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Abstract: The ensemble Kalman filter (EnKF) performs well in terms of data

assimilation in atmospheric and oceanic sciences. However, it fails to converge to the

correct filtering distribution, which precludes its use for uncertainty quantification in

dynamic systems. Thus, we reformulate the EnKF under the framework of Langevin

dynamics, yielding a new particle filtering algorithm, which we call the Langevinized

EnKF (LEnKF). The LEnKF inherits the forecast-analysis procedure from the

EnKF, and uses mini-batch data from stochastic gradient Langevin dynamics

(SGLD). We prove that the LEnKF is a sequential preconditioned SGLD sampler,

like the EnKF, but with its execution accelerated by the forecast-analysis procedure.

Furthermore, the LEnKF converges to the correct filtering distribution in terms of

the 2-Wasserstein distance as the number of iterations per i stage increases. We

demonstrate the performance of the LEnKF using a variety of examples. The

LEnKF is not only scalable with respect to the state dimension and the sample

size, but also tends to be immune to sample degeneracy for long-series dynamic

data.
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1. Introduction

The integration of computer technology into science and daily life has

enabled scientists to collect massive volumes of data, such as climate data, high-

throughput biological assay data, and website transaction logs. To address the

computational difficulties that arise in Bayesian analyses of big data, several

scalable MCMC algorithms have been developed, including the stochastic gra-

dient MCMC algorithms (Welling and Teh (2011); Ding et al. (2014); Chen,

Fox and Guestrin (2014); Li et al. (2016); Ma, Chen and Fox (2015); Nemeth and

Fearnhead (2021)), split-and-merge algorithms (Scott et al. (2016); Li, Srivastava

and Dunson (2017); Srivastava, Li and Dunson (2018)), mini-batch Metropolis–

Hastings algorithms (Chen et al. (2018); Maclaurin and Adams (2014); Bardenet,

Doucet and Holmes (2017)), and nonreversible Markov process-based algorithms

(Bierkens, Fearnhead and Roberts (2019); Bouchard-Côté, Vollmer and Doucet

(2018)).
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Although scalable MCMC algorithms perform well in Bayesian learning with

static data, none can be applied directly to dynamic data. In the literature,

learning based on static data is often referred to as static or offline learning, and

that based on dynamic data is called as dynamic or online learning. Dynamic

learning is important and challenging, because dynamic data collection is general,

heterogeneous, and messy. Note that classical sequential Monte Carlo or particle

filter algorithms (e.g., see Liu and Chen (1998) and Doucet, de Freitas and

Gordon (2001)) lack the scalability necessary to handle large-scale dynamic data,

where we wish to use all available data at each processing step. The ensemble

Kalman filter (EnKF) (Evensen (1994)) is efficient for high-dimensional data-

assimilation problems (e.g., Evensen and van Leeuween (1996); Aanonsen et al.

(2009); Houtekamer and Mitchell (2011)), but fails to converge to the correct

filtering distribution for general nonlinear dynamic systems (Law, Tembine and

Tempone (2016)). Thus, there is a need for statistical methods for Bayesian

on-line learning based on large-scale dynamic data.

In this study, we conduct Bayesian online learning for the following dynamic

system:

xt = g(xt−1) + ut, ut ∼ N(0, Ut),

yt = Htxt + ηt, ηt ∼ N(0,Γt),
(1.1)

for stages t = 1, 2, . . . , T , where xt ∈ Rp and yt ∈ RNt denote the state and

observations, respectively, at stage t. The dimension p, number of stages T ,

and sample size Nt are all assumed to be on a large scale. For the dynamic

system (1.1), the top equation is called the state evolution equation, where

g(·) is called state propagator, and can be nonlinear. The bottom equation is

called the measurement equation, where the propagator Ht relates the state

variable to the measurement variable, and yields the expected value of the

prediction, given the state and the parameters. The dynamic system (1.1) is

of central importance. First, it models data-assimilation problems that have

linear measurement equations. Second, many other problems, such as the

inverse problem and data-assimilation problems that have nonlinear measurement

equations can be converted to (1.1) by using appropriate transformations, as

discussed in Section 3.1 and Section 5. For simplicity, we assume that both

the model error ut and the observation error ηt are zero-mean Gaussian random

variables, and that the covariance matrices Ut and Γt and the propagators g(·) and
Ht are all fully specified; that is, they contain no unknown parameters. How to

extend our results to problems with non-Gaussian observations and/or unknown

parameters is discussed in Section 5.

Throughout this paper, we let t be an index of the stage of the dynamic

system, let f(yt|xt) denote the likelihood function of yt, let π(xt|y1:t) denote

the filtering distribution at stage t given the data y1:t = {y1, y2, . . . , yt}, and let
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π(xt|y1:t−1) =
∫
π(xt|xt−1)π(xt−1|y1:t−1)dxt−1 denote the predictive distribution

of xt given y1:t−1.

Our results contribute to the literature in two ways. First, We develop a

new particle filter, the so-called Langevinized EnKF (LEnKF), by reformulating

the EnKF under the framework of Langevin dynamics. The LEnKF is not only

scalable with respect to the state dimension and sample size, but also tends to

be immune to the sample degeneracy problem often encountered by conventional

particle filters. The LEnKF works well in a big data scenario in which the stage

number T , state dimension p, and sample sizes Nt are all large scale. Second, we

prove that the LEnKF is a sequential preconditioned SGLD sampler; however,

its execution is accelerated by the forecast-analysis procedure, and it converges

to the correct filtering distribution in terms of 2-Wasserstein distance as the

number of iterations per stage increases. The LEnKF can be used efficiently

for uncertainty quantification in large-scale dynamic systems. We illustrate the

performance of the LEnKF using several examples, including the Lorenz-96 model

(Lorenz (1996)) and the long short-term memory (LSTM) model (Hochreiter

and Schmidhuber (1997)). To conserve space, the latter is presented in the

Supplementary Material. To the best of our knowledge, this work represents

the first development of a scalable particle filter under a rigorous probabilistic

framework.

