
Statistica Sinica 33 (2023), 1115-1142
doi:https://doi.org/10.5705/ss.202022.0046

HEAVY-TAILED DISTRIBUTION

FOR COMBINING DEPENDENT p -VALUES

WITH ASYMPTOTIC ROBUSTNESS

Yusi Fang1, Chung Chang2, Yongseok Park1 and George C. Tseng1

1University of Pittsburgh and 2National Sun Yat-sen University

Abstract: In statistics, researchers sometimes combine individual p-values to ag-

gregate multiple small effects. Recent advances in big data analysis have led to

methods that aggregate correlated, sparse, and weak signals. In this context, we

investigate a wide range of p-value combination methods, formulated as the sum

of p-values that are transformed using a broad family of heavy-tailed distributions,

namely, regularly varying distributions. Here, we also include the Cauchy and har-

monic mean tests. We explore the conditions under which a method of the family

is robust to dependency for type-I error control and possesses optimal power in

terms of the boundary used to detect weak and sparse signals. We show that only

an equivalent class of Cauchy and harmonic mean tests has sufficient robustness to

dependency, in a practical sense. We also propose an improved truncated Cauchy

method that belongs to the equivalent class with fast computation to address the

problem caused by the large negative penalty in the Cauchy method. We use

comprehensive simulations to verify our theoretical insights and provide practical

recommendations. Finally, we apply the truncated Cauchy method to data from a

neuroticism genome-wide association study to illustrate our theoretical findings in

the regularly varying distribution family and the advantages of the method.

Key words and phrases: Combining dependent p-values, global hypothesis testing,

p-value combination method, regularly varying distribution.

1. Introduction

Combining p-values to aggregate information from multiple sources is pop-

ular in the social sciences and biomedical research. Classical methods focus

on combining multiple independent and frequent signals to increase the sta-

tistical power, which can be viewed as a type of meta-analysis. Consider the

combination of n independent p-values, p = (p1, . . . , pn). Early methods used

T (p) =
∑n

i=1 g(pi) =
∑n

i=1 F
−1
U (1 − pi) to sum transformed p-values, where

the transformation g(p) is the inverse cumulative distribution function (CDF) of

a random variable U . Conventional methods in this category include Fisher’s
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method (Fisher (1934)) where T =
∑n

i=1−2 log(pi) and U is a chi-squared distri-

bution, and Stouffer’s method (Stouffer et al. (1949)) where T =
∑n

i=1−Φ−1(pi)

and U is a standard normal distribution, among others (Edgington (1972); Pear-

son (1933); Mudholkar and George (1979)). These methods use a classical meta-

analysis to combine independent and relatively frequent signals, and apply a light-

tailed distribution (i.e., tails thinner than an exponential function) for U . The

efficiency of such methods is mostly considered under the asymptotic framework

that the number of p-values n is fixed and sample size m used to derive each p-

value goes to infinity, where p = O(e−m) in most cases. Under this setting, it has

been shown that only the equivalent class of Fisher’s method is asymptotically

Bahadur optimal (ABO), meaning that the efficiency of the combined p-value

statistics is asymptotically optimal under fixed n and m→∞ (Littell and Folks

(1971)).

With the advent of big data, many studies now combine p-values with large

n. The seminal paper by Donoho and Jin (2004) established a framework for com-

bining p-values with weak and sparse signals, and proposed the higher-criticism

test with the asymptotically optimal property. This second category of methods

considers n → ∞, and only a small number s of the n p-values (s = nβ where

0 < β < 1/2) have weak signals (p = O(n−r/(log n)1/2) with 0 < r < 1), while all

remaining p-values have no signal (i.e., p
D∼ Unif(0, 1)). Under this setting, the

classical minimum p-value method (minP ) T = min1≤i≤n pi is asymptotically

optimal in terms of the detection boundary only for 0 < β < 1/4, whereas higher

criticism attains an optimal detection boundary for all possible 0 < β < 1/2.

Several methods, including the Berk-Jones test (Berk and Jones (1979); Li and

Siegmund (2015)), have subsequently been proposed to improve the finite-sample

power of higher criticism, while maintaining an optimal detection boundary.

All of the aforementioned methods were developed to combine independent

p-values. However, many modern large-scale data analyses need to combine a

large number of dependent p-values that have sparse and weak signals, which we

categorize as methods of the third category. A notable application is to combine

p-values of multiple correlated SNPs (there may be tens to hundreds or thou-

sands) in an SNP set (e.g., all SNPs in a gene region or in gene regions of a

pathway) in a genome-wide association study (GWAS). In this case, neighboring

SNPs often have unknown dependency structures, prompting efforts to extend

existing tests to account for dependency using permutations or other numeri-

cal simulation approaches (e.g., Liu and Xie (2019)). However, permutation or

simulation-based methods are not practical when n is large, and a precise p-value

is needed for multiple comparisons. The null hypothesis may also be difficult to
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simulate using a permutation. Barnett, Mukherjee and Lin (2017) developed an

analytic approximation for higher criticism that incorporated a dependency struc-

ture. However, the method is still computationally intensive and not sufficiently

accurate for the small p-values needed for multiple comparisons. Motivated by

these needs, Liu and Xie (2020) and Wilson (2019a) independently proposed the

Cauchy combination test (T =
∑n

i=1 tan{(0.5 − pi)π}) and the harmonic mean

combination test (T =
∑n

i=1 1/pi), respectively, to combine p-values under an

unspecified dependency structure. Wilson (2019a) also provided a convenient R

package called harmonicmeanp (function p.mamml) to implement the harmonic

test. A remarkable property of both methods is that the null distributions and

testing procedures derived from the independence assumption are robust under

a dependency structure in an asymptotic, but practical sense; see Section 3.1.

Motivated by this observation, we consider a rich family of test statistics that

includes the Cauchy and harmonic mean tests. More precisely, we consider the

test statistic

T =

n∑
i=1

g(pi) =

n∑
i=1

F−1U (1− pi),

where the transformation g(p) corresponds to U from a regularly varying distribu-

tion family, which is a broad family of heavy-tailed distributions. We investigate

the conditions required to achieve the practical robustness to dependency of the

Cauchy and harmonic mean methods. Note that selections of U in classical meta-

analysis settings (fixed n and m→∞) are all from thin-tailed distributions (e.g.,

chi-squared distribution for Fisher’s methods and the Gaussian distribution for

Stouffer’s method). This is reasonable, because a thin-tailed distribution pro-

duces contributions that are more even from marginally significant p-values in

meta-analyses of frequent signals. In contrast, the Cauchy and harmonic mean

methods correspond to heavy-tailed distributions of U , which focus on small p-

values and down-weigh marginally significant p-values. Figure 1 shows the trans-

formation function of g(p) in log-scale. For Fisher’s method, the contributions

of the p-values 10−2 and 10−6 to the test statistics are 4.6 and 13.8, respectively.

For heavy-tailed transformation methods, the contributions become 100 and 106

for the harmonic mean, and 31.82052 and 3.18 × 105 for the Cauchy method.

With an increased focus on small p-values, the methods are more powerful for

detecting sparse signals. Note that Vovk and Wang (2020) also considered the

sum of transformed p-values to combine p-values, and showed an upper bound

of the significance level inflation under an arbitrary dependence structure. The

comparison of our results with theirs is provided in the remark following Theorem
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2. Wilson (2019b), Wilson (2020), and Vovk, Wang and Wang (2022) also did

related work involving combining dependent p-values.

