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S1 Example of the use of Theorem 2

We first illustrate the use of Theorem 2 and Corollary 1 using hypothet-

ical data. Suppose that (Y1, . . . , Y6) = (0, 0, 1, 3, 3, 6) and (X1, . . . , X4) =

(−1, 2, 3, 3). We first derive F ∗n . The points {(Hn(yk), Fn(yk)) : k =

0, . . . ,m2} are given by {(0, 0), (0.3, 0.25), (0.4, 0.25), (0.9, 1), (1, 1)}, and

its GCM is given by {(0, 0), (0.3, 3/16), (0.4, 1/4), (0.9, 7/8), (1, 1)}. This

is displayed in the upper left panel of Figure 1. The values of the GCM

imply that F ∗n(0) = 3/16, F ∗n(1) = 1/4, F ∗n(3) = 7/8, and F ∗n(6) = 1. We

then have that F ∗n(−1) = F ∗n(−∞) + [F ∗n(0) − F ∗n(−∞)]Fn(−1)−Fn(−1−)
Fn(0)−Fn(−∞)

=
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[3/16]1/4
1/4

= 3/16 and F ∗n(2) = F ∗n(1) + [F ∗n(3)− F ∗n(1)]Fn(2)−Fn(2−)
Fn(3)−Fn(1)

= 1/4 +

[5/8]1/4
3/4

= 11/24. The estimators Fn and F ∗n are compared in the bottom

left panel of Figure 1.

We next derive G∗n. The points {(Hn(yk), Gn(yk)) : k = 0, . . . ,m2}

are given by {(0, 0), (0.3, 1/3), (0.4, 1/2), (0.9, 5/6), (1, 1)}, and its LCM is

given by {(0, 0), (0.3, 3/8), (0.4, 1/2), (0.9, 11/12), (1, 1)}. This is displayed

in the center left panel of Figure 1. The values of the LCM imply that

G∗n(0) = 3/8, G∗n(1) = 1/2, G∗n(3) = 11/12, and G∗n(6) = 1. The estimators

Gn and G∗n are compared in the bottom left panel of Figure 1.

Finally, we derive θ∗n. The empirical ordinal dominance curve is given

by the points {(0, 0), (1/3, 1/4), (1/2, 1/4), (5/6, 1), (1, 1)}, and the vertices

of its GCM are given by {(0, 0, ), (1/2, 1/4), (1, 1)}. This is displayed in

the bottom left panel of Figure 1. The left-hand slopes of the GCM are

1/2 on the interval (0, 1/2] and 3/2 on the interval (1/2, 1], which implies

that θ∗n(z) = 1/2 for z ∈ (−∞, 1] and θ∗n(z) = 3/2 for z ∈ (1,∞). This is

displayed in the bottom right panel of Figure 1.

We note that the maximum likelihood estimators F̂n of F0 and Ĝn of

G0 derived in Dykstra et al. (1995) for the fully discrete case are different

than F ∗n and G∗n. In particular, both F̂n and Ĝn have jumps at all the

unique values of the data {−1, 0, 1, 2, 3, 6} with values F̂n(−1) = 1/16,
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F̂n(0) = 3/16, F̂n(1) = 1/4, F̂n(2) = 3/8, and F̂n(3) = 7/8, and F̂n(6) = 1;

and Ĝn(−1) = 1/8, Ĝn(0) = 3/8, Ĝn(1) = 1/2, Ĝn(2) = 7/12, Ĝn(3) =

11/12, and Ĝn(6) = 1. However, the maximum likelihood estimator θ̂n(z) =

∆F̂n(z)/∆Ĝn(z) is equal to θ∗n(z) for each z ∈ {−1, 0, 1, 2, 3, 6}.
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Figure 1: Example of the process of constructing the maximum likelihood estimator for
(Y1, . . . , Y6) = (0, 0, 1, 3, 3, 6) and (X1, . . . , X4) = (−1, 2, 3, 3). The graph of Fn versus
πnFn + (1 − πn)Gn evaluated at z1, . . . , zm and its GCM are shown in the upper left.
The resulting MLE F ∗

n and Fn are shown in the upper right, and the graph of Gn versus
πnFn + (1 − πn)Gn evaluated at z1, . . . , zm and its LCM are shown in the center left,
and the resulting MLE G∗

n and Gn are shown in the middle right. The ODC diagram of
Fn versus Gn and its GCM are shown in the bottom left, and the resulting MLE θ∗n is
shown in the bottom right.
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S2 Proof of Theorems

Proof of Theorem 1. We first suppose that F � G and ν is non-decreasing

on G, and we show that F (A)G(B) ≤ F (B)G(A) for all measurable A ≤ B.

Recall that F (A) =
∫
A
dF when A is a set, and A ≤ B means that a ≤ b for

all a ∈ A and b ∈ B. Since F � G, we have that F (x) =
∫ x
−∞ ν(u) dG(u)

for all x. We then have by Fubini’s Theorem that

F (A)G(B) =

∫
x∈A

dF (x)

∫
y∈B

dG(y) =

∫
x∈A

ν(x) dG(x)

∫
y∈B

dG(y)

=

∫
(x,y)∈A×B

ν(x) d(G×G)(x, y).