The remainder of this paper is organized as follows. Section 2 provides a

brief review of the EnKF, and explains its scalability with respect to the state

dimension. Section 3 describes the LEnKF for dynamic learning and studies

its convergence. In Sections 4, we demonstrate the performance of the LEnKF

using a variable selection example and the Lorenz-96 model. Section 5 discusses

possible extensions of the LEnKF. Section 6 concludes the paper.

2. Why is the EnKF Efficient for High-Dimensional Problems?

Consider the dynamic system (1.1). To estimate the state variables

x1, x2, . . . , xT , Evensen (1994) proposed the EnKF algorithm, as described in

Algorithm 1. If Ut,Γt, g(·), and Ht contain unknown parameters, we can use the

state augmentation method (Anderson (2001); Baek et al. (2006); Gillijns and

De Moor (2007)), where the state vector is augmented with unknown parameters,

and the state and parameters are estimated simultaneously.

The EnKF has two attractive features that help it perform well in high-

dimensional data-assimilation problems, such as those encountered in reservoir

modeling (Aanonsen et al. (2009)), oceanography (Evensen and van Leeuween

(1996)), and weather forecasting (Houtekamer and Mitchell (2011)). First, the

EnKF approximates each filtering distribution π(xt|y1:t) using an ensemble of

particles. Because the ensemble size m is typically much smaller than p, it leads

to better dimension reduction and computational feasibility than that of the
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Algorithm 1 EnKF Algorithm.

Initialization: Initialize an ensemble {xa,1
0 , xa,2

0 , . . ., xa,m
0 } of size m.

for t = 1 to T do
(i) Forecast: For i = 1, 2, . . . ,m, draw ui

t ∼ N(0, Ut) and set xf,i
t = g(xa,i

t−1) + ui
t;

calculate the sample covariance matrix of xf,1
t , . . . , xf,m

t and denote it by Ct.

(ii) Analysis: For i = 1, 2, . . . ,m, draw ηit ∼ N(0,Γt) and set xa,i
t = xf,i

t + K̂t(yt−
Htx

f,i
t − ηit)

∆
= xf,i

t + K̂t(yt − yf,it ), where K̂t = CtH
T
t (HtCtH

T
t +Γt)

−1 forms
an estimator for the Kalman gain matrix Kt = StH

T
t (HtStH

T
t + Γt)

−1 and

St denotes the covariance matrix of xf
t .

end for

Kalman filter; see, for example, Shumway and Stoffer (2006). In particular,

it approximates St using Ct, so the storage for the matrix Ct is replaced with

particles, and is much reduced. Second, by generating particles from filtering

distributions, it avoids covariance matrix decomposition. It is known that an

LU-decomposition of a covariance matrix has computational complexity O(p3).

Instead, the EnKF employs a forecast-analysis procedure to generate particles,

which has computational complexity O(max{p2Nt, N
3
t }+mpNt), for m particles

at stage t. That is, the forecast-analysis procedure reduces the computational

complexity of the particle generation when m and Nt are smaller than p. This

explains why the EnKF is so efficient for high-dimensional problems. On the

other hand, this also implies that the EnKF may be inefficient when Nt is large.

Despite its success in dealing with high-dimensional dynamic systems, the

performance of the EnKF is sub-optimal. As shown by Law, Tembine and Tem-

pone (2016), it converges only to a mean-field filter, which provides the optimal

linear estimator of the conditional mean, but not the filtering distribution, except

for linear systems in the large-sample limit. Similar results can be found in

Le Gland, Monbet and Tran (2009), Bergou, Gratton and Mandel (2019), and

Kwiatkowski and Mandel (2015).

Using the state augmentation approach (Iglesias, Law and Stuart (2013)),

the EnKF can also be used to solve the inverse problem, that is, determining the

parameter x for the system

y = G(x) + η, (2.1)

where G(·) is the forward response operator mapping the unknown parameter

x to the space of observations, η ∼ N(0,Γ) is Gaussian random noise, and y

denotes the observed data. However, as mentioned previously, the EnKF does not

converge to the filtering distribution; thus, we cannot approximate the posterior

distribution π(x|y) well using this approach. Numerically, Ernst, Sprungk and

Starkloff (2015) show that for nonlinear inverse problems, the large-sample limit

does not lead to a good approximation of the posterior distribution.
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3. Langevinized Ensemble Kalman Filter

To motivate the development of the LEnKF, we first consider a linear inverse

problem, and then extend it to the data-assimilation problem (1.1), and others.

Note that, as implied by (1.1), estimating xt at each individual stage is essentially

a linear inverse problem, but with some “prior” information passed on from the

preceding stage.

3.1. Linear inverse problem

Consider a Bayesian inverse problem for the regression

y = Hx+ η, (3.1)

where H is a known matrix, η ∼ N(0,Γ) for some covariance matrix Γ, y ∈ RN ,

and x ∈ Rp is an unknown continuous parameter vector. To accommodate the

case that the sample size N is extremely large, we assume y can be partitioned

into B = N/n independent and identically distributed (i.i.d.) blocks {ỹ1, . . . , ỹB},
where each block is of size n and has a positives-definite covariance matrix V , such

that Γ = diag[V, . . . , V ]. Note that this is a trivial assumption for independent

samples, as considered here.