Throughout this paper, when we refer to a thin-tailed, heavy-tailed, or regu-

larly varying method, we mean that its corresponding U is a thin-tailed, heavy-

tailed, or regularly varying distribution. The remainder of the paper is structured

as follows. We first investigate the Box-Cox transformation for g(p) in Section

2, which is equivalent to a Pareto distribution for U . In Section 2.1, we dis-

cuss existing methods, including the minP , harmonic mean, Cauchy, and Fisher

methods in this framework. In particular, we show that the Cauchy method

is approximately equivalent to the harmonic mean method, which is a special

case of the Box-Cox transformation. In Section 2.1, we observe that the Cauchy

method may suffer from a large negative penalty for p-values close to one. To

avoid this problem, we improve the Cauchy method by introducing a new test,

called the truncated Cauchy method, and develop a fast computing algorithm

for it. In Section 3, we introduce a family of heavy-tailed distributions, namely,

regularly varying distributions, and investigate the conditions in the family that

provide robustness for the dependency structure, as in the Cauchy and harmonic

mean methods (Sections 3.1 and 3.2). Section 3.3 studies the power of the fam-

ily of methods in terms of the detection boundary under the sparse and weak

alternatives considered in Donoho and Jin (2004). Section 4 contains extensive

simulations that demonstrate the type-I error control and power of various meth-

ods. Here, we also verify the theoretical results numerically. In Section 5, we

apply the proposed method to data from a GWAS application of neuroticism to

compare the performance of the methods and demonstrate the improvement of

the truncated Cauchy method over the Cauchy method. Section 6 concludes the

paper.

2. Connection between minP, Harmonic Mean, Cauchy, and Fisher

2.1. Using a Pareto distribution to connect four existing methods

As mentioned in Section 1, many methods of the first category combine in-

dependent and relatively frequent signals from thin-tailed distributions for U ,

and many methods of the second and third categories for combining sparse and

weak signals, respectively, use heavy-tailed distributions. In this subsection, we

consider a Pareto distribution for U , which is equivalent to a Box-Cox trans-

formation for g(p). Based on this transformation family, we connect four exist-

ing methods: minP , harmonic mean, Cauchy, and Fisher. The insights gained

from the Pareto distribution also help when we introduce the regularly varying
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distribution as an extended richer family in the next section. Finally, we prove

the approximate equivalency of the harmonic mean and Cauchy combination

methods. Consider the following family of p-value combination methods: T =∑n
i=1 g(pi), where g(p) = 1/pη, for some η > 0. We can show that g(p) =

F−1U (1− p), such that U
D∼ Pareto(1/η, 1). In other words, P (U > t) = t−1/η for

t > 1, which means U is a heavy-tailed distribution. A larger η corresponds to a

heavier tail. In particular, the harmonic mean method corresponds to η = 1

in the Pareto distribution. Note that by denoting λ = −η, we can rewrite

h(p;λ) = (g(p; η)− 1)/λ = (pλ − 1)/λ, which is the Box-Cox transformation.

Proposition 1 shows that minP and Fisher are limiting cases in the Pareto dis-

tribution when η → +∞ and when η → 0, respectively. Proposition 2 shows

that the Cauchy combination method is approximately identical to the harmonic

mean for relatively small p-values.

Proposition 1. For fixed n, minP is a limiting case in the Pareto distribution

when η →∞. Similarly, Fisher’s method is a limiting case of Pareto when η → 0.

Proof. Denote Tγm =
∑n

i=1 1/pγmi =
∑n

i=1 1/pγm(i) , where p(i) are ordered p-

values. Note that Tγm is equivalent to T ∗γm = (
∑n

i=1 1/pγmi )1/γm = (1/p(1))

(
∑n

i=1(p(1)/p(i))
γm)1/γm . As γm → ∞, T ∗γm → 1/p(1), which is equivalent to

minP .

To prove the result for Fisher’s method, note that Tγm is equivalent to T ∗∗γm =∑n
i=1(p

−γm
i − 1)/−γm. By L’Hospital’s rule , we have limγm→0(p

−γm − 1)/−γm =

log(p). Hence, T ∗∗γm →
∑n

i=1 log(pi) almost surely, and is equivalent to Fisher’s

method.

Proposition 2. The Cauchy combination test is approximately identical to the

harmonic mean for relatively small p-values, in the sense that (π · g(CA)(p) −
g(HM)(p))/g(HM)(p) = O(p2).

Proof. By Taylor’s expansion, g(CA)(p) = tan {(0.5− p)π} ≈ 1/πp − πp/3 −
(πp)3/45 + · · · . The result follows immediately. Chen et al. (2023) also showed a

similar result.

It is somewhat surprising that even though the forms of the Cauchy and

harmonic mean transformations are different, they are approximately equivalent

when p is small. Furthermore, the behavior of both when p is small is charac-

terized by the index η = 1 of the Box-Cox transformation (note that these two

transformations behave differently when p is close to one). It is natural to ask

whether other methods exist for combining p-values in an extended rich heavy-

tailed distribution family that enjoy a similar finite-sample robustness property
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Figure 1. Comparison of transformations. We show six transformations of p-values, g(p),
i.e., BC0.5, BC1 (HM), BC1.5, CA, Fisher, and Stouffer. The x-axis is − log(p), and
the y-axis shows log(g(p)).

to that of the Cauchy and harmonic mean methods. To answer this question, we

introduce a family of regularly varying distributions, and investigate its properties

in Section 3.

Figure 1 shows a minus log-scaled p transformation g(p) versus a minus log-

scaled transformation g(p) for BC0.5 (i.e., Box-Cox transformation with η = 0.5),

HM (the harmonic mean method, equivalent to BC1), CA (the Cauchy method),

BC1.5, Fisher’s method and Stouffer’s method. We find that as η increases,

smaller p-values become more dominant and the effect of marginally significant

p-values rapidly diminishes, yielding stronger power for sparse signal applications.

CA and HM are approximately proportional when p is sufficiently small (roughly

when p < 10−2).

Although HM and CA are approximately equivalent when combining rela-

tively small p-values, when a p-value is very close to one, the contribution in the

Cauchy method is close to negative infinity, which can cause numerical issues and

substantial power loss; we refer to this as the “large negative penalty issue” in

relation to the Cauchy method. A p-value close to one happens often in tests of

discrete data, in which case, the p-values under the null hypothesis may not nec-

essarily be Unif(0, 1). The p-values may also be close to one when n is large or

when the model used to derive the p-values is misspecified. As a simple remedy,

we propose a truncated Cauchy test (CAtr) that truncates any of the n p-values
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greater than 1 − δ to be 1 − δ. For example, when δ = 0.01, we have ptr = p if

p < 0.99, and ptr = 0.99 if p ≥ 0.99. We recommend using δ = 0.01. Concep-

tually, δ should be sufficiently large so that it avoids the large negative penalty

issue in Cauchy. However, for computational purposes, it cannot be too large,

or the approximation by our fast-computing procedures may not be accurate. A

detailed justification for choosing δ = 0.01, with support from simulation results,

is given in the Supplementary Material, Section S2.4. The proposed method can

also be viewed as a sum of transformed p-values. Indeed, the CAtr statistic can

be written as

TCAtr =

n∑
i=1

tan

(
π

(
1

2
− pi

))
1(pi < 1− δ) + tan

(
π

(
δ − 1

2

))
1(pi ≥ 1− δ).

For more details on CAtr, see the Supplementary Material, Section S2.

3. Asymptotic Properties of Regularly Varying Methods for p-value

Combination

3.1. Disbributions with regularly varying tails

Before introducing the regularly varying distributions, we first define some

notations. Throughout this paper, denote by F̄ the survival function of the

distribution F (i.e., F̄ (t) = 1 − F (t), for any t). The limits and asymptotic

properties are assumed to be for t→∞, unless stated otherwise. For two positive

functions u(·) and v(·), we write u(t) ∼ v(t) if limt→∞ u(t)/v(t) = 1. In addition,

if limt→∞ u(t)/v(t) > 1, we write u(t) & v(t), and if limt→∞ u(t)/v(t) < 1, we

write u(t) . v(t). A distribution with a regularly varying tail is defined as follows:

Definition 1. A distribution F is said to belong to the family of distributions

with regularly varying tails with index γ (denoted by F ∈ R−γ) if

lim
x→∞

F̄ (xy)

F̄ (x)
= y−γ ,

for some γ > 0 and all y > 0.