Now since ν is non-decreasing and x ≤ y for all x ∈ A and y ∈ B, we have

∫
(x,y)∈A×B

ν(x) d(G×G)(x, y) ≤
∫

(x,y)∈A×B
ν(y) d(G×G)(x, y).

Finally, applying Fubini’s Theorem again yields

∫
(x,y)∈A×B

ν(y) d(G×G)(x, y) =

∫
x∈A

dG(x)

∫
y∈B

ν(y) dG(y) = G(A)F (B).

Next, we suppose that F (A)G(B) ≤ F (B)G(A) for all measurable A ≤

B, and we show that RF,G is convex on Im(G). Let t, u, v ∈ Im(G), where

t < v and u = λt+ (1− λ)v for λ ∈ (0, 1). We then let A = (G−(t), G−(u)]
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and B = (G−(u), G−(v)], which are both Borel sets satisfying A ≤ B

since G− is necessarily non-decreasing. We then have F (A) = F (G−(u))−

F (G−(t)) = RF,G(u) − RF,G(t) and similarly F (B) = RF,G(v) − RF,G(t).

In addition, since G(G−(z)) = z for any z ∈ Im(G), we also have G(A) =

G(G−(u))−G(G−(t)) = u−t = (1−λ)(v−t) and similarly G(B) = v−u =

λ(v − t). We then have by assumption that

[RF,G(u)−RF,G(t)][λ(v − t)] = F (A)G(B) ≤ F (B)G(A)

= [(1− λ)(v − t)][RF,G(v)−RF,G(t)].

Therefore, λ [RF,G(u)−RF,G(t)] ≤ (1 − λ) [RF,G(v)−RF,G(u)], which im-

plies that RF,G(u) ≤ λRF,G(t) + (1 − λ)RF,G(v), which shows that RF,G is

convex on Im(G).

Finally, we suppose that F � G, R := RF,G is convex on Im(G), and

ν is continuous on G, and we show that ν is nondecreasing on G. This is

the most difficult of the three implications. The basic argument amounts

to using convexity of R to compare the slopes of chords or sequences of

chords, and to relate these slopes to values of ν. Let x, y ∈ G with x < y.

Suppose that we can find sequences {zj}j≥1 and {wj}j≥1 such that sj :=

[R(G(x)) − R(G(zj))]/[G(x) − G(zj)] converges to ν(x), tj := [R(G(y)) −

R(G(wj))]/[G(y) − G(wj)] converges to ν(y), and zj ≤ wj for all j large
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enough. Then, by convexity of R, sj ≤ tj for all j large enough, which

implies that ν(x) ≤ ν(y). The exact form of {zj}j≥1 and {wj}j≥1 depends

on how G looks near x and y. In particular, there are three cases for y:

(1) G(y) > G(y−) and there exists p ∈ [x, y) such that G(y−) = G(p); (2)

G(y) > G(y−) but there is no p ∈ [x, y) such that G(y−) = G(p); and (3)

G(y) = G(y−). We begin by specifying {wj}j≥1 in each case.

In case (1), we take wj = p for all j. Since F � G, we must have

F (G−(G(p))) = F (y−), so that tj = ν(y) for all j. In case (2), it must be

that G−(G(y−)) = y. In this case, there exists {wj}j≥1 increasing to y such

that wj ∈ (x, y)∩G for each j, G(wj) increases toG(y−) and F (wj) increases

to F (y−). We then have that R(G(wj)) increases to F (G−(G(y−))−) =

F (y−), so that tj increases to [F (y) − F (y−)]/[G(y) − G(y−)] = ν(y). In

case (3), we first note that F (G−(G(y))) = F (y) since F � G. Addition-

ally, since y ∈ G, there exist {wj}j≥1 in G with G−(G(wj)) = wj for each j

that either (a) increases to y and G(wj) < G(y) for each j, or (b) decreases

to y and G(wj) > G(y) for each j. In either case, we have

tj =

∫ y
wj
ν(u) dG(u)

G(y)−G(wj)
= ν(y) +

∫ y
wj

[ν(u)− ν(y)] dG(u)

G(y)−G(wj)
.

For any ε > 0, by continuity of ν over G, we can find m such that j ≥ m

implies |ν(u) − ν(y)| < ε for all u ∈ [wj, y] ∩ G. If (a) holds and tj is
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bounded above, we then have
∫ y
wj
|ν(u)− ν(y)| dG(u) ≤ ε[G(y)−G(wj)] for

all j ≥ m, so that then limj→∞ tj = ν(y). If tj is not bounded above then

ν(y) = +∞, so that ν(x) ≤ ν(y) trivially. If (b) holds then tj is bounded

below by zero, so by a similar calculation limj→∞ tj = ν(y).

The three cases for x are similar: (1) G(x) > G(x−) and there exists

q ∈ [−∞, x) such that G(x−) = G(q); (2) G(x) > G(x−) but there is no

such q; and (3) G(x) = G(x−). In case (1), we take zj = q for all j. Since

F � G, we must have F (G−(G(q))) = F (x−), so that sj = ν(y) for all

j. In case (2), it must be that G−(G(x−)) = x, and again there exists an

increasing sequence {zj}j≥1 increasing to x such that zj ∈ (−∞, x) ∩ G for

each j, G(zj) increases to G(x−) and F (zj) increases to F (x−). We then

have that R(G(zj)) increases to F (x−), so that sj increases to ν(x). In case

(3), F (G−(G(x))) = F (x), and since x ∈ G, there exists {zj}j≥1 in G with

G−(G(zj)) = zj for each j that either (a) increases to x and G(zj) < G(x)

for each j, or (b) decreases to x and G(zj) > G(x) for each j. If (a) holds

and sj is bounded above, then sj converges to ν(x) by continuity of ν as

before. If sj is not bounded above then sj converges to ν(x) = +∞. If (b)

holds then sj is bounded below by zero, so again limj→∞ sj = ν(x).

