 = 11, fg = -+ = g = —1, and Sy = 0 (yellow line). (b)
marginal inclusion probabilities of all covariates Zi,..., Z,, where the first eight high
bars represent Zi, Za, ..., Zs; (c) scatter plot of Y versus the fitted value for training

samples; and (d) scatter plot of Y versus the predicted value for test samples.

true variables (indexed as 1-8) has a marginal inclusion probability close to one,
whereas each of the false variables has a marginal inclusion probability close to
zero. Figure 1(c) shows the scatter plot of the response variable and its fitted
value for the training data, and Figure 1(d) shows the scatter plot of the response
variable and its predicted value for 200 test samples generated from model .
In summary, Figure 1 shows that the LEnKF is able to identify true variables for
a large-scale linear regression and, moreover, is extremely efficient.

For comparison, we also apply the SGLD (Welling and Teh! (2011)), pre-
conditioned SGLD (pSGLD, |Li et al. (2016))), and stochastic gradient Nosé-
Hoover thermostat (SGNHT, [Ding et al| (2014)) to this example. For these
algorithms, the learning rates are tuned to their maximum values, such that the
simulation converges quickly while not exploding, and the iteration numbers are
adjusted such that they cost about the same CPU time as that of the LEnKF.
Refer to the Supplementary Material for their settings. Figure 2 compares the
trajectories of (81, B2, ..., 39) produced by the four algorithms in their first 5%
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Figure 2. Trajectories of (81, 32,...,89) produced by SGLD (upper), pSGLD (upper
middle), SGNHT (lower middle), and LEnKF (lower) for a large-scale linear regression
example in their first 5% iterations.

iterations, showing that the LEnKF converges significantly more quickly than
SGLD, pSGLD, and SGNHT for this example, owing to the preconditioning of
the LEnKF. The full trajectories of these algorithms are shown in Figure S1 of
the Supplementary Material.

Because the LEnKF is a parallel preconditioned SGLD algorithm, we also
compare it with parallel SGLD, pSGLD, and SGNHT. The results are presented
in the Supplementary Material, showing that the LEnKF significantly outper-
forms parallel runs of these algorithms by a much larger margin. Recall that the
LEnKF has the same computational complexity as that of the parallel SGLD, as
mentioned in Section 3.1.

4.2. Uncertainty Quantification for the Lorenz-96 Model

The Lorenz-96 model was developed by Edward Lorenz in 1996 to study

difficult questions related to predictability in weather forecasting (1996))).
The model is given by

dx?

i (7t — 2 -+ F, i=1,2,...,p,
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Figure 3. Chaotic path of the partial state variables (X}, X7, X}}), for t = 1,2,...,100,
simulated from the Lorenz-96 model.

0 1

where F' = 8, p = 40, and it is assumed that 7! = 2771, 2% = 27, and 2P™! = 2!,
Here, F' is known as a forcing constant, and F' = 8 is a common value known to
cause chaotic behavior. In order to generate the true state X, = (X},..., X7),
for t = 1,2,...,T, we initialize X, by setting X} to 20 for all i, but adding to
X3 a small perturbation of 0.1. We solve the differential equation using the
fourth-order Runge-Kutta numerical method, with a time interval of At = 0.01.
Lastly, for each i and ¢, we add to X a random noise generated from N (0,1). At
each stage t, data are observed for half of the state variables and masked with a
Gaussian noise; that is, yy = H; X, + ¢, for t =1,2,...,T, where ¢, ~ N(0, I,/2)
and H; is a random selection matrix. Figure 3 shows the simulated path of the
partial state variables (X}, X2, X}), for t = 1,2,...,T, the chaotic behavior of
which indicates the challenge of the problem.

We apply Algorithm 3 to this example with the ensemble size m = 50,
iteration number K = 20, ky = K/2, and learning rate ¢, = 0.5/k%9, for k =
1,2,...,Kandt=1,2,...,T. At each stage t, the state is estimated by averaging
over the ensembles generated at iterations kg + 1, kg + 2, ..., K. The accuracy of
the estimate is measured using the root mean-squared error (RMSE), defined by
RMSE, = ||X't—Xt||2/\/]3, where X, denotes an estimate of X,. For comparison,
the EnKF was applied to this example with the same ensemble size, m = 50. To
be fair, it was run in a similar way to the LEnKF, except that we estimated the
Kalman gain matrix based on the ensemble, without performing the resampling
step, and drew the random error from N (0, V;) in the analysis step.