Let π(x) denote the prior density function of x, which is assumed to be

differentiable with respect to x. Let π(x|y) denote the posterior distribution. To

develop a scalable algorithm for simulating from π(x|y) under the scenario that

both N and p are large, we reformulate the model (3.1) as a state-space model

using subsampling and Langevin diffusion:

xt = xt−1 + ϵt
n

2N
∇ log π(xt−1) + wt,

yt = Htxt + vt, (3.2)

where wt ∼ N(0, (n/N)ϵtIp) = N(0, (n/N)Qt), that is, Qt = ϵtIp, yt denotes a

block drawn randomly from {ỹ1, . . . , ỹB}, vt ∼ N(0, V ), and Ht is a submatrix of

H extracted using the corresponding yt. In the state-space model, at each stage

t, the state (i.e., the parameters of model (3.1)) evolves according to an Euler-

discretized Langevin equation of the prior distribution, and the measurement

equation varies with subsampling.

To simulate from the dynamic system (3.2), we propose Algorithm 2, which

uses both subsampling and the forecast-analysis procedure, and is thus scalable

with respect to both the sample size N and the state dimension p. Theorem 1

shows that the proposed algorithm is a parallel preconditioned SGLD algorithm;

the proof is given in the Supplementary Material. Then, following from the

general recipe of stochastic gradient MCMC (Ma, Chen and Fox (2015)), each

chain of the algorithm converges to the target posterior π(x|y) as t → ∞, provided

that ϵt → 0 as t → ∞. As mentioned in Remark S1, the convergence of the
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Algorithm 2 LEnKF for Linear Inverse Problems.

Initialization: Set t = 0 and initialize an ensemble {xa,1
0 , xa,2

0 , . . . , xa,m
0 } of size m.

for t = 1 to T do
(i) Subsampling: Draw yt from {ỹ1, . . . , ỹB}. Set Qt = ϵtIp, Rt = 2V , and the

Kalman gain matrix Kt = QtH
T
t (HtQtH

T
t +Rt)

−1.
for i = 1 to m do
(ii) Forecast: Draw wi

t ∼ Np(0, (n/N)Qt) and set

xf,i
t = xa,i

t−1 + ϵt
n

2N
∇ log π(xa,i

t−1) + wi
t. (3.4)

(iii) Analysis: Draw vit ∼ Nn(0, (n/N)Rt) and set

xa,i
t = xf,i

t +Kt(yt −Htx
f,i
t − vit)

∆
= xf,i

t +Kt(yt − yf,it ). (3.5)

end for
end for

algorithm (measured in terms of 2-Wasserstein distance) also follows directly

from Corollary S1.

Theorem 1. For Algorithm 2, if V is positive definite, then the algorithm reduces

to a parallel preconditioned SGLD algorithm that converges to the target posterior

distribution π(x|y) as t → ∞, provided ϵt → 0 as t → ∞; that is, for each chain

i ∈ {1, 2, . . . ,m},

xa,i
t = xa,i

t−1 +
ϵt
2
Σt∇̂ log π(xa,i

t−1|y) + et, (3.3)

where Σt = (n/N)(I − KtHt) is a constant matrix of x, et is a zero-mean

Gaussian random error with covariance Var(et) = ϵtΣt, and ∇̂ log π(xa,i
t−1|y) =

(N/n)HT
t V

−1
t (yt − Htx

a,i
t−1) + ∇ log π(xa,i

t−1) represents an unbiased estimate of

∇ log π(xa,i
t−1|y).

The major advantage of such a reformulation from an inverse problem to

a state-space model lies in the computation. For a high-dimensional prob-

lem, suppose we set the mini-batch size n much smaller than p; then, the

computational complexity of LEnKF for T iterations is O((n2p + mnp)T ). In

contrast, if (3.3) is simulated directly as a preconditioned algorithm for the

original inverse problem, the computational complexity is O((p3 + np2)mT ),

where O(p3) and O(np2) represent the costs of generating ek and computing

Σk∇̂ log π(xa
k−1|y), respectively. The former requires an LU-decomposition of Σt,

which has computational complexity O(p3). The LEnKF avoids this problem by

using a forecast-analysis procedure, making it scalable with respect to the state

dimension p.

Note that the computational complexity of LEnKF is the same as that of the

parallel SGLD algorithm (Welling and Teh (2011)). The latter algorithm consists
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of m chains and each chain evolves via the iteration

xi
t = xi

t−1 +
ϵt
2
∇̂x log π(x

i
t−1|y) + ẽt, i = 1, 2, . . . ,m,

where ∇̂x log π(x
i
t−1|y) = (N/n)HT

t V
−1(yt −Htx

i
t−1) +∇ log π(xi

t−1), as defined

in (3.3), ẽt ∼ N(0, ϵtIp), and, at each iteration t, all chains are updated based

on the same mini-batch data yt. As implied by Theorem 1 of Li et al. (2016),

the LEnKF converges more quickly than the parallel SGLD does, because all

eigenvalues of the preconditioner Σt can be much less than one by noting that

Σt = (n/N)(I−KtHt) = (n/N)(I−ϵtH
T
t (ϵtHtH

T
t +2V )−1Ht). This is illustrated

in Figure 2, and in Figure S1 and Figure S2 (in the Supplementary Material).

3.2. Data assimilation with linear measurement equations

Consider the dynamic system (1.1). Similarly to the linear inverse problem,

we assume that at each stage t, yt can be partitioned into Bt = Nt/nt i.i.d.

blocks {ỹt,1, . . . , ỹt,Bt
}, where each block has size nt, and ỹt,k = Ht,kxt + vt,k, for

k = 1, 2, . . . , Bt; Nt is the total number of observations at stage t, vt,k ∼ N(0, Vt),

for all k; and vt,k are mutually independent; that is, Γt = diag[Vt, . . . , Vt]. Again,

we assume that Vt is positive definite. Let yt,k denote a block of nt observations

drawn randomly from the set {ỹt,1, . . . , ỹt,Bt
}.