Of the nine pairings of cases for y and cases for x, the only situation in

which it is not immediately clear that zj ≤ wj for all j large enough is that
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zj decreases to x (case 3b) and wj = p for all j (case 1). However, we note

that x = p if and only if G(x) = G(y−), which would imply that case (3b)

cannot hold for x. Therefore, if zj decreases to x and wj = p, then p > x,

so that zj < wj for all j large enough. This completes the argument.

Finally, we address statement (2) of the result: we suppose that F � G

and ν is continuous and non-decreasing on G, and we show that θF,G = ν on

G. By (1), R is convex on Im(G). First, we claim that GCM [0,1](R) = H,

where H : [0, 1] → [0, 1] takes the following form. For any u ∈ Im(G),

H(u) := R(u). If u /∈ Im(G), then there exists x ∈ R and λ ∈ [0, 1) such

that u = λG(x−) + (1− λ)G(x). We then define H(u) := λR(G(x−)−) +

(1− λ)R(G(x)). Thus, H is the linear interpolation of R|Im(G) to [0, 1]. In

order to show that H indeed equals GCM [0,1](R), we need to show that (a)

H is convex, (b) H ≤ R, and (c) H ≥ H̄ for any other convex minorant of

R.

For (a), we let u, v ∈ [0, 1] and p = λu+ (1− λ)v for λ ∈ (0, 1). There

then exist u1 ≤ u2 ≤ p1 ≤ p2 ≤ v1 ≤ v2 which are all elements of Im(G) and

λ1, λ2, λ3 ∈ [0, 1] such that u = λ1u1 +(1−λ1)u2, v = λ2v1 +(1−λ2)v2, and

p = λ3p1 + (1− λ3)p2, and furthermore H(u) = λ1R(u1−) + (1− λ1)R(u2),

H(v) = λ2R(v1−) + (1− λ2)R(v2), and H(p) = λ3R(p1−) + (1− λ3)R(p2).

The remainder of the argument is best seen with a diagram. Let U be the
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point (u,H(u)), U1 be the point (u1, H(u1)), and so on. By convexity of

R, the line segment P1P2 lies below or on the line segment U2V1, which lies

below or on UV1, which lies below or on UV . Therefore, (p,H(p)), which

falls on P1P2, is no greater than (p, λH(u) + (1 − λ)H(p)), which falls on

UV .

For (b), by definition, H(u) = R(u) for any u ∈ Im(G). If u /∈ Im(G),

then u = λG(x−) + (1− λ)G(x), and hence G−(u) = G−(G(x)) = x. As a

result, R(u) = R(G(x)) > H(u) = λR(G(x−)−) + (1− λ)R(G(x)).

We have now shown that H is a convex minorant of R. For (c), if H̄ is

another convex minorant of R, then clearly H(u) ≥ H̄(u) for all u ∈ Im(G).

If u /∈ Im(G), then u = λG(x−) + (1 − λ)G(x). If G(x−) ∈ Im(G), then

H̄(u) ≤ λH(G(x−)) + (1− λ)H(G(x)) ≤ λR(G(x−)) + (1− λ)R(G(x)) =

H(u). If G(x−) /∈ Im(G), then there must be an ε > 0 such that z ∈

Im(G) for all z ∈ (G(x−) − ε,G(x−)), so that H̄(u) ≤ λ(z)R(z−) + (1 −

λ(z))R(G(x)) for each z ∈ (G(x−) − ε,G(x−)), where λ(z) ∈ (0, 1) and

λ(z) → λ as z → G(x−). Taking the limit as z → G(x−), we have that

H̄(u) ≤ λR(G(x−)−) + (1− λ)R(G(x)) = H(u).

We now have that θF,G(x) = (∂−H)(G(x)), so it remains to show that

(∂−H)(G(x)) = ν(x) for all x ∈ G. First, if G(x) > G(x−), then H(u) =

λR(G(x−)−)+(1−λ)R(G(x)) = λF (x−)+(1−λ)F (x) for all u = λG(x−)+
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(1−λ)G(x) for λ ∈ (0, 1). Therefore, (∂−H)(u) = [F (x)−F (x−)]/[G(x)−

G(x−)] = ν(x) for all such u, so that (∂−H)(G(x)) = ν(x). If instead x ∈ G

and G(x) = G(x−) then H(G(x)) = R(G(x)), and it is straightforward to

see from the definition of R that (∂−R)(G(x)) = ν(x).