We denote the family of distributions with regularly varying tails as R. Then,

we can show that every distribution F belonging to R−γ can be characterized by

F̄ (t) ∼ L(t)t−γ ,

where L(t) is a slowly varying function (Karamata (1933)). A function L is called

slowly varying if limy→∞ L(ty)/L(y) = 1, for any t > 0. Some examples of slowly
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varying functions L(t) are 1, ln(t)ν , and ln(ln(t)). Given the property of a slowly

varying function L(t), the tail of a regularly varying distribution converges to

zero at a relatively slow rate, which leads to the heavy-tailed property.

The family of distributions with regularly varying tails includes the Pareto

distribution, Cauchy distribution, log-gamma distribution, and inverse gamma

distribution. Indeed, the survival function of Pareto(a,b) is F̄ (t) = b/ta, t > b,

and hence U ∈ R−a. In addition, the survival function of the Cauchy distribution

is F̄ (t) ∼ 1/tπ, and therefore U ∈ R−1.
An important property of distributions with regularly varying tails is as

follows: Assume U1, . . . , Un are independent and identically distributed (i.i.d.)

random variables with distribution function F ∈ R−γ . Then,

P (U1 + · · ·+ Un > t) ∼ nP (U1 > t). (3.1)

3.2. Asymptotic tail probability approximation and robustness to de-

pendence

The first theorem approximates the null distribution of the test statistic.

Assume that the p-values are obtained from z-scores; that is, the test statistics

all follow normal distributions. Specifically, let X = (X1, . . . , Xn) be the random

vector (z-scores) for the n test statistics. The mean of X is µ = (µ1, . . . , µn)

and the correlation matrix is Σ. Because we can always rescale test statistics, we

assume each Xi has variance one. Under the null hypothesis, H0 : µi = 0,∀i =

1, . . . , n; hence, the p-value for the ith study is pi = 2(1−Φ(|Xi|)), for i = 1, . . . , n.

We consider the test statistic T (X) =
∑n

i=1 g(pi) =
∑n

i=1 g(2(1 − Φ(|Xi|))),
which is the sum of transformed p-values. When pi

D∼ Unif(0, 1) under the null

hypothesis, g(pi) is a random variable, where we denote g(pi)
D∼ U , which is

consistent with the previously introduced relationship g(pi) = F−1U (1− pi) when

U is a continuous random variable. We further assume the following conditions

for T (X):

(A1) ∀1 ≤ i < j ≤ n, Xi and Xj are bivariate normally distributed.

(A2) Let Ui = g(pi), for i = 1, . . . , n, with Ui
D∼ U ∈ R−γ underH0. Assume that

the function g(p) is continuous and satisfies one of two situations: (A2.1)

g(p) is strictly decreasing in (0, 1); (A2.2) g(p) is bounded below (i.e., g(p) >

c′, for a certain constant c′) and is strictly decreasing in (0, c), for some

constant 0 < c < 1.



COMBINING p-VALUES WITH HEAVY-TAILED DISTRIBUTION 1123

(A3) (balance condition) Under H0, let F be the CDF of U and G(t) = P (|U | >
t) = t−γL(t), where L(t) is a slowly varying function. Assume F̄ (t)/G(t)→
p and F (−t)/G(t)→ q as t→∞, where 0 < p ≤ 1 and p+ q = 1.

Condition (A1) is mild and is also assumed in Liu and Xie (2020) when inves-

tigating the robustness of the Cauchy method under an unspecified dependence

structure. Throughout this paper, the term “unspecified dependence structure”

indicates an unspecified Gaussian correlation structure. This condition guaran-

tees that the tail distributions of each pair of Ui and Uj are asymptotically tailed

independent; see the precise definition of asymptotically tailed independence for

a pair of random variables in the Supplementary Material, Section S1.

Condition (A2) includes the Box-Cox transformation (satisfying A2.1),

Cauchy transformation (satisfying A2.1), and truncated Cauchy transformation

(satisfying A2.2) introduced in Section 2.1. Condition (A3) is called the “bal-

ance condition”, and is a common condition for random variables with regularly

varying tails (Goldie and Klüppelberg (1998)). For example, for the harmonic

mean method, p = 1 and q = 0, for the Cauchy method, p = q = 1/2, and for

the truncated Cauchy method, p = 1 and q = 0.

Theorem 1. Under conditions (A1), (A2), and (A3) and assuming ρij , for1 ≤
i < j ≤ n, the (i, j)th element of Σ satisfies −1 < ρij < 1. Then, under

H0 : µ = 0 and for any correlation matrix Σ, we have

P (T (X) > t) ∼ nP (U > t).

Here, T (X) =
∑n

i=1 Ui is the sum of correlated random variables with reg-

ularly varying tails. The theorem is somewhat surprising and a general result,

because it applies to any regularly varying method and any correlation structure

Σ with −1 < ρij < 1, as long as no perfect correlation exists. This theorem is

related to Theorem 3.1 in Chen and Yuen (2009), i.e., Lemma S2 in the Sup-

plementary Material. Roughly speaking, because of the heaviness of the tail of

each Ui and the asymptotic, tailed independence between each pair of Ui and

Uj , asymptotically, the correlation structure has limited influence on the tail of

T (X). Because the approximated tail probability is independent of Σ, an im-

mediate application is to derive the p-value of a regularly varying method under

the independence assumption (i.e., P (U1 + · · · + Un > t), with i.i.d. U1, . . . , Un;

see Equation (3.1)). The theorem is asymptotically robust to an unspecified

dependence structure, as shown for the harmonic mean and Cauchy methods

(Wilson (2019a); Liu and Xie (2020)). Alternatively, one may approximate the

tail probability by nP (U > t). However, note that the robustness to an unspeci-
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fied dependence structure is in an asymptotic sense, meaning that we may require

an extremely large t (corresponding to an extremely small test size α) for differ-

ent tail heaviness in U and correlation structures in order to guarantee a good

approximation. Throughout this paper, we approximate P (U1 + · · · + Un > t)

under a dependence structure by calculating P (U1 + · · · + Un > t) under the

independence assumption using a Monte Carlo simulation.

Below, we perform a simple simulation to demonstrate and investigate The-

orem 1. Assume n = 3, and X = (X1, X2, X3) is multivariate normal with unit

variance and common pairwise correlation ρij = ρ (1 ≤ i < j ≤ 3). In this

simulation, we set ρ = 0, 0.3, 0.6, 0.9, and 0.99. Here, we consider seven Box-Cox

tests, BC0.75, BC0.8, BC0.9, BC1, BC1.1, BC1.25, and BC1.5. From Theorem 1,

we calculate y(α) = nP (U > tα)/P (T (X) > tα) from simulations, where tα is

chosen so that P (T (X) > tα) = α and α = 10−2, 10−3, 10−4, 10−5. We expect

limtα→∞ log (y(α)) = 0 when −1 < ρ < 1. Figures 2A-2E show log10-scale α

on the x-axis and the mean log (y(α)) on the y-axis for different ρ =(0, 0.3, 0.6,

0.9, 0.99). Note that as ρ increases, a smaller α will be required for a good ap-

proximation. Theorem 2 further characterizes what would happen if some of the

p-values have perfect correlations ρij = 1 or −1.

Theorem 2. Suppose conditions (A1), (A2), and (A3) in Theorem 1 hold. Define

an arbitrary weight vector w = (w1, . . . , wn) ∈ Rn+, Tn,w(X) =
∑n

i=1wig(pi).