To motivate the development of the algorithm, we first consider the Bayesian

formula

π(xt|y1:t) =
f(yt|xt)π(xt|y1:t−1)∫
f(yt|xt)π(xt|y1:t−1)dxt

, (3.6)

which suggests that in order to get the filtering distribution π(xt|y1:t), we first

need to use the predictive distribution π(xt|y1:t−1) as the prior at stage t.

To estimate the gradient ∇xt
log π(xt|y1:t−1), we employ the following identity

established in Song et al. (2020):

∇β log π(β | D) =

∫
∇β log π(β | γ,D)π(γ | β,D)dγ, (3.7)

where D denotes data, and β and γ denote two parameters of a posterior

distribution π(β, γ|D). By this identity, we have

∇xt
log π(xt|y1:t−1) =

∫
∇xt

log π(xt|xt−1, y1:t−1)π(xt−1|xt, y1:t−1)dxt−1

=

∫
∇xt

log π(xt|xt−1)
π(xt−1|xt, y1:t−1)

π(xt−1|y1:t−1)
π(xt−1|y1:t−1)dxt−1

=

∫
∇xt

log π(xt|xt−1)ω(xt−1|xt)π(xt−1|y1:t−1)dxt−1,

(3.8)

where ω(xt−1|xt) = π(xt−1|xt, y1:t−1)/π(xt−1|y1:t−1) = π(xt|xt−1)/π(xt|y1:t−1)
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∝ π(xt|xt−1), because π(xt|y1:t−1) is a constant with respect to xt−1, given

the particle xt and the data y1:t−1. Therefore, given a set of samples Xt−1 =

{xt−1,1, xt−1,2, . . . , xt−1,m′} drawn from the filtering distribution π(xt−1|y1:t−1), we

can use an importance resampling procedure to draw a sample from π(xt−1|xt,

y1:t−1). The importance resampling procedure can be executed very fast, because

calculating the importance weight ω(xt−1|xt) does not involve any data.

Using the above formulae, we can construct a dynamic system, similar to

(3.2), for the data-assimilation problem (1.1) at stage t, as

xt,k = xt,k−1 − ϵt
nt

2Nt

U−1
t (xt,k−1 − g(x̃t−1,k−1)) + wt,k,

yt,k = Ht,kxt,k + vt,k,
(3.9)

for k = 1, 2, . . ., where xt,0 = g(xt−1) + ut, x̃t−1,k−1 represents a sample of

π(xt−1|xt,k−1, y1:t−1) and is drawn from Xt−1 using an importance resampling

procedure, wt,k ∼ N(0, (nt/Nt)ϵt,kIp), Qt,k = ϵt,kIp, and p is the dimension of

xt. Applying Algorithm 2 to (3.9) at each stage t leads to Algorithm 3. The

convergence theory of the algorithm is studied in Theorem 2, the proof of which

is given in the Supplementary Material.

Theorem 2. We consider a dynamic system with t = 1, 2, . . . , T stages. Let

πt = π(xt|y1:t) denote the filtering distribution at stage t. Suppose Assumptions

S1– S8 (given in the Supplementary Material) hold, and Nt is larger than a

certain threshold. If ϵt,k ∝ (1/n2
t logKk−ϖ), for some ϖ ∈ (0, 1) and any

k ∈ {1, 2, . . . ,K}, then uniformly with dominating probability, for any t ∈
{1, 2, . . . , T}, xa,i

t,K follows a probability law π̃t and limK→∞ W2(π̃t, πt) = 0, where

W2(·, ·) denotes the 2-Wasserstein distance between two distributions.

The following remarks relate to Algorithm 3 and Theorem 2.

Remark 1. (On asymptotic regime). Theorem 2 studies the convergence of

Algorithm 3 under the asymptotic regime that the number of iterations at each

stage (i.e., K) diverges. Such a result is similar to the convergence theory of a

sequential Monte Carlo algorithm as the number of particles increases to infinity

(see, e.g., Beskos et al. (2016); Crisan and Doucet (2000)). Under this asymptotic

regime, we provide a rigorous study for the convergence of the algorithm; in

particular, we account for the approximation error of π̃t to πt for each stage t in

establishing the convergence of the algorithm. See equations (S2.23), (S2.25) and

(S2.27) of the Supplementary Material for further detail.

Remark 2. (On sample degeneracy). It is known that sample degeneracy is

an inherent problem with sequential importance sampling (Cappé et al. (2004)),

especially when the dimension of the system is high. When it occurs, the

importance weights concentrate on a few samples, the effective sample size is low,

and the resulting importance sampling estimate is heavily biased. Fortunately,
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Algorithm 3 LEnKF for Data-Assimilation Problems.