Proof of Theorem 2. We first note that Ln(F,G) = 0 for any G such

that G(Yj) = G(Yj−) for any j ∈ {1, . . . , n2}. As a result, we may restrict

our attention to G such that G(Yj) > G(Yj−) for all j, which implies that

G− has support at each G(Yj). For any such G, we define Ḡ := G◦L, where

L(y) := max{Yj : Yj ≤ y}. We then have Ḡ(Yj)−Ḡ(Yj−) ≥ G(Yj)−G(Yj−)

for each j. Furthermore, the support of Ḡ− is {G(Yj) : j = 1, . . . , n2} is

contained in the support of G, Ḡ(Yj) = G(Yj) for each j, and F ◦G− is by

assumption convex on the support of G−. Therefore, F ◦ Ḡ− is convex on

the support of Ḡ−, so that (F, Ḡ) ∈ M0 and Ln(F, Ḡ) ≥ Ln(F,G). Hence,

we may further restrict our attention to G which are discrete with jumps

at Y1, . . . , Yn2 . By a similar argument, we can restrict our attention to F

which are discrete with jumps at X1, . . . , Xn1 or Y1, . . . , Yn2 .

We define y0 := −∞, and uj := G(yj), so that the support of G−

for any discrete G with jumps at Y1, . . . , Yn2 is {uj : j = 0, . . . ,m2}, and

G−(uj) = yj. Defining gj := uj − uj−1 and sj the number of Yk such

that Yk = yj, we have
∏n2

j=1 [G(Yj)−G(Yj−)] =
∏m2

j=1 g
sj
j . We then define
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fj := F (yj)− F (yj−) for each j, and we note that (F,G) ∈M0 if and only

if f1/g1 ≤ f2/g2 ≤ · · · ≤ fm2/gm2 . Suppose that the values f1, . . . , fm2 are

fixed in such a way as to satisfy these constraints. We denote by Ij := {k :

xk ∈ (yj−1, yj]} for j = 1, . . . ,m2 + 1, where ym2+1 := +∞, and by ri the

number of Xk such that Xk = xi. Noting that I1, . . . , Im2+1 are disjoint

with union {1, . . . ,m1}, we then have

n1∏
i=1

[F (Xi)− F (Xi−)] =

m2+1∏
j=1

∏
k∈Ij

[F (xk)− F (xk−)]rk .

Additionally, for each j ∈ {1, . . . ,m2 + 1}, we must have that

∑
k∈Ij

[F (xk)− F (xk−)] = fj.

Therefore, maximizing Ln(F,G) with respect to F with f1, . . . , fm2+1 fixed

amounts to maximizing

∏
k∈Ij

[F (xk)− F (xk−)]rk subject to
∑
k∈Ij

[F (xk)− F (xk−)] = fj

for each j. This implies that a maximizer F ∗n must satisfy

F ∗n(xk)− F ∗n(xk−) = fj
rk∑
l∈Ij rl
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for each xk ∈ Ij. Therefore,
∏

k∈Ij [F ∗n(xk)− F ∗n(xk−)]rk is proportional

to
∏

k∈Ij f
rk
j = f

Rj

j for Rj :=
∑

k∈Ij rk, which is the number of Xi in the

interval (yj−1, yj].

We note that if there are j such that no xk ∈ (yj, yj+1] but fj > 0, then

there are infinitely many maximizers because any F ∗n that assigns mass fj to

the interval (yj−1, yj] yields the same likelihood and satisfies the constraints.

In these cases, for the sake of uniqueness we will put mass fj at the point

yj.

We have at this point reduced the problem to maximizing

{
m2+1∏
k=1

fRk
k

}{
m2∏
k=1

gskk

}
=

{
m2∏
k=1

fRk
k gskk

}
f
Rm2+1

m2+1

subject to f1/g1 ≤ f2/g2 ≤ · · · ≤ fm2/gm2 and
∑m2

k=1 gk =
∑m2+1

k=1 fk = 1.

Letting f̄k := fk/(1− fm2+1) for k ≤ m2, this is equivalent to maximizing

L̄n(f̄1, . . . , f̄m2 , fm2+1, g1, . . . , gm2) :=

{
m2∏
k=1

f̄Rk
k gskk

}
(1−fm2+1)n1−Rm2+1f

Rm2+1

m2+1

subject to f̄1/g1 ≤ f̄2/g2 ≤ · · · ≤ f̄m2/gm2 and
∑m2

k=1 gk =
∑m2

k=1 f̄k =

1. The term involving fm2+1 is maximized for f ∗m2+1 = Rm2+1/n1 = 1 −

Fn(ym2).

From this point we take a similar approach to that in Dykstra et al.
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(1995). We define n̄1 :=
∑m2

k=1Rk = Fn(ym2)n1, σk := n̄1f̄k + n2gk and

ρk := n̄1f̄k/σk, so that f̄k = ρkσk/n̄1 and gk = (1 − ρk)σk/n2. Optimizing

L̄n with with respect to f̄1, . . . , f̄m2 and g1, . . . , gm2 such that
∑m2

k=1 f̄k =∑m2

k=1 gk = 1 and f̄1/g1 ≤ f̄2/g2 ≤ · · · ≤ f̄m2/gm2 is equivalent to optimizing

L̄n(ρ,σ) =

m2∏
k=1

[ρkσk/n̄1]Rk [(1− ρk)σk/n2]sk

= n̄−n̄1
1 n−n2

2

m2∏
k=1

ρRk
k (1− ρk)sk

m2∏
k=1

σRk+sk
k

such that
∑m2

k=1 ρkσk = n̄1,
∑m2

k=1 σk = n̄1 + n2, and ρ1 ≤ · · · ≤ ρm2 , where

ρ := (ρ1, . . . , ρm2) and σ := (σ1, . . . , σm2).