Furthermore, assume ρij = 1 or − 1 for 1 ≤ i < j ≤ m, and |ρij | < 1 for i > m

or j > m. Then, under the null hypothesis H0 : µ = 0, we have

P (Tn,w (X) > t) ∼

{(
m∑
i=1

wi

)γ
+

n∑
i=m+1

wγi

}
P (U > t).

Note that Theorem 2 is a more general result, of which Theorem 1 is a special

case. Consider a special scenario w = (1, . . . , 1). An immediate consequence of

Theorem 2 is that only when γ = 1 (e.g., the HM , CA, or CAtr method) can

satisfy {(
∑m

i=1wi)
γ +

∑n
i=m+1w

γ
i } = mγ + (n − m) = n, which produces the

asymptotic robustness of Theorem 1. In other words, Figures 2A-2E already show

a hint that the convergence of Theorem 1 becomes increasingly difficult when ρ

increases to almost one. When some of the p-values have perfect correlation,

only index γ = 1 of the regularly varying distribution is asymptotically robust to

an unspecified dependence structure. Figure 2F shows a simulation with ρ = 1,

which satisfies the condition of Theorem 2. By assuming w1 = w2 = w3 = 1

and ρ = 1, we have P (Tn,w (X) > t) ∼ 3γP (U > t). Figure 2F verifies Theorem

2 that only BC1 can reach the convergence limtα→∞ log (y(α)) = 0, showing
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(F) Box-Cox transformations(BC) for r=1
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(H) Log-gamma(LG) for r=1

Figure 2. The mean log-scaled y(α) for Box-Cox transformations, inverse gamma and
log-gamma across different significance levels α. (A)-(F) represent the results of Box-Cox
transformations with values of η = 0.75, 0.8, 0.9, 1, 1.1, 1.25, 1.5 for correlation level
ρ =0, 0.3, 0.6, 0.9, 0.99, and 1, respectively. (G) represents the results of the inverse
gamma with shape parameter one and scale parameter values 0.75, 0.8, 0.9, 1, 1.1, 1.25,
1.5, for correlation level ρ = 1. (H) represents the results of the log-gamma with rate
parameter one and scale parameter values 0.75, 0.8, 0.9, 1, 1.1, 1.25, 1.5, for correlation
level ρ = 1. The x-axis is the negative logarithm of significance level α to base 10, where
α is set to 10−2, 10−3, 10−4, 10−5, and the red dash line is the reference line log(y(α)) = 0
in all sub-figures.

robustness to perfect correlation. Although Figure 2E (ρ = 0.99) and Figure 2F

(ρ = 1) are visually similar, all BC methods in Figure 2E eventually converge
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to zero as α → 0, by Theorem 1, although very slowly. On the other hand, in

Figure 2F, only BC1 converges to zero, by Theorem 2.

Corollary 1. Suppose the conditions in Theorem 2 hold and assume
∑n

i=1wi =

n, then we have 
P (Tn,w(X) > t) ∼ nP (U > t) if γ = 1,

P (Tn,w(X) > t) & nP (U > t) if γ > 1,

P (Tn,w(X) > t) . nP (U > t) if γ < 1.

From Corollary 1, note that when w1 = · · · = wn = 1 and the transformation

g(p) = 1/p1/γ , the test statistic Tn,w corresponds to the statistic BCη, η = 1/γ.

Hence, the BC tests with η < 1 (i.e., γ > 1) are anti-conservative in this situation;

the higher the value of γ, the more anti-conservative the test is. This is verified

by Figure 2F for BC0.9, BC0.8, and BC0.75 when ρ = 1. As η → 0 (i.e., γ →
∞), BCη is asymptotically equivalent to Fisher’s method, and is the most anti-

conservative under dependence. On the other hand, for η > 1 (i.e., γ < 1),

all the corresponding tests BCη (η > 1) are conservative under this dependence

structure, which is confirmed by Figure 2F for BC1.1, BC1.25, and BC1.5. In

particular, when η →∞ (γ → 0), BCη becomes minP , which hence is expected

to be very conservative. Figures 2G and 2H verify that because the inverse

gamma and log-gamma are also regularly varying distributions with index γ = 1,

they enjoy an asymptotic robustness to the correlation structure, similar to that of

HM (BC1) and Cauchy, even when perfect correlation exists. Another important

implication of this corollary is that among all the tests that use transformations

of regularly varying distributions, only the type-I errors of those corresponding

to γ ≤ 1 are well preserved asymptotically (i.e., tests that are at least not anti-

conservative asymptotically) under any correlation structure.

Corollary 2. If we further assume −1 < ρi,j < 1, ∀1 ≤ i < j ≤ n (i.e., m = 0),

then we have

P (Tn,w > t) ∼
n∑
i=1

wγi P (U > t).

Corollary 2 shows that the tail probability of the weighted test statistic Tn,w
can be approximated by

∑n
i=1w

γ
i P (U > t). Similarly to the unweighted version

in Theorem 1, because the approximation in Corollary 2 is independent of the

correlation structure, P (Tn,w(X) > t) under the dependence structure can be

approximated by calculating P (w1U1 + · · ·+ wnUn > t) under the independence

assumption using a Monte Carlo simulation, as long as there are no perfect cor-

relations between Ui. Furthermore, note that this formula can be considered an
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extension of Corollary 1.3.8 in (Mikosch (1999)), in which U1, . . . , Un are assumed

to be independent regularly varying distributed random variables.

Remark 1. Note that the robustness property of Theorems 1 and 2 is similar to

(Liu and Xie (2020); Wilson (2019a)) and describes only the asymptotic behavior

of the tail probability of our proposed family. Indeed, the results of Theorems

1 and 2 guarantee only that the type-I errors of the corresponding tests (γ = 1,

equivalent to the harmonic mean and Cauchy) can be well controlled for a small

size α, given fixed n and Σ. Intuitively, as n increases, a more stringent cutoff

corresponding to a small α is needed to ensure the robustness of type I error

control. An ideal robustness property for the type-I error should achieve a uniform

upper tail bound in the sense of P (T (X) > tα) ≤ c · α under any dependence

structure Σ, where tα is the tail threshold when a nominal α is controlled under

the independence assumption, c is independent of n, and Σ is in a reasonable

magnitude (e.g., c = 1.5, meaning the inflation of the type-I error is at most

50%, in the worst scenario). However, this uniform bound is not achievable, in

general. Vovk and Wang (2020) recently provided a remarkable uniform bound

for arbitrary dependency structure (note that ours is an unspecified dependency

structure), but dependent on n for the HM method:

P (HM > t) ≤ naHMn P (U > t) =
naHMn
t

,where U
D∼ Pareto(1, 1),

where the adjusted factor αHMn is between log(n) and e · log(n) (see Proposition 6

in Vovk and Wang (2020)). However, this bound is not practical in general appli-

cations because, considering n = 100 or 1000, the inflation bound αHMn ≥ log(n)

is at least 4.6- or 6.9-fold greater. Furthermore, the factor αHMn is comparable

with the type-I error in the case of a perfect correlation (i.e., ρ = 1), instead

of the nominal size α under independence. On this issue, Goeman, Rosenblatt

and Nichols (2019) pointed out an extreme case that when n = 105 and Σ has

exchangeable correlation ρ = 0.2, HM has a more than threefold type-I error

inflation (true type-I error = 0.164 under nominal α = 0.05). In Section 4.1, we

perform extensive simulations for a wide range of n and size α to investigate the

limitation and develop practical guidance for applying the HM method.