Figure 4 compares the estimates of X? produced by the LEnKF and EnKF
for one simulated data set. The plots for the other components of X, are similar.
The comparison shows that the LEnKF and EnKF produce comparable RMSE;,
and that the LEnKF provides better uncertainty quantification for the estimates.
Figure 4(a) shows that the confidence band by the LEnKF covers many states,
but that is not the case for the EnKF. This is consistent with the existing result
that the EnKF is known to provide an optimal linear estimator of the conditional
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Figure 4. State estimates produced by LEnKF (red) and EnKF (green) for the Lorenz-
96 model, with t = 1,2,...,100: (left plot) the estimates of X, where the true states are
represented by plusses, the estimates are represented by solid lines, and their 95% conf-
idence intervals are represented by shaded bands; (right plot) log(RMSE,) for stage ¢.
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Figure 5. Coverage probabilities of the 95% confidence intervals produced by the LEnKF
(solid line) and the EnKF (dotted line) for the Lorenz-96 model for stage t = 1,2, ..., 100:
(left plot) results for one data set; (right plot) results averaged over 10 data sets.

mean (Law, Tembine and Tempone, (2016))), but underestimates the confidence
intervals (Saetrom and Omre (2013)).

Figure 5(a) shows the coverage probabilities of the 95% confidence intervals
produced by the LEnKF and EnKF, where the coverage probability is calculated
by averaging over 40 state components of X, at each stage ¢t € {1,2,...,100}.
Figure 5(b) shows the averaged coverage probabilities over 10 data sets. The
comparison shows that the LEnKF produces a faithful coverage probability (close
to its nominal level), whereas the EnKF does not. This implies that the LEnKF
can correctly quantify the uncertainty of the system as t increases. This is a
remarkable result, given the high nonlinearity and dynamic nature of the Lorenz-
96 model.

Table 1 summarizes the results produced by the two methods on 10 data
sets. For the LEnKF', we tried two choices of k,. For each data set, we calculated
the mean RMSE by averaging RMSE; over stages t = 21,22, ...,100. Similarly,
we calculated the mean CP by averaging CP; over the stages t = 21,22,...,100,
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Table 1. Comparison of the EnKF and LEnKF, where the averages over 10 independent
data sets are reported, with the standard deviation given in parentheses. The CPU time
was recorded for a single run of the method.

LEnKF
]COZK:/Q kOZK:—l EnKF
Am-RMSE  1.702(0.0343)  1.714(0.0360)  1.722(0.0230)
Am-CP  0.948(0.0028) 0.947(0.0034)  0.460(0.0029)
CPU(s) 6.37(0.3942)  3.350(0.0807)  0.817(0.0426)

where CP; denotes the coverage probability calculated for one data set at stage t.
Then, their values were further averaged over 10 data sets and denoted by “Am-
RMSE” and “Am-CP,” respectively. Table 1 also reports the CPU time cost of
each method. Compared with the EnKF, the LEnKF produces slightly lower
RMSE;, but a much more accurate uncertainty quantification for the model. The
LEnKF also produces very good results with kg = K — 1, and costs much less in
terms of CPU time than with ky = K/2.

For the EnKF, we tried several larger ensemble sizes, up to 2000, which cost
much more in terms of CPU time than the LEnKF, but with a coverage rate of
only about 70%. This is consistent with the result of |Law, Tembine and Tempone
(2016) that the EnKF converges only to a mean-field filter, but not to the filtering
distribution.

5. Extensions of the LEnKF

This section discusses a few possible extensions of the LEnKF, with numerical
results reported elsewhere.

5.1. Dynamic systems with unknown parameters

Like the EnKF, the LEnKF assumes that the dynamic system contains no
unknown parameters. An extension of the LEnKF to dynamic systems with
unknown parameters can be achieved in several ways.

One way is to use the EM algorithm (Dempster, Laird and Rubin| (1977)).
Because the LEnKF is able to sample from the filtering distribution for given
parameters, the EM algorithm can be conveniently used for parameter estimation.
A related work is that of |Aicher et al. (2019), who simulates the filtering
distribution using a traditional sequential Monte Carlo algorithm. However, their
method lacks the necessary scalability for big-data problems.

An alternative way is to use an adaptive stochastic gradient MCMC algo-
rithm. Consider the model . If the propagator H; or the observation noise
covariance matrix contains unknown parameters, then the parameters can be
estimated in a recursive way. In this case, the following step can be added to
Algorithm 2:
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(iv) Parameter updating: Update the parameters by recursion ¢, = (1 —
a;)%_1+a;p(9_1, x}), where ¥ denotes the vector of unknown parameters,
{a;} is a prespecified, positive decreasing sequence satisfying the conditions
Yo,a =00 and >, a7 < oo, &f = (z¢',...,z{™) denotes the ensemble of
samples at stage t, and ¢(¥;_1,x¢) is a mapping to an estimate of ¥ based
on the ensemble x}.