Now,
∏m2

k=1 σ
Rk+sk
k such that

∑m2

k=1 σk = n̄1 + n2 is maximized for σ∗k =

Rk+sk. Next, maximizing
∏m2

i=1 ρ
Rk
k (1−ρk)sk with respect to ρ1 ≤ · · · ≤ ρm2

is equivalent to maximizing

m2∑
k=1

[Rk log ρk + sk log(1− ρk)] =

m2∑
k=1

wk [tk log ρk + (1− tk) log(1− ρk)]

for wk := Rk + sk ≥ 1 and tk := Rk/wk. By Theorem 2.1 and Exercise 2.21

of Groeneboom and Jongbloed (2014), the maximizer (ρ∗1, . . . , ρ
∗
m2

) of this

expression over all ρ1 ≤ · · · ≤ ρm2 is given by the weighted isotonic regres-

sion of t1, . . . , tm2 with weights w1, . . . , wm2 . By Lemma 2.1 of Groeneboom

and Jongbloed (2014), ρ∗k is equal to the left derivative of the GCM of the
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set of points

{(0, 0)} ∪

{(
k∑
j=1

wk,

k∑
j=1

tjwj

)
: k = 1, . . . ,m2

}

= {(n1Fn(yk) + n2Gn(yk), n1Fn(yk)) : k = 0, . . . ,m2}

evaluated at n1Fn(yk)+n2Gn(yk). We note that
∑m2

k=1 wkρ
∗
k =

∑m2

k=1 σ
∗
kρ
∗
k =

n1F (ym2) = n̄1. Therefore, we have that Ln(ρ,σ) ≤ Ln(ρ∗,σ∗) for all ρ

such that ρ1 ≤ · · · ≤ ρm2 and σ such that
∑m2

k=1 σk = n̄1 +n2. Since ρ∗ and

σ∗ also satisfy
∑m2

k=1 σ
∗
kρ
∗
k = n̄1, this implies that (ρ∗,σ∗) is an optimizer

of L̄n over the set of stated constraints.

We now have that f ∗k = (Rk+sk)(ρ
∗
k/n1) and g∗k = (Rk+sk)(1−ρ∗k)/n2.

Since wk = Rk + sk, this implies that F ∗n(yk) = Āk/n1 and G∗n(yk) =

[n2Gn(yk)+n1Fn(yk)− Āk]/n2, where Āk is the value of the GCM of the set

of points defined above at n1Fn(yk) +n2Gn(yk). We note that Āk/n1 = A∗k,

for A∗k the value of the GCM of

{(πnFn(yk) + (1− πn)Gn(yk), Fn(yk)) : k = 0, . . . ,m2}

evaluated at πnFn(yk)+(1−πn)Gn(yk). Additionally, [n2Gn(yk)+n1Fn(yk)−
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Āk]/n2 = B∗k for B∗k the value of the LCM of

{(πnFn(yk) + (1− πn)Gn(yk), Gn(yk)) : k = 0, . . . ,m2}

at πnFn(yk) + (1− πn)Gn(yk).

Proof of Corollary 1. From the proof of Theorem 2, we have that F ∗n(yk) =

A∗k and G∗n(yk) = Gn(yk) + πn
1−πn [Fn(yk) − A∗k]. Let j′0, . . . , j

′
K denote the

indices of the vertices of the GCM of

{(πnFn(yk) + (1− πn)Gn(yk), Fn(yk)) : k = 0, . . . ,m2} .

Then F ∗n(yjk) = Fn(yjk) for each k = 0, . . . , K and G∗n(yjk) = Gn(yjk). It

is also straightforward to see that {(hk, Ak) : k = 0, . . . ,m2} is a convex

minorant of {(hk, Fn(yk)) : k = 0, . . . ,m2} if and only if {(Gn(yk), Ak) :

k = 0, . . . ,m2} is a convex minorant of {(Gn(yk), Fn(yk)) : k = 0, . . . ,m2}.

Therefore, {(Fn(yjk), Gn(yjk)) : k = 0, . . . , K} form the vertices of the GCM

of {(Gn(yk), Fn(yk)) : k = 0, . . . ,m2}.

Proof of Theorem 3. We note that Gn(yj) > 0 for each j with probabil-

ity tending to one. Then, since the support G of G0 is finite, with probability

tending to one the empirical ODC is a left-continuous step function with

vertices at (0, 0), (Gn(y1), Fn(y1)), . . . , (Gn(ym2), Fn(ym2), where we note
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that Gn(ym2) = 1 almost surley. We define

δ := min

{
F0(yj+1)− F0(yj)

∆G0(yj+1)
− F0(yj)− F0(yj−1)

∆G0(yj)
: j = 1, . . . ,m2 − 1

}
,

which is positive by assumption. We then have

Fn(yj+1)− Fn(yj)

∆Gn(yj+1)
− Fn(yj)− Fn(yj−1)

∆Gn(yj)

=
F0(yj+1)− F0(yj)

∆G0(yj+1)
− F0(yj)− F0(yj−1)

∆G0(yj)

+
[Fn(yj+1)− F0(yj+1)]− [Fn(yj)− F0(yj)]

∆G0(yj+1)

+ [Fn(yj+1)− Fn(yj)]

[
1

∆Gn(yj+1)
− 1

∆G0(yj+1)

]
− [Fn(yj)− F0(yj)]− [Fn(yj−1)− F0(yj−1)]

∆G0(yj)

− [Fn(yj)− Fn(yj−1)]

[
1

∆Gn(yj)
− 1

∆G0(yj)

]
.