The discussion above indicates that with a mild normality assumption, the

upper bound for the inflation of type-I errors is much smaller than that under

an arbitrary dependence structure. This is especially useful, because using a

smaller upper bound of the inflation of type I errors to adjust the significance

level increases the power of the test. Furthermore, based on Theorem 2 and
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simulations, we can develop a practical guideline to adjust the significance level

for the HM test (η = 1), and for any test that is a sum of transformations by a

distribution with a regularly varying tail, including any BCη test.

3.3. Detection boundary of regularly varying methods

In this subsection, we investigate the power of regularly varying methods by

deriving the detection boundary of the test T (X) under sparse alternatives as

n→∞ (Theorem 3), which is a popular measurement of power performance when

detecting weak and sparse signals. Below, we introduce the standard setup of

weak and sparse signals by Donoho and Jin (2004), which we refer to in Theorem

3.

Consider testing the null hypothesis H0 : µ = (µ1, . . . , µn) = ~0 for the

bivariate normalX. For the alternative, we consider the conventional “weak” and

“sparse” signals setting in Donoho and Jin (2004) by assuming a small number of

the n signals are nonzero with |µi| =
√

2τ log(n), for i ∈ S = {1 ≤ i ≤ n : µi 6= 0}
with |S| = s and 0 < τ < 1, and the rest µi = 0, for i ∈ Sc. In addition, the

sparsity of the signals is of order s = nβ, with 0 < β < 1/2.

Under the above setup, for any fixed value of β, a larger value of τ makes

it easier for a method to detect the existence of signals. Indeed, for any given

β ∈ (0, 12), Donoho and Jin (2004) reported a threshold effect of τ ; the sum of

the type-I and type-II errors of a method tends to be zero or one depending on

whether τ exceeds the detection boundary ρ(β) or not.

For Theorem 3, in addition to the setup of Donoho and Jin (2004) and

conditions (A2) and (A3), we need two additional conditions:

Condition (C1) We assume X
D∼ N(µ,Σ) and that Σ is a banded correlation

matrix; i.e., its (i, j)th element ρij = 0, for any |i−j| > d0, for some positive

constant d0 > 0.

Condition (C2) There exist h ≥ 0 and t1 > 0 such that

1

tγ(ln(t))h
≤ F̄ (t) ≤ (ln(t))h

tγ
,

for all t > t1.

Condition (C2) is for the tail probability of Ui and is a mild condition because

F̄ (t) = P (Ui > t) = L(t)/tγ (L(t) is a slowly varying function). This condition

holds for all commonly used distributions with regularly varying tails with index

γ. In the Supplementary Material, we show that the BC, Cauchy, and truncated

Cauchy methods all satisfy Condition (C2).
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Theorem 3. Under conditions (A2), (A3), (C1), and (C2), for any 0 < γ ≤ 1,

any significance level 0 < α < 1, and τ satisfying
√
τ +
√
β > 1, then under the

alternative hypothesis, we have

lim
n→∞

P (T (X) > tα) = 1,

where tα is the p-value cutoff. That is, the detection boundary for T (X) is ρ(β) =

(1−
√
β)2.

Remark 2. Under the same conditions of Theorem 3, one can show that for

Tn,w =
∑n

i=1wig(pi) with w ∈ Rn+ and
∑n

i=1wi = n, if maxiwi ≤ (log n)η1 and

miniwi ≥ 1/(log n)η2 for some fixed constants η1, η2 > 0, the result of Theorem

3 still holds. See the Supplementary Material, Remark S6 for more details.

Theorem 3 states that the power of this test T (X) converges to one for any

significance level α > 0 and 0 < γ ≤ 1, or equivalently, that the sum of the

Type-I and Type-II errors goes to zero, given the setup. Moreover, Theorem 3

implies that the methods with 0 < γ ≤ 1 attain the optimal detection boundary

defined in Donoho and Jin (2004) in the strong sparsity situation 0 < β < 1/4.

Liu and Xie (2020) showed a similar result for their proposed Cauchy test. As

discussed in Section 2, the Cauchy distribution has a regularly varying tail with

index γ = 1. This theorem is valid for methods of distributions with regularly

varying tails with index 0 < γ ≤ 1. Therefore, this theorem can be considered a

generalization of Theorem 3 in Liu and Xie (2020).

4. Simulations

In this section, we perform simulations to compare the robustness of different

p-value combination methods under varying correlation levels between p-values in

order to verify the theoretical results presented in Sections 2 and 3. We include

the seven methods discussed in Section 2, minP , BC1.25, CA, CAtr, HM(BC1),

BC0.75, and Fisher’s method, as well as HC (Higher criticism) and BJ (Berk-

Jones test). Section 4.1 first evaluates the type-I error control of the methods

under independence and varying levels of correlation to verify the robustness of

the HM and Cauchy methods. Furthermore, because the robustness in Theo-

rem 2 for HM and Cauchy is an asymptotic result, we further investigate the

type-I error control for HM under a wide range of n, ρ, and γ to ensure that

the robustness of HM and Cauchy is preserved and useful in a practical sense.

Section 4.2 assesses the statistical power under different dependency structures

and sparsity of signals in the alternative hypothesis. In Section 4.3, we evaluate
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Table 1. Type-I errors for nine tests: Fisher, CA, CAtr (truncated Cauchy), BC0.75,
BC1 (HM), BC1.25, minP , HC, and BJ , across correlation level ρ =0, 0.3, 0.6, 0.9,
0.99.

Method/Correlation ρ=0 ρ=0.3 ρ=0.6 ρ=0.9 ρ = 0.99

Fisher 0.0010 0.1160 0.1960 0.2483 0.2610

BC0.75 0.0010 0.0016 0.0031 0.0041 0.0043

CA 0.0010 0.0011 0.0013 0.0011 0.0010

CAtr 0.0010 0.0011 0.0013 0.0011 0.0010

BC1 (HM) 0.0010 0.0011 0.0013 0.0011 0.0010

BC1.25 0.0010 0.0010 0.0009 0.0005 0.0004

minP 0.0010 0.0010 0.0007 0.0002 0.00003

HC 0.0010 0.0012 0.0047 0.0173 0.0227

BJ 0.0010 0.0850 0.1744 0.2506 0.2712

the improvement of the truncated Cauchy method over the Cauchy method in a

discrete data simulation.

4.1. Type-I error control

In this subsection, we first simulate n = 100, X = (X1, . . . , Xn)
D∼ N(0,Σ),

pi = 2(1 − Φ(|Xi|)), and T =
∑n

i=1 g(pi) for the various methods. We further

assume that Σ has unit variance on the diagonal line, and is exchangeable with the

common correlation ρ = cor(Xi, Xj), for 1 ≤ i 6= j ≤ n, where ρ is evaluated at 0

(independence), 0.3, 0.6, 0.9, and 0.99. Table 1 shows the type-I errors of the nine

methods with different levels of correlations at α = 0.001 using 106 simulations

under the null hypothesis. As expected, all methods control the type-I error

perfectly under the independence assumption (i.e., ρ = 0). When correlations

exist between p-values, we find that minP is the most conservative in terms of

the type-I error control, followed by BC1.25, as expected from the theoretical

result in Corollary 1. CA, CAtr, and HM exhibit perfect type-I error control in

all correlation settings, showing robustness to the dependency structure. Fisher

and BJ are the most anti-conservative methods in the presence of correlation,

followed by slight anti-conservativeness for HC and BC0.75.