Initialization: Initialize an ensemble {xa,1
1,0 , xa,2

1,0 , . . ., xa,m
1,0 } of size m by drawing

from the prior distribution π(x1). Set Xt = ∅, for t = 1, 2, . . . , T ; set the learning
rate sequence {ϵt,k : t = 1, 2, . . . , T, k = 1, 2, . . . ,K}, where K denotes the number of
iterations performed at each stage; and set k0 as the common burn-in period of each
stage.
for t = 1 to T do
for k = 1 to K do
(i) Subsampling: Draw a mini-batch sample yt,k from the set {ỹt,1, . . . , ỹt,Bt

}.
Set Qt,k = ϵt,kIp, Rt = 2Vt, and the Kalman gain matrix Kt,k =
Qt,kH

T
t,k(Ht,kQt,kH

T
t,k +Rt)

−1.
for i = 1 to m do

(ii) Importance resampling: If t > 1, calculate importance weights ωi
t,k−1,j

= π(xa,i
t,k−1|xt−1,j) = ϕ(xa,i

t,k−1; g(xt−1,j), Ut), for j = 1, 2, . . . , |Xt−1|,
where ϕ(·) denotes a Gaussian density, and xt−1,j ∈ Xt−1 denotes the

jth sample in Xt−1; if k = 1, set xa,i
t,0 = g(xa,i

t−1,K) + ua,i
t and ua,i

t ∼
N(0, Ut). Resample s ∈ {1, 2, . . . , |Xt−1|} with a probability ∝ ωi

t,k−1,s,

i.e., P (St,k,i = s) = ωi
t,k−1,s/

∑|Xt−1|
j=1 ωi

t,k−1,j , and denote the sample

drawn from Xt−1 by x̃i
t−1,k−1.

(iii) Forecast: Draw wi
t,k ∼ Np(0, (n/N)Qt,k). If t = 1, set xf,i

t,k = xa,i
t,k−1 −

ϵt,k(nt/2Nt)∇ log π(xa,i
t,k−1) + wi

t,k, where π(·) denotes the prior distri-

bution of x1; otherwise, set xf,i
t,k = xa,i

t,k−1 − ϵt,k(nt/2Nt)U
−1
t (xa,i

t,k−1 −
g(x̃i

t−1,k−1)) + wi
t,k.

(iv) Analysis: Draw vit,k ∼ Nn(0, (n/N)Rt) and set

xa,i
t,k = xf,i

t,k +Kt,k(yt,k −Ht,kx
f,i
t,k − vit,k)

∆
= xf,i

t,k +Kt,k(yt,k − yf,it,k).

(v) Sample collection: If k > k0, add the sample xa,i
t,k to the set Xt.

end for
end for

end for

the LEnKF is essentially immune to this problem. In the LEnKF, the importance

resampling procedure draws a particle from Xt−1 that matches a given particle

xt in terms of state propagation, such that the gradient ∇xt
log π(xt|y1:t−1) can

be reasonably well estimated. Then, this gradient estimate is combined with the

gradient of the likelihood function of the new data yt to update xt. By (3.6),

π(xt|y1:t−1) works as the prior distribution of xt for the filtering distribution

π(xt|y1:t). Therefore, the effect of the importance resampling procedure on the

performance of the algorithm is limited if the sample size Nt is reasonably large

at each stage t. In contrast, the importance resampling procedure in sequential
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importance sampling draws a particle from Xt−1, and treats the particle as though

it were from the filtering distribution π(xt|y1:t). For high-dimensional problems,

the overlap between the high-density regions of neighboring stage-filtering dis-

tributions can be very small, which naturally causes sample degeneracy. In

summary, the importance resampling step of the LEnKF draws a sample for the

prior distribution π(xt|y1:t−1) used at each stage t, whereas sequential importance

sampling draws a sample for the target filtering distribution π(xt|y1:t). Therefore,
the LEnKF is less affected by the sample degeneracy problem than is sequential

importance sampling; refer to Section S1.2 for a numerical illustration.

Remark 3. (On uncertainty quantification). The LEnKF is run in an

ensemble, which provides a convenient way of quantifying the uncertainty. At

each stage and for each chain, the state can be estimated by averaging over

iterations, as prescribed for the SGLD estimator in Teh, Thiery and Vollmer

(2016) (weighted version) or Song et al. (2020) (unweighted version). The state

estimates can then be further averaged over the chains. It is easy to see that

the central limit theorem holds for this chain-averaged estimator approximately,

given the weak dependence between different chains, and we can quantify the

uncertainty accordingly.

Finally, as implied by Theorem 1, Algorithm 3 is essentially a sequential

preconditioned SGLD sampler. From the proof of Theorem 2, a lower approxi-

mation error (measured in W2(π̃t, πt)) obtained at one stage of the LEnKF helps

to reduce the approximation error of the subsequent stage, and the approximation

error becomes negligible as the number of stages increases.

4. Numerical Studies

4.1. Bayesian variable selection for large-scale linear regression

Consider the linear regression

Y = Zβ + ε, (4.1)

where Y ∈ RN is the response, Z = (Z1, Z2, . . . , Zp) ∈ RN×p are covariates,

β ∈ Rp, and ε ∼ N(0, IN). An intercept term is included implicitly in the model.

We generate 10 data sets from this model, with N = 50000, p = 2000, and

β = (β1, β2, . . . , βp) = (1, 1, 1, 1, 1,−1,−1,−1, 0, . . . , 0). That is, the first eight

variables are true, and the others are false. Each variable Zi has a marginal

distribution of N(0, IN), but they are mutually correlated with a correlation

coefficient of 0.5.