Now since Fn is uniformly consistent for F0 and Gn is uniformly consistent

for G0, and ∆G0(yj) > 0 for each j, the second through fifth lines above

are oP (1) uniformly over j. Therefore,

min

{
Fn(yj+1)− Fn(yj)

∆Gn(yj+1)
− Fn(yj)− Fn(yj−1)

∆Gn(yj)
: j = 1, . . . ,m2 − 1

}
≥ δ − oP (1),
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which implies that

Fn(yj+1)− Fn(yj)

∆Gn(yj+1)
≥ Fn(yj)− Fn(yj−1)

∆Gn(yj)

for all j = 1, . . . ,m2 − 1 with probability tending to one. Therefore, with

probability tending to one, the diagram of points (0, 0), (Gn(y1), Fn(y1)),

. . . , (Gn(ym2), Fn(ym2)) is convex. By Corollary 1, (G∗n(yk), F
∗
n(yk)) lie on

the GCM of (0, 0), (Gn(y1), Fn(y1)), . . . , (Gn(ym2), Fn(ym2)). But these points

being convex means that they are equal to their GCM, so that with prob-

ability tending to one G∗n(yj) = Gn(yj) and F ∗n(yj) = Fn(yj) for each j.

We can then see by Theorem 2 that ∆F ∗n(xi) = ∆Fn(xi) with probability

tending to one as well, so that F ∗n = Fn with probability tending to one.

We then have with probability tending to one that

θ∗n(yj) =
[
∂−GCM [0,1](RFn,Gn)

]
◦Gn(yj) =

Fn(yj)− Fn(yj−1)

∆Gn(yj)

for each j = 1, . . . ,m2. since the GCM of RFn,Gn is with probability tending

to one piecewise linear with knots at the yj and θ∗n = ∂−GCM [0,1](RFn,Gn)◦

Gn, we then have that with probability tending to one that θ∗n is a left-

continuous step function with jumps at the yj. Also, since Gn(z) = 0 for

z < y1 and RFn,Gn(u) = 0 for all u ≤ 0, θ∗n(z) = 0 for z < y1.
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We now have

n1/2[θ∗n(yj)− θ0(yj)] = n1/2

[
Fn(yj)− Fn(yj−1)

Gn(yj)−Gn(yj−1)
− F0(yj)− F0(yj−1)

G0(yj)−G0(yj−1)

]
.

Using the notation introduced in Section 3.2, this can be written as

n1/2

{[
1
n

∑n
i=1Wi1

]
/
[

1
n

∑n
i=1Wi2

][
1
n

∑n
i=1Wi3

]
/
[

1
n

∑n
i=1Wi4

] − E0(Wi1)/E0(Wi2)

E0(Wi3)/E0(Wi4)

}

= n1/2

{
g

(
1

n

n∑
i=1

Wi

)
− g (E0(Wi))

}
,

where Wi = (Wi1, . . . ,Wi4)T for Wi1 = I(Di = 1, yj−1 < Zi ≤ yj), Wi2 =

I(Di = 1), Wi3 = I(Di = 0, yj−1 < Zi ≤ yj), and Wi4 = I(Di = 0), and

g(w1, w2, w3, w4) = w1/w2

w3/w4
. By the Central Limit Theorem,

√
n

{
1

n

n∑
i=1

Wi − E0(Wi)

}
d−→N4(0, V0),

where the (j, k) element of the covariance matrix V0 equals E0(WjWk) −

E0(Wj)E0(Wk). Applying the delta method to the function g yields (after

some algebra) n1/2[θ∗n(yj)− θ0(yj)]
d−→N (0, σ2

0(yj)), where σ2
0(yj) equals

θ0(yj)
π0[F0(yj)− F0(yj−1)] + (1− π0)∆G0(yj)− [F0(yj)− F0(yj−1)]∆G0(yj)

π0(1− π0)[∆G0(yj)]2
.
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Proof of Theorem 4. We note that f0(z)/g0(z) ≤ f0(z′)/g0(z′) for all

z < z′ in [a, b] implies that

π2
0f0(z)f0(z′)+π0(1−π0)f0(z)g0(z′) ≤ π2

0f0(z)f0(z′)+π0(1−π0)f0(z′)g0(z),

which implies that z 7→ π0f0(z)/[π0f0(z) + (1− π0)g0(z)] is non-decreasing

on [a, b]. Therefore,

(G0 ◦H−1
0 )′ =

g0 ◦H−1
0

π0f0 ◦H−1
0 + (1− π0)g0 ◦H−1

0

=
1

1− π0

[
1− π0f0 ◦H−1

0

π0f0 ◦H−1
0 + (1− π0)g0 ◦H−1

0

]

is non-increasing on H0([a, b]) = [0, 1]. Hence, G0 ◦H−1
0 is concave on [0, 1],

so

LCM [0,1](G0 ◦H−1
0 ) ◦H0 = G0 ◦H−1

0 ◦H0 = G0.