Note that according to Theorems 1 and 2 for regularly varying distribu-

tion transformation, the tail probability P (T (X) > t) under dependence can

be asymptotically approximated by that under independence. However, the

asymptotic result guarantees only the dependence robustness for very large t

(or equivalently very small α). We also expect that larger n will require a larger
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t (smaller α) to ensure a good approximation. Specifically, Goeman, Rosenblatt

and Nichols (2019) noted that with ρ = 0.2 and n = 105, the much inflated

type-I error of 0.164 is obtained for size α = 0.05. Therefore, it is of interest to

explore the robustness property of T (X) for dependence in HM for varying n, α,

and ρ in order to provide practical guidance in real applications. In Table 2, we

extend the simulation for HM with n = (25, 50, 100, 500, 1000, 2000, 10000), α =

(0.05, 0.01, 0.001, 0.0001), and ρ = (0, 0.3, 0.6, 0.9, 0.99). Given each combination

of α and n, we calculate the maximum percent of inflation (PI) across different

ρ, which is defined as PI = (maxρ type-I error− α)/(α). The result confirms the

theoretical result that a larger n generates greater type-I error inflation under

dependence for a fixed α, and requires a much smaller α to improve the type-I

error inflation. For example, when α = 0.01, we have PI = 30% for n = 25,

compared with PI = 80% for n = 10000. On the other hand, when n = 10000,

PI decreases from 80% to 49% when α decreases from 0.01 to 0.0001. In general,

this result shows robust type-I error control under varying correlation levels, in

a practical sense, when n ≤ 1,000 and α ≤ 0.05 with the maximum PI = 50%,

which inflates type I error from α = 0.01 to 0.015 at n = 1000 and ρ = 0.3.

Even when n increases to 10,000, PI only minimally increases to 80%. When

multiple comparisons are needed, such as in GWAS applications, a small α is

targeted, and HM achieves robust type-I error control, in general, in a practical

sense. However, if a single test is performed with a very large n, we need to be

careful with the type-I error inflation (e.g., type-I error is 0.072 for α = 0.05 when

n = 10000 and ρ = 0.3).

4.2. Statistical power

In this subsection, we follow the simulation setting in Section 4.1 to evaluate

the statistical power of the methods under different values of correlation ρ and

strengths of the signal. Following the sparse and weak signal setting in Donoho

and Jin (2004), we design the n signals µ = (µ1, . . . , µn) to contain n− s with no

signal (µs+1 = · · · = µn = 0), and the first s to have nonzero signals µ1 = · · · =
µs = µ0 =

√
4 log(n)/s0.1, where s/n = (5%, 10%, 20%). We first compare the

power of the methods under varying correlations, where the rejection threshold is

obtained from the independence assumption, and is uncorrected for dependence.

Furthermore, we compare the power of the methods, where the rejection threshold

is corrected with precise type-I error control under dependency. Note that the

correction applies only in simulations, and is not accessible, in general, without

applying extensive permutation tests or simulation-based methods.
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Table 2. Type-I error control of HM evaluated for the total number of p-values n = 25,
50, 100, 500, 1000, 2000, 10000 and ρ = 0, 0.3, 0.6, 0.99 for different sizes of test α =
0.05, 0.01, 10−3, and 10−4. We also calculate the percent of inflation (PI) to reflect the
extent of inflation of the type-I error under various cases, given n and α. PI is defined
as PI = (maxρ type I error− α)/α.

n ρ α = 0.05 α = 0.01 α = 10−3 α = 10−4

ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.058 0.012 1.06× 10−3 1.01× 10−4

25 ρ = 0.6 0.061 0.013 1.19× 10−3 1.11× 10−4

ρ = 0.9 0.052 0.011 1.09× 10−3 1.08× 10−4

ρ = 0.99 0.048 0.010 1.00× 10−3 9.93× 10−5

PI 22% 30% 20% 11%

ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.057 0.012 1.08× 10−3 1.02× 10−4

50 ρ = 0.6 0.053 0.012 1.23× 10−3 1.15× 10−4

ρ = 0.9 0.041 0.010 1.08× 10−3 1.09× 10−4

ρ = 0.99 0.038 0.010 9.99× 10−4 1.01× 10−4

PI 14% 20% 23% 15%

ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.06 0.012 1.12× 10−3 1.04× 10−4

100 ρ = 0.60 0.053 0.013 1.29× 10−3 1.22× 10−4

ρ = 0.9 0.040 0.010 1.09× 10−3 1.10× 10−4

ρ = 0.99 0.037 0.010 1.00× 10−3 1.01× 10−4

PI 20% 30% 29% 22%

ρ = 0 0.05 0.010 1× 10−3 1× 10−4

ρ = 0.3 0.065 0.014 1.20× 10−3 1.07× 10−4

500 ρ = 0.6 0.052 0.013 1.39× 10−3 1.32× 10−4

ρ = 0.9 0.038 0.010 1.10× 10−3 1.11× 10−4

ρ = 0.99 0.035 0.010 9.94× 10−4 1.01× 10−4

PI 30% 40% 39% 32%

ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.068 0.015 1.26× 10−3 1.08× 10−4

1,000 ρ = 0.6 0.052 0.014 1.42× 10−3 1.35× 10−4

ρ = 0.9 0.037 0.010 1.08× 10−3 1.09× 10−4

ρ = 0.99 0.034 0.010 9.94× 10−4 1.00× 10−4

PI 36% 50% 42% 35%

ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.069 0.016 1.31× 10−3 1.12× 10−4

2,000 ρ = 0.6 0.051 0.018 1.46× 10−3 1.40× 10−4

ρ = 0.9 0.036 0.010 1.09× 10−3 1.11× 10−4

ρ = 0.99 0.033 0.009 9.93× 10−4 1.01× 10−4

PI 38% 80% 46% 40%

ρ = 0 0.05 0.01 1× 10−3 1× 10−4

ρ = 0.3 0.072 0.018 1.48× 10−3 1.25× 10−4

10,000 ρ = 0.6 0.049 0.014 1.50× 10−3 1.49× 10−4

ρ = 0.9 0.034 0.010 1.07× 10−3 1.12× 10−4

ρ = 0.99 0.031 0.009 9.79× 10−4 1.01× 10−4

PI 44% 80% 50% 49%
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Table 3. Mean uncorrected power for tests CA, CAtr (truncated Cauchy), HM , BC1.25,
and minP across correlation ρ = 0, 0.3, 0.6, 0.9, 0.99 and proportion of signals s/n =
5%, 10%, 20%. The standard error is far less than the mean power, and hence is not
shown here.

s/n Methods ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0.99
CA 0.749 0.629 0.518 0.392 0.347
CAtr 0.749 0.629 0.518 0.393 0.347

5% BC1(HM) 0.749 0.629 0.518 0.393 0.347
BC1.25 0.735 0.617 0.505 0.374 0.321
minP 0.712 0.596 0.482 0.339 0.256
CA 0.870 0.690 0.533 0.371 0.319
CAtr 0.870 0.690 0.533 0.371 0.318

10% BC1(HM) 0.870 0.690 0.533 0.371 0.318
BC1.25 0.850 0.670 0.512 0.342 0.282
minP 0.814 0.639 0.479 0.292 0.194
CA 0.955 0.738 0.542 0.353 0.299
CAtr 0.955 0.738 0.542 0.353 0.299

20% BC1(HM) 0.954 0.737 0.542 0.353 0.298
BC1.25 0.936 0.712 0.513 0.314 0.250
minP 0.895 0.670 0.469 0.249 0.145

Power comparison with an uncorrected rejection threshold from the

independence assumption. In Section 4.1, BJ , HC, BC0.75, and Fisher’s

method are anti-conservative when using the rejection threshold from the inde-

pendence assumption. In other words, the methods lose control of the type-I

error when a dependence structure exists. As a result, we compare only HM ,

CA, CAtr, BC1.25, and minP here to evaluate the power of the methods in

varying levels of correlation ρ. Table 3 shows the power of the five methods. As

expected, the statistical power decreases as ρ increases. HM , CA, and CAtr have

almost identical power and are superior to BC1.25. minP is the least powerful

method among the five. Different proportions of signals give similar patterns and

conclusions.