To conduct a Bayesian analysis for the model, we consider the following

hierarchical mixture Gaussian prior distribution, which, with the latent variable

ξi ∈ {0, 1}, can be expressed as



A LANGEVINIZED ENSEMBLE KALMAN FILTER 1081

βi|ξi ∼ (1− ξi)N(0, τ 2
1 ) + ξiN(0, τ 2

2 ),

P (ξi = 1) = 1− P (ξi = 0) = ρ0,
(4.2)

for i = 1, 2, . . . , p. Such a prior distribution is widely used in the literature on

Bayesian variable selection; see, for example, George and McCullloch (1993). To

apply the LEnKF to this problem, we first integrate out ξi from the prior (4.2),

which leads to the marginal distribution

βi ∼ (1− ρ0)N(0, τ 2
1 ) + ρ0N(0, τ 2

2 ), i = 1, 2, . . . , p,

such that the log-prior density function log π(β) is differentiable. Algorithm

2 is applied to simulate from the posterior π(β|Y ,Z). In the simulation, we

set ρ0 = 1/p = 0.0005, τ 2
1 = 0.01, and τ 2

2 = 1 for the prior distribution, and

set the ensemble size m = 100, mini-batch size n = 100, and learning rate

ϵt = 0.2/max{t0, t}0.6, where t0 = 100. As implied by Lemma S6, the convergence

of the LEnKF suffers from an elbow phenomenon with respect to the mini-batch

size; that is, using an extremely large mini-batch size will not lead to a much

better convergence rate than using a reasonably large one. On the other hand,

as discussed in Section 3.1, a large batch size can significantly increase the CPU

cost of the algorithm. Therefore, a reasonably large value of n is preferred for the

LEnKF. For this example, we tried n = 100, n = 200, n = 500, and n = 1000,

and found that n = 100 leads to comparable results to those of the other three,

but with a shorter CPU time. Algorithm 2 was run for 10,000 iterations, which

cost 375 CPU seconds on a personal computer with a 2.9 GHz Intel Core i7 CPU

and 16 GB RAM. All computations reported here were performed on the same

computer.

For variable selection, we consider the factorization of the posterior dis-

tribution π(β, ξ|Y ,Z) ∝ π(Y |β,Z)π(β|ξ)π(ξ), where ξ = (ξ1, ξ2, . . . , ξp). By

assuming that βi and ξi are a priori independent, we draw posterior samples of

ξ from the distribution

π(ξti = 1|βti,Y ,Z) =
ati

ati + bti
, i = 1, 2, . . . , p, (4.3)

where ati = (p0/τ2) exp(−β2
ti/2τ

2
2 ), bti = ((1− p0)/τ1) exp(−β2

ti/2τ
2
1 ), and βti

denotes the posterior sample of βi drawn by Algorithm 2 at stage t. Here, we

denote by βt = (βt1, βt2, . . . , βtp) a posterior sample of β drawn by Algorithm 2

at the analysis step of stage t.

Figure 1 summarizes the variable selection results for one data set. The

results for the other data sets are similar. Figure 1(a) shows the sample

trajectories of β1, β2, . . . , β9, which are averaged over the ensemble and the

iterations. All the samples converge weakly to their true values in 100 iterations,

taking about 3.7 CPU seconds. Figure 1(b) shows the marginal inclusion

probabilities of the covariates Z1, Z2, . . . , Zp. From this graph, each of the eight
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Figure 1. The LEnKF for large-scale linear regression: (a) Trajectories of β1, . . . , β9,
where β1 = · · · = β5 = 11, β6 = · · · = β8 = −1, and β9 = 0 (yellow line). (b)
marginal inclusion probabilities of all covariates Z1, . . . , Zp, where the first eight high
bars represent Z1, Z2, . . . , Z8; (c) scatter plot of Y versus the fitted value for training
samples; and (d) scatter plot of Y versus the predicted value for test samples.

true variables (indexed as 1–8) has a marginal inclusion probability close to one,

whereas each of the false variables has a marginal inclusion probability close to

zero. Figure 1(c) shows the scatter plot of the response variable and its fitted

value for the training data, and Figure 1(d) shows the scatter plot of the response

variable and its predicted value for 200 test samples generated from model (4.1).

In summary, Figure 1 shows that the LEnKF is able to identify true variables for

a large-scale linear regression and, moreover, is extremely efficient.

For comparison, we also apply the SGLD (Welling and Teh (2011)), pre-

conditioned SGLD (pSGLD, Li et al. (2016)), and stochastic gradient Nosé–

Hoover thermostat (SGNHT, Ding et al. (2014)) to this example. For these

algorithms, the learning rates are tuned to their maximum values, such that the

simulation converges quickly while not exploding, and the iteration numbers are

adjusted such that they cost about the same CPU time as that of the LEnKF.

Refer to the Supplementary Material for their settings. Figure 2 compares the

trajectories of (β1, β2, . . . , β9) produced by the four algorithms in their first 5%
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Figure 2. Trajectories of (β1, β2, . . . , β9) produced by SGLD (upper), pSGLD (upper
middle), SGNHT (lower middle), and LEnKF (lower) for a large-scale linear regression
example in their first 5% iterations.

iterations, showing that the LEnKF converges significantly more quickly than

SGLD, pSGLD, and SGNHT for this example, owing to the preconditioning of

the LEnKF. The full trajectories of these algorithms are shown in Figure S1 of

the Supplementary Material.

Because the LEnKF is a parallel preconditioned SGLD algorithm, we also

compare it with parallel SGLD, pSGLD, and SGNHT. The results are presented

in the Supplementary Material, showing that the LEnKF significantly outper-

forms parallel runs of these algorithms by a much larger margin. Recall that the

LEnKF has the same computational complexity as that of the parallel SGLD, as

mentioned in Section 3.1.

4.2. Uncertainty Quantification for the Lorenz-96 Model

The Lorenz-96 model was developed by Edward Lorenz in 1996 to study

difficult questions related to predictability in weather forecasting (Lorenz (1996)).

The model is given by

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, i = 1, 2, . . . , p,
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Figure 3. Chaotic path of the partial state variables (X1
t , X

2
t , X

3
t ), for t = 1, 2, . . . , 100,

simulated from the Lorenz-96 model.

where F = 8, p = 40, and it is assumed that x−1 = xp−1, x0 = xp, and xp+1 = x1.