Using the theory of stochastic approximation (Robbins and Monro (1951)),
the mapping ¢(¥;_1,x¢) can be easily designed. With the parameter updating
step, the LEnKF becomes an adaptive stochastic gradient MCMC algorithm,
where the target distribution varies between iterations. The convergence of such
an adaptive algorithm can be studied in a similar way to|Deng et al.| (2019). Under
appropriate conditions, we can show that as ¢ — oo, 9¥; converges to the true
parameters in probability, and x{ converges weakly to the filtering distribution.

Finally, note that we can also use the state-augmentation approach for the
parameter estimation. However, this approach applies only when the resulting
covariance matrix 3, = (n/N)(I — K;H;) is still a constant matrix of the
augmented state variable. Otherwise, the weak convergence of ¢ to the filtering
distribution is no longer guaranteed.

5.2. Dynamic systems with non-Gaussian observations

In practice, we often encounter problems in which the response variable fol-
lows a non-Gaussian distribution, such as a multinomial or Poisson distribution.
The LEnKF can be extended to these problems by introducing a latent variable.
For example, consider an inverse problem for which the latent variable model can
be formulated as

zly ~ p(zly), vy =h(z)+n, n~NOT), (5.1)

where z is the observed data following a non-Gaussian distribution p(-), y is
the latent Gaussian variable, and z is a parameter. To adapt the LEnKF to
simulate from the posterior distribution 7(z|z), we need only add an imputation
step to Algorithm 2, between the forecast and the analysis steps. The imputation
step simulates a latent vector y from the distribution m(y|z, z) < p(z|y)f(y|z).
Because the imputation leads to an unbiased estimate for the gradient of the
involved log-density function, the proposed extension is valid, and we can use it
to generate samples from the target posterior 7(x|z). A further extension of this
algorithm to data assimilation problems is straightforward.

5.3. Dynamic systems with nonlinear measurement equations

As indicated by Algorithm 3, the LEnKF is a sequential preconditioned
SGLD sampler. At each stage, it aims to simulate from the posterior distribution
for a linear inverse problem using an appropriately designed prior distribution,
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for which the gradient of the log-density function is estimated based on the
samples simulated in the preceding stage. In the same vein, Algorithm 3 can be
extended to data-assimilation problems with nonlinear measurement equations,
for which we need only determine how the LEnKF can be used for nonlinear
inverse problems.

Consider the nonlinear inverse problem

y:g(z)—l—n, UGN(OaF)7

where y = (g7, 92,...,95)%, I' = diag[V,V,...,V] is a diagonal block matrix,
each block V is of size n x n, and N = Bn, for some positive constant B.
To reformulate the problem in the central dynamic system , we define an
augmented state vector by an n-vector ~;:

Ty = (ZT77tT)T7 Yt = gt(z) + Ut Uy ~ N(0,0éV), (52)

where G,(-) is the mean response function for a mini-batch of data drawn at
stage t, and 0 < o < 1 is a prespecified constant. In this paper, « is called the
variance-splitting proportion.

Let 7(z) denote the prior density function of z, which is differentiable with
respect to z. The conditional distribution of 7, is v;|z ~ N(G,(2),aV), and the
joint density function of x; is then w(z;) = m(z)m(v|z). Based on Langevin
dynamics, a system identical to (in symbol) can be constructed for the
nonlinear inverse problem:

n
Ty = Tiq + €tﬁvz log m(wy—1) + wy (5.3)

Yy = Hyxy + vy,

where wy ~ N(0, (n/N)Q:), Q: = €1,, and p is the dimension of z;; H, = (0, 1),
such that Hyxy = ;5 v, ~ N(0,(1 — «)V), which is independent of w, for all ¢;
and y, is a random draw from {gy, 92, ..., Un}-

Using this formulation, the LEnKF can be easily extended to simulate from
the posterior m(z|y) for the nonlinear inverse problem. Using the variance-
splitting state-augmentation approach, in the same vein as Algorithm 3, the
LEnKF can be further extended to data-assimilation problems with nonlinear
measurement, equations.

6. Conclusion

We have proposed the LEnKF as a scalable particle filter by reformulating the
EnKF under the framework of Langevin dynamics. The LEnKF is a sequential
preconditioned SGLD algorithm, but its execution is accelerated using a forecast-
analysis procedure. The LEnKF converges to the correct filtering distribution
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in terms of the 2-Wasserstein distance as the number of iterations per stage
increases. We can apply the LEnKF to state estimation for both inverse and
data-assimilation problems, and quantify the uncertainty of the states. The
LEnKF is not only scalable with respect to the state dimension and sample size,
but also tends to be immune to the sample degeneracy problem encountered by
conventional particle filters.

Supplementary Material

The online Supplementary Material presents the proofs of Theorem 1 and
Theorem 2, as well as additional numerical examples.
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