Power comparison with a corrected rejection threshold considering the

dependence structure. Because methods other than CA, CAtr, and HM

are either conservative or anti-conservative in terms of type-I error control in the

presence of correlation, the power comparison in the previous subsection is not

completely fair. Here, we evaluate the power of each method using the rejection

threshold corresponding to the accurate type-I error control in each case under

each correlation setting. Thus, we obtain the corrected rejection thresholds,

considering the dependence structure, for each ρ, and simulate 106 Monte Carlo
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samples for each method using the same sampling procedure as in Section 4.1,

with assumed correlation. Then, we calculate the empirical rejection threshold

from the Monte Carlo samples under the null hypothesis as the critical value for

each method.

Note that although this comparison is theoretically a fairer comparison, with

accurate type-I error control, it is less practical, unless we know the dependency

structure or perform computationally intensive approaches to precisely control

the type-I error.

Table 4 shows the results for all nine methods. We order the methods by

the index η of the Box-Cox transformation, as introduced in Section 2: minP ,

BC1.25, HM , CA, CAtr, BC0.75, Fisher, and then add HC and BJ for com-

parison. We first observe almost identical results for CA, CAtr, and HM , and

decreasing power when ρ increases, as expected. We next compare the five meth-

ods minP , CA/CAtr/HM , and Fisher with varying proportions of signals and

ρ. When ρ = 0, Fisher is the least powerful when s/n = 5% (power = 0.640), but

becomes more powerful than CA/CAtr/HM and minP when s/n = 10% and

20%, showing its superior performance in frequent signals. CA/CAtr/HM con-

sistently have good power between that of minP and Fisher. When ρ increases,

Fisher quickly drops to almost zero power, even with accurate type-I error control.

For each given s/n, minP is slightly less powerful than CA/CAtr/HM at small

ρ, but becomes much more powerful than CA/CAtr/HM when ρ is large. This

is reasonable because at a very high correlation (e.g., ρ = 0.99), all signals can be

viewed as coming from one source, so taking the smallest p-value gives sufficiently

complete information. For BC0.75 and BC1.25, we observe that, in general, the

performance of BC1.25 lies between that of minP and CA/CAtr/HM , and that

of BC0.75 lies between that of CA/CAtr/HM and Fisher. We next compare HC

and BJ with the other methods. Although these two methods lose control of the

type-I error under a dependency structure, and are not the focus of this study, we

are curious about their power performance if the correlation structure is correctly

considered with type-I error control. As shown in Table 4, BJ is surprisingly pow-

erful for all three proportions of signals when ρ = 0 (e.g., power= 0.91 compared

with power = 0.640− 0.778 for the other seven methods when s/n = 5%). How-

ever, similarly to Fisher’s method, the power of BJ drops quickly to almost zero

with the existence of dependency. The power of HC is, in general, similar to that

of CA/CAtr/HM , but becomes weaker than CA/CAtr/HM for larger ρ. Both

HC and BJ lose much power when ρ increases. One possible explanation is that

both tests compare the ordered p-values p(i) with the reference value i/n, which
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is not the correct reference under the null with a dependence structure (Liu and

Xie (2020)).

4.3. Simulation for the large negative penalty issue in the Cauchy

method

As discussed in Section 2.1, p-values close to one lead to large negative penal-

ties in the Cauchy method, which can cause significant power loss. Below, we

design a Fisher’s exact (hypergeometric) test for a 2× 2 contingency table to il-

lustrate the issue and evaluate the improvement offered by the truncated Cauchy

method.

We first evaluate the type-I error, similarly to Section 4.1. We randomly

generate n = 20 2 × 2 contingency tables with fixed row and column margins

equal to 200. The table has only one degree of freedom, assuming the upper-

left cell of each table is undetermined. Under the null hypothesis, the rows

and columns are independent, and we generate the value of the upper-left cell

from Hypergeometric(400, 200, 200). We then apply Fisher’s exact test to the

simulated data of each table, and combine the n = 20 p-values using the HM

and CA methods. We repeat the simulation 105 times, set the significance level

at α = 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001, and calculate the proportions

of rejections at each α. As shown in Table 5 (effect size p11 = 0), the type-I

errors for HM are slightly smaller than the desired significance level under the

null hypothesis (e.g., 0.00077 versus 0.001), whereas those for CA are much lower

(e.g., 0.00016 versus 0.001). The main reason for the conservativeness in both

tests is that the null distribution under the simulation setting is skewed towards

one, instead of Unif(0, 1), in which case CA is more sensitive because it imposes

a greater penalty for p-values close to one. As shown in Table 5, the type-I error

control of CAtr under δ = 0.01 is largely improved for all α; for example, the

type I error is now 0.00077, identical to that of HM , when α = 0.001.

We next evaluate the power for HM and CA. Similarly to Section 4.2, we

simulate 105 Monte Carlo samples. All settings are identical to the last paragraph

in terms of the type-I error control except that we now generate 2×2 tables with

row-column correlations. We first simulate Y fromHypergeometric(400, 200, 200)

under the independence assumption. We then simulate Z
D∼ Bin(200 − Y, p11),

and take Y +Z as the value for the upper-left cell. Note that p11 = 0 corresponds

to the original null hypothesis, and a larger effect size p11 means a stronger sig-

nal. We set p11 = 0.2, and 0.3 and the power values under different α are shown

in Table 5. As expected, a larger p11 generates higher power for both HM and

CA. CA produces much smaller power than HM , mainly because the p-values
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Table 4. Mean corrected power for tests Fisher, BC0.75, CA, CAtr(truncated Cauchy),
HM , BC1.25, minP , HC, and BJ across correlation ρ = 0, 0.3, 0.6, 0.9, 0.99 and pro-
portion of signals s/n = 5%, 10%, 20%. The standard errors are far less than the mean
power, and hence are omitted.

s/n Methods ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0.99
Fisher 0.640 0.0039 0.0021 0.0017 0.0016
BC0.75 0.778 0.615 0.437 0.308 0.269
CA 0.749 0.620 0.490 0.387 0.348

5% CAtr 0.749 0.621 0.490 0.388 0.348
BC1(HM) 0.749 0.621 0.491 0.389 0.348
BC1.25 0.735 0.618 0.509 0.438 0.402
minP 0.712 0.603 0.522 0.532 0.600
HC 0.760 0.623 0.415 0.216 0.195
BJ 0.912 0.0015 0.0001 0.001 0.001
Fisher 0.992 0.013 0.0044 0.003 0.003
BC0.75 0.908 0.689 0.461 0.301 0.258
CA 0.870 0.680 0.503 0.365 0.320

10% CAtr 0.870 0.681 0.503 0.366 0.319
BC1(HM) 0.869 0.681 0.504 0.366 0.319
BC1.25 0.850 0.672 0.517 0.407 0.361
minP 0.814 0.646 0.520 0.480 0.514
HC 0.887 0.691 0.432 0.213 0.206
BJ 0.998 0.017 0.001 0.001 0.001
Fisher 1.000 0.0745 0.017 0.009 0.008
BC0.75 0.982 0.752 0.484 0.300 0.255
CA 0.955 0.728 0.511 0.347 0.299

20% CAtr 0.955 0.729 0.512 0.348 0.299
BC1(HM) 0.955 0.729 0.512 0.349 0.299
BC1.25 0.936 0.713 0.518 0.378 0.329
minP 0.895 0.678 0.511 0.429 0.436
HC 0.973 0.749 0.451 0.227 0.231
BJ 1.000 0.202 0.016 0.008 0.013

are skewed toward one. CAtr largely alleviates the issue and performs almost

identically to HM .