Here, F is known as a forcing constant, and F = 8 is a common value known to

cause chaotic behavior. In order to generate the true state Xt = (X1
t , . . . , X

p
t ),

for t = 1, 2, . . . , T , we initialize X0 by setting X i
0 to 20 for all i, but adding to

X20
0 a small perturbation of 0.1. We solve the differential equation using the

fourth-order Runge–Kutta numerical method, with a time interval of ∆t = 0.01.

Lastly, for each i and t, we add to X i
t a random noise generated from N(0, 1). At

each stage t, data are observed for half of the state variables and masked with a

Gaussian noise; that is, yt = HtXt + ϵt, for t = 1, 2, . . . , T , where ϵt ∼ N(0, Ip/2)

and Ht is a random selection matrix. Figure 3 shows the simulated path of the

partial state variables (X1
t , X

2
t , X

3
t ), for t = 1, 2, . . . , T , the chaotic behavior of

which indicates the challenge of the problem.

We apply Algorithm 3 to this example with the ensemble size m = 50,

iteration number K = 20, k0 = K/2, and learning rate ϵt,k = 0.5/k0.9, for k =

1, 2, . . . ,K and t = 1, 2, . . . , T . At each stage t, the state is estimated by averaging

over the ensembles generated at iterations k0 + 1, k0 + 2, . . . ,K. The accuracy of

the estimate is measured using the root mean-squared error (RMSE), defined by

RMSEt = ||X̂t−Xt||2/
√
p, where X̂t denotes an estimate ofXt. For comparison,

the EnKF was applied to this example with the same ensemble size, m = 50. To

be fair, it was run in a similar way to the LEnKF, except that we estimated the

Kalman gain matrix based on the ensemble, without performing the resampling

step, and drew the random error from N(0, Vt) in the analysis step.

Figure 4 compares the estimates of X3
t produced by the LEnKF and EnKF

for one simulated data set. The plots for the other components of Xt are similar.

The comparison shows that the LEnKF and EnKF produce comparable RMSEt,

and that the LEnKF provides better uncertainty quantification for the estimates.

Figure 4(a) shows that the confidence band by the LEnKF covers many states,

but that is not the case for the EnKF. This is consistent with the existing result

that the EnKF is known to provide an optimal linear estimator of the conditional
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Figure 5. Coverage probabilities of the 95% confidence intervals produced by the LEnKF
(solid line) and the EnKF (dotted line) for the Lorenz-96 model for stage t = 1, 2, . . . , 100:
(left plot) results for one data set; (right plot) results averaged over 10 data sets.

mean (Law, Tembine and Tempone (2016)), but underestimates the confidence

intervals (Saetrom and Omre (2013)).

Figure 5(a) shows the coverage probabilities of the 95% confidence intervals

produced by the LEnKF and EnKF, where the coverage probability is calculated

by averaging over 40 state components of Xt at each stage t ∈ {1, 2, . . . , 100}.
Figure 5(b) shows the averaged coverage probabilities over 10 data sets. The

comparison shows that the LEnKF produces a faithful coverage probability (close

to its nominal level), whereas the EnKF does not. This implies that the LEnKF

can correctly quantify the uncertainty of the system as t increases. This is a

remarkable result, given the high nonlinearity and dynamic nature of the Lorenz-

96 model.

Table 1 summarizes the results produced by the two methods on 10 data

sets. For the LEnKF, we tried two choices of k0. For each data set, we calculated

the mean RMSE by averaging RMSEt over stages t = 21, 22, . . . , 100. Similarly,

we calculated the mean CP by averaging CPt over the stages t = 21, 22, . . . , 100,
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Table 1. Comparison of the EnKF and LEnKF, where the averages over 10 independent
data sets are reported, with the standard deviation given in parentheses. The CPU time
was recorded for a single run of the method.

LEnKF

k0 = K/2 k0 = K − 1 EnKF

Am-RMSE 1.702(0.0343) 1.714(0.0360) 1.722(0.0230)

Am-CP 0.948(0.0028) 0.947(0.0034) 0.460(0.0029)

CPU(s) 6.37(0.3942) 3.350(0.0807) 0.817(0.0426)

where CPt denotes the coverage probability calculated for one data set at stage t.

Then, their values were further averaged over 10 data sets and denoted by “Am-

RMSE” and “Am-CP,” respectively. Table 1 also reports the CPU time cost of

each method. Compared with the EnKF, the LEnKF produces slightly lower

RMSEt, but a much more accurate uncertainty quantification for the model. The

LEnKF also produces very good results with k0 = K − 1, and costs much less in

terms of CPU time than with k0 = K/2.

For the EnKF, we tried several larger ensemble sizes, up to 2000, which cost

much more in terms of CPU time than the LEnKF, but with a coverage rate of

only about 70%. This is consistent with the result of Law, Tembine and Tempone

(2016) that the EnKF converges only to a mean-field filter, but not to the filtering

distribution.

5. Extensions of the LEnKF

This section discusses a few possible extensions of the LEnKF, with numerical

results reported elsewhere.

5.1. Dynamic systems with unknown parameters

Like the EnKF, the LEnKF assumes that the dynamic system contains no

unknown parameters. An extension of the LEnKF to dynamic systems with

unknown parameters can be achieved in several ways.

One way is to use the EM algorithm (Dempster, Laird and Rubin (1977)).

Because the LEnKF is able to sample from the filtering distribution for given

parameters, the EM algorithm can be conveniently used for parameter estimation.

A related work is that of Aicher et al. (2019), who simulates the filtering

distribution using a traditional sequential Monte Carlo algorithm. However, their

method lacks the necessary scalability for big-data problems.