We now note that since Gn ◦ H−n (u) ≥ Gn(ym2) = 1 for any u ≥ hm2 ,

LCM [0,hm2 ](Gn ◦ H−n ) = LCM [0,1](Gn ◦ H−n ). Furthermore, since G∗n only

jumps at y1, . . . , ym2 , we have

G∗n(y) = LCM [0,1](Gn ◦ H̃−n ) ◦ H̃n(y)

for any y ∈ R, where H̃n := πnFn◦Ln+(1−πn)Gn for Ln(z) := G−n ◦Gn(z) =
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max{Yj : Yj ≤ z}.

Using the notation of Section 3.2, we can write

πnFn(x) =
n1

n

1

n1

n∑
i=1

DiI(Zi ≤ x) = Pnωx

for ωx(d, x) := dI(z ≤ x), and similarly (1−πn)Gn(y) = Pnηy for ηy(d, z) :=

(1 − d)I(z ≤ y). We also have P0ωx = π0F0(x) and P0ηy = (1 − π0)G0(y).

By standard empirical process theory, we therefore have that

{n1/2[πnFn(x)− π0F0(x)] : x ∈ R} = {n1/2(Pn − P0)ωx : x ∈ R}

and

{n1/2[(1− πn)Gn(y)− (1− π0)G0(y)] : y ∈ R} = {n1/2(Pn − P0)ηy : y ∈ R}

converge weakly (jointly) as processes indexed by `∞(R) to

(G1 ◦ [π0F0],G2 ◦ [(1− π0)G0])

for G1 and G2 independent Brownian bridge processes. The two processes

are independent because the covariance between the processes is easily seen

to be zero. Since the density of G0 is bounded strictly away from zero on
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[a, b], n1/2([(1− πn)Gn]− − [(1− π0)G0]−1) converges weakly in `∞(0, 1) to

−G2/[(1−π0)g0]◦ [π0G0]−1 by Lemma 3.9.23 of van der Vaart and Wellner,

1996. Hence, by Hadamard differentiability of the composition map (see

Lemma 3.9.27 of van der Vaart and Wellner, 1996), the functional delta

method yields

n1/2(G−n ◦Gn − Id) = n1/2([(1− πn)Gn]− ◦ [πnGn]− Id)

converges weakly in `∞[a, b] to

− (G2 ◦ [(1− π0)G0])/[(1− π0)g0 ◦ [(1− π0)G0]−1 ◦ [(1− π0)G0])

+ (G2 ◦ [(1− π0)G0])/([(1− π0)g0 ◦ [(1− π0)G0]−1 ◦ [(1− π0)G0]) = 0,

so that supz∈[a,b] |Ln(z) − z| = oP (n−1/2). Hence, n1/2(πnFn ◦ Ln − π0F0)

converges weakly to G1 ◦ [π0F0] in `∞[a, b], and so n1/2(H̃n−H0) converges

weakly to G1◦[π0F0]+G2◦[(1−π0)G0] in `∞[a, b]. Since G0 and F0 are both

continuously differentiable on [a, b], so isH0, and since the derivative ofG0 is

bounded away from zero, so is the derivative of H0. Therefore, using Lemma

3.9.23 of van der Vaart and Wellner, 1996 again, n1/2(H̃−n −H−0 ) converges

weakly in `∞(0, 1−ε) to (G1◦ [π0F0]+G2◦ [(1−π0)G0])◦H−1
0 /(h0◦H−1

0 ) for

any ε > 0, where h0 := H ′0 = π0f0 + (1− π0)g0. Then, using the functional
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delta method for composition again, we have that n1/2[Gn ◦ H̃−n −G0 ◦H−1
0 ]

converges weakly to

[
1− g0 ◦H−1

0

h0 ◦H−1
0

]
G2 ◦ [(1− π0)G0] ◦H−1

0 −
g0 ◦H−1

0

h0 ◦H−1
0

G1 ◦ (π0F0) ◦H−1
0 ,

which we define as G3. Now by Proposition 2.1 of Beare and Fang (2017),

n1/2[LCM [0,1](Gn ◦ H̃−n )− LCM [0,1](G0 ◦H−1
0 )]

converges weakly to LCM ′
[0,1],G0◦H−1

0
(G3). Using Hadamard differentiability

of composition once more, we have that

n1/2[G∗n −G0] = n1/2[LCM [0,1](Gn ◦ H̃−n ) ◦ H̃n − LCM [0,1](G0 ◦H−1
0 ) ◦H0]

converges weakly to

LCM ′
[0,1],G0◦H−1

0
(G3) ◦H0 +

g0

h0

[G1 ◦ (π0F0) + G2 ◦ [(1− π0)G0]]

If f0/g0 is strictly increasing on [a, b], then G0 ◦ H−1
0 is strictly concave

on [0, 1], in which case LCM ′
[0,1],G0◦H−1

0
is the identity operator by Propo-

sition 2.2 of Beare and Fang (2017). Hence, in this case n1/2[G∗n − G0]
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converges weakly to

G3 ◦H0 +
g0

h0

[G1 ◦ (π0F0) + G2 ◦ [(1− π0)G0]]

=

[
1− g0

h0

]
G2 ◦ [(1− π0)G0]− g0

h0

G1 ◦ (π0F0)

+
g0

h0

[G1 ◦ (π0F0) + G2 ◦ [(1− π0)G0]]

= G2 ◦ [(1− π0)G0],

which, as noted above, is the same limit distribution as n1/2[Gn − G0].