5. Application

We apply the HM , CA, CAtr, and minP tests to analyze a GWAS of neu-

roticism (Okbay et al. (2016)), a personality trait characterized by easily ex-

periencing negative emotions. The data set contains 6,524,432 genetic variants

(SNPs) across 179,811 individuals, and the p-values are calculated for all SNPs to

represent the association between the variant and neuroticism. We use genome

annotations to locate the genic or intergenic region for each variant. The total
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Table 5. Mean proportion of rejection of CA, HM and CAtr (truncated CA) across
ρ11 = 0 (type I error), 0.2 (power), 0.3 (power). The standard errors are far less than the
mean proportion and hence are omitted.

ρ11 Methods/Cutoffs 0.05 0.01 0.005 0.001 5× 10−4 10−4

CA 0.00825 0.00182 0.000862 0.00016 0.0000687 0.0000100

ρ11 = 0 BC1(HM) 0.0386 0.00894 0.00417 0.00077 0.000334 0.0000487

CAtr 0.0285 0.00729 0.00417 0.00077 0.0000334 0.0000487

CA 0.333 0.202 0.146 0.0582 0.0408 0.0135

ρ11 = 0.2 BC1(HM) 0.863 0.525 0.379 0.154 0.108 0.0357

CAtr 0.848 0.522 0.377 0.154 0.108 0.0361

CA 0.431 0.428 0.420 0.355 0.310 0.190

ρ11 = 0.3 BC1(HM) 1.000 0.992 0.972 0.822 0.717 0.440

CAtr 1.000 0.991 0.971 0.822 0.716 0.440

number of intergenic and genic regions is 78,895. Within each genic or intergenic

region, we combine the p-values of the variants using the HM , CA, CAtr, and

minP methods. Figure 3 shows three Manhattan plots for the combined p-values

using the HM , CA, and minP methods, respectively. As shown in Figure 3, the

combined p-values using CA and HM are almost identical, and are slightly more

significant than those obtained from minP . The bottom-right plot in Figure 3

shows the numbers of significant genic or intergenic regions, with the significance

thresholds determined using the Bonferroni procedure (controlling the family-wise

error rate at 0.05) and the Benjamini–Hochberg FDR procedure (controlling the

false discovery rate at 0.05; the significant threshold is p(k), where k is the largest

integer such that p(k) ≤ 0.05k/n), or p-value threshold at 10−4, 10−5, or 10−6.

For all significance thresholds, the numbers of statistically significant genes for

HM and CA are almost identical, and are larger, in general, than those from

minP . In particular, HM and CA both identify 750 regions under FDR= 5%,

whereas minP finds only 476 regions.

We input the 750 regions identified by HM/CA under FDR = 5% into the

Ingenuity Pathway Analysis package for pathway enrichment analysis. The top

enriched pathways include NEUROD1 and NEUROG2, which are transcription

factors with important functions in neurogenesis. The top diseases and causal

networks identify “neurological disease”, which is related to neuroticism. In con-

trast, by applying the pathway analysis to the top 456 regions identified using

minP , we do not find enriched pathways potentially related to neuroticism. The

top causal network is MKNK1, which has not been found to play a role in neu-

rological functions.
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We next investigate two regions, SLC2A9 and PCSK6, with small combined

p-values, using HM p = 9.534 × 10−4 for SLC2A9 and p = 1.527 × 10−3 for

PCSK6; q = 0.0759 for SLC2A9 and q = 0.0939 for PCSK6, but not using

CA (p = 0.9999 and 0.9999 and q-values both equal one). The SLC29A9 gene

has been found to be related to Alzheimer’s disease, and PCSK6 is related to

structural asymmetry of the brain and handedness. We suspect the difference

between the results of HM and CA is because the p-values are close to one as

described in Section 4.3. Figure S2 shows two jitter plots of the p-values for the

SNPs in genes SLC2A9 (right) and PCSK6 (left). Both genes contain multiple

SNPs with very small p-values (e.g., 17 SNPs with p < 10−4 in SLC2A9, and eight

SNPs for PCSK6), thus, the gene regions could be significant. However, both

genes also contain many SNPs with p-values close to one (five SNPs with p > 0.99

for SLC2A9, and nine SNPs for PCSK6), CA is affected and produces larger

combined p-values than those of HM , a situation similar to that described in

Section 4.3. Because there are more than 500 p-values to combine for both genes,

by applying CAtr at δ = 0.99 with an approximation by GCLT (Proposition S1),

the p-values improve to 9.531 × 10−4 for SLC2A9 and 1.532 × 10−3 for PCSK6,

which are almost identical to the p-values calculated by HM .

6. Discussion

We have investigated methods for combining dependent p-values using trans-

formations corresponding to regularly varying distributions, which is a rich fam-

ily of heavy-tailed distributions, and includes the Pareto distribution (Box-Cox

transformation) as a special case. We first present the aggregating of multi-

ple p-values in three major historical scenarios: (1) a classical meta-analysis of

combining independent and frequent signals (e.g., Fisher), (2) methods for ag-

gregating independent weak and sparse signals (e.g., minP , higher criticism,

and Berk-Jones), and (3) recent methods for combining p-values with sparse sig-

nals and an unknown dependency structure (i.e., Cauchy and harmonic mean).

We then examine popular methods designed for these three settings under the

Pareto and regularly varying distributions to provide theoretical insight. Lastly,

we present the condition that heavy-tailed transformation methods be robust to

the dependency structure.

Our results contribute to the literature in four ways. First, in Section 2, we

use the family of Box-Cox transformations, or equivalently, transformations by

the CDF of Pareto distributions, to connect the Fisher, CA, HM , and minP

methods, which are designed to specialize in the three scenarios. We also show
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Figure 3. Mahattan plots and number of significant p-values for CA, BC1(HM), and
minP . The red dash lines are the cutoffs of the Bonferroni correction for α = 5%, and
the blue dash lines are the cutoffs of the Benjamini-Hochberg correction for FDR = 5%.
The significant regions (FDR = 5%) detected by HM and CA are the same, except for
two regions, DDX58 (q = 0.0499 by CA and q = 0.0501 by HM) and POU2F3 (q =
0.0509 by CA and q = 0.0492 by HM).

that two recent methods, CA and HM , are approximately identical. Second,

in Section 3, we focus on the dependent p-value scenario, and investigate the

condition that p-value combination methods with regularly varying distributions

be robust to the dependency structure, where CA and HM are special cases. We

show that only methods of the equivalent class of CA and HM (i.e., index γ = 1)

in the regularly varying distributions have the robustness property. Third, we

demonstrate an occasional drawback of the Cauchy method when some p-values

are close to one, which contributes to the large negative penalty and causes

a loss of power. We propose a simple, yet practical solution using a truncated

Cauchy method with fast and accurate computation. Finally, the simulations and

a real GWAS application confirm our theoretical insights, and provide a practical

guideline for using the harmonic mean and Cauchy methods. Specifically, Table



1140 FANG ET AL.

2 in Section 4.1 shows the degree of possible type-I error inflation of the harmonic

mean method under varying n (number of combined p-values), ρ (correlation level

between p-value), and α (test size).

Modern data science faces challenges from larger data dimensions, increased

structural complexity, and the need for models and inference tailored to subject

domains. The three categories of p-value combination methods have motivated

the development of numerous methods, and is a good example of how statistical

theories can provide insight into method development and a guide toward real

applications. We conclude that the condition that regularly varying distributions

must be robust to the dependency structure when combining p values is satisfied

by those distributions with index γ = 1, which includes the Cauchy and har-

monic mean methods. In future research, we would like to determine whether

other methods (e.g., the inverse gamma or log-gamma families) that satisfy this

condition may enjoy robustness and obtain better statistical power in some ap-

plications of interest.

Supplementary Material

The Online Supplementary Material includes proofs of Proposition S2 and

Theorems 1–3, as well as technical lemmas, additional simulation results, and

details of the efficient importance sampling procedure for the truncated Cauchy

method.
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