An alternative way is to use an adaptive stochastic gradient MCMC algo-

rithm. Consider the model (3.2). If the propagator Ht or the observation noise

covariance matrix contains unknown parameters, then the parameters can be

estimated in a recursive way. In this case, the following step can be added to

Algorithm 2:
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(iv) Parameter updating: Update the parameters by recursion ϑt = (1 −
at)ϑt−1+atϕ(ϑt−1,x

a
t ), where ϑ denotes the vector of unknown parameters,

{at} is a prespecified, positive decreasing sequence satisfying the conditions∑
t at = ∞ and

∑
t a

2
t < ∞, xa

t = (xa1
t , . . . , xam

t ) denotes the ensemble of

samples at stage t, and ϕ(ϑt−1,x
a
t ) is a mapping to an estimate of ϑ based

on the ensemble xa
t .

Using the theory of stochastic approximation (Robbins and Monro (1951)),

the mapping ϕ(ϑt−1,x
a
t ) can be easily designed. With the parameter updating

step, the LEnKF becomes an adaptive stochastic gradient MCMC algorithm,

where the target distribution varies between iterations. The convergence of such

an adaptive algorithm can be studied in a similar way to Deng et al. (2019). Under

appropriate conditions, we can show that as t → ∞, ϑt converges to the true

parameters in probability, and xa
t converges weakly to the filtering distribution.

Finally, note that we can also use the state-augmentation approach for the

parameter estimation. However, this approach applies only when the resulting

covariance matrix Σt = (n/N)(I − KtHt) is still a constant matrix of the

augmented state variable. Otherwise, the weak convergence of xa
t to the filtering

distribution is no longer guaranteed.

5.2. Dynamic systems with non-Gaussian observations

In practice, we often encounter problems in which the response variable fol-

lows a non-Gaussian distribution, such as a multinomial or Poisson distribution.

The LEnKF can be extended to these problems by introducing a latent variable.

For example, consider an inverse problem for which the latent variable model can

be formulated as

z|y ∼ ρ(z|y), y = h(x) + η, η ∼ N(0,Γ), (5.1)

where z is the observed data following a non-Gaussian distribution ρ(·), y is

the latent Gaussian variable, and x is a parameter. To adapt the LEnKF to

simulate from the posterior distribution π(x|z), we need only add an imputation

step to Algorithm 2, between the forecast and the analysis steps. The imputation

step simulates a latent vector y from the distribution π(y|x, z) ∝ ρ(z|y)f(y|x).
Because the imputation leads to an unbiased estimate for the gradient of the

involved log-density function, the proposed extension is valid, and we can use it

to generate samples from the target posterior π(x|z). A further extension of this

algorithm to data assimilation problems is straightforward.

5.3. Dynamic systems with nonlinear measurement equations

As indicated by Algorithm 3, the LEnKF is a sequential preconditioned

SGLD sampler. At each stage, it aims to simulate from the posterior distribution

for a linear inverse problem using an appropriately designed prior distribution,
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for which the gradient of the log-density function is estimated based on the

samples simulated in the preceding stage. In the same vein, Algorithm 3 can be

extended to data-assimilation problems with nonlinear measurement equations,

for which we need only determine how the LEnKF can be used for nonlinear

inverse problems.

Consider the nonlinear inverse problem

y = G(z) + η, η ∈ N(0,Γ),

where y = (ỹT
1 , ỹ

T
2 , . . . , ỹ

T
B)

T , Γ = diag[V, V, . . . , V ] is a diagonal block matrix,

each block V is of size n × n, and N = Bn, for some positive constant B.

To reformulate the problem in the central dynamic system (1.1), we define an

augmented state vector by an n-vector γt:

xt = (zT , γT
t )

T , γt = Gt(z) + ut, ut ∼ N(0, αV ), (5.2)

where Gt(·) is the mean response function for a mini-batch of data drawn at

stage t, and 0 < α < 1 is a prespecified constant. In this paper, α is called the

variance-splitting proportion.

Let π(z) denote the prior density function of z, which is differentiable with

respect to z. The conditional distribution of γt is γt|z ∼ N(Gt(z), αV ), and the

joint density function of xt is then π(xt) = π(z)π(γt|z). Based on Langevin

dynamics, a system identical to (3.2) (in symbol) can be constructed for the

nonlinear inverse problem:

xt = xt−1 + ϵt
n

2N
∇x log π(xt−1) + wt

yt = Htxt + vt,
(5.3)

where wt ∼ N(0, (n/N)Qt), Qt = ϵtIp, and p is the dimension of xt; Ht = (0, I),

such that Htxt = γt; vt ∼ N(0, (1 − α)V ), which is independent of wt for all t;

and yt is a random draw from {ỹ1, ỹ2, . . . , ỹB}.
Using this formulation, the LEnKF can be easily extended to simulate from

the posterior π(z|y) for the nonlinear inverse problem. Using the variance-

splitting state-augmentation approach, in the same vein as Algorithm 3, the

LEnKF can be further extended to data-assimilation problems with nonlinear

measurement equations.

6. Conclusion

We have proposed the LEnKF as a scalable particle filter by reformulating the

EnKF under the framework of Langevin dynamics. The LEnKF is a sequential

preconditioned SGLD algorithm, but its execution is accelerated using a forecast-

analysis procedure. The LEnKF converges to the correct filtering distribution
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in terms of the 2-Wasserstein distance as the number of iterations per stage

increases. We can apply the LEnKF to state estimation for both inverse and

data-assimilation problems, and quantify the uncertainty of the states. The

LEnKF is not only scalable with respect to the state dimension and sample size,

but also tends to be immune to the sample degeneracy problem encountered by

conventional particle filters.

Supplementary Material

The online Supplementary Material presents the proofs of Theorem 1 and

Theorem 2, as well as additional numerical examples.
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