Furthermore, we have

n1/2‖G∗n −Gn‖∞ ≤ n1/2‖[LCM [0,1](Gn ◦ H̃−n ) ◦ H̃n −Gn ◦ H̃−n ◦ H̃n‖∞

+ n1/2‖Gn ◦ H̃−n ◦ H̃n −Gn‖∞.

When f0/g0 is strictly increasing so that LCM ′
[0,1],G0◦H−1

0
is the identity, the

functional delta method (e.g. Theorem 3.9.4 of van der Vaart and Wellner,

1996) implies that

n1/2‖[LCM [0,1](Gn ◦ H̃−n ) ◦ H̃n −Gn ◦ H̃−n ◦ H̃n‖∞

≤ n1/2‖[LCM [0,1](Gn ◦ H̃−n )−Gn ◦ H̃−n ‖∞ = oP (1).

Similarly, since as shown above, n1/2(H̃−n ◦H̃n−Id) converges weakly in [a, b]
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to 0, n1/2‖Gn◦H̃−n ◦H̃n−Gn‖∞ = oP (1). Therefore, n1/2‖G∗n−Gn‖∞ = oP (1)

if f0/g0 is strictly increasing on [a, b].

Now we turn attention to F ∗n . By Theorem 2, for each y ∈ {Y1, . . . , Yn},

we know that F ∗n(yk) = GCM [0,hm2 ](Fn ◦ H−n ) ◦ Hn(yk). We can extend

the GCM operation to entirety of [0, 1], so that F ∗n(yk) = GCM [0,1](Fn ◦

H−n ) ◦ Hn(yk), because the slope of the secant of Fn ◦ H−n from hm2 to

Hn(xj) for any xj > ym2 is [Fn(xj) − Fn(ym2)]/[Hn(xj) − hm2 ] = 1/πn,

while the slope of the secant from any other z in the support of Hn is

[Fn(ym2) − Fn(z)]/[Hn(ym2) − Hn(z)] ≤ [Fn(ym2) − Fn(z)]/[πn{Fn(ym2) −

Fn(z)}] = 1/πn. Therefore, performing the GCM over [0, 1] rather than

[0, hm2 ] cannot change the value of the GCM for any u ≤ hm2 .

We now define F `
n(y) := GCM [0,1](Fn ◦ H−n ) ◦ Hn ◦ Ln, where Ln =

G−n ◦ Gn as above, so that F̄n is the right-continuous step function with

jumps at y1, . . . , ym2 and agreeing with F ∗n at these points. We similarly

define F u
n := GCM [0,1](Fn◦Hn)◦Hn◦Rn, where Rn := G−n ◦Ḡn for Ḡn(y) :=

1
n

∑n
i=1 I(Yi < y) + 1/n. Since the Yj’s are unique with probability one, Ḡn

is a left-continuous version of Gn that agrees at y1, . . . , ym2 , and Ḡn ≥ Gn.

Therefore, since any MLE F ∗n is a proper CDF, we have F `
n ≤ F ∗n ≤ F u

n . One

can show that ‖F `
n−Fn‖∞ = oP (n−1/2) and ‖F u

n −Fn‖∞ = oP (n−1/2) when

f0/g0 is strictly increasing using the same argument as that used above
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for showing that ‖G∗n − Gn‖ = oP (n−1/2). We then have ‖F ∗n − Fn‖∞ =

oP (n−1/2) as well.

Proof of Theorem 5. The conditions of Theorem 1 of Westling and Carone

(2020) are satisfied by the uniform consistency of empirical distribution

functions.

Proof of Theorem 6. This result follows by the delta method, as dis-

cussed in the text.
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S3 Additional simulations: discrete case

We now present results from a numerical study of the properties of the

maximum likelihood estimator in the case where both F0 and G0 are fully

discrete. We set F0 and G0 as the distribution functions of Poisson random

variables with rates 6 and 4, respectively, and we set π0 to 0.4. We simu-

lated 1000 datasets each for n ∈ {500, 1000, 5000, 10000} and estimated the

maximum likelihood estimator θ∗n, the empirical mass ratio function, defined

as the ratio of the empirical mass functions of X1, . . . , Xn1 and Y1, . . . , Yn2 ,

and the sample splitting estimators with m ∈ {5, 10, 20} (Banerjee et al.,

2019). We computed Wald-type confidence intervals (constructed around

log θ∗n and exponentiated) using the asymptotic variance provided in Sec-

tion 4.1 of the main text, likelihood ratio-based confidence intervals, and

confidence intervals around the sample splitting estimators as outlined in

Section 5 of the main text.

The left panel of Figure 2 displays the distribution of θ∗n(z)− θ0(z) for

z ∈ {0, 1, . . . , 6}, and demonstrates that θ∗n is approximately unbiased in

large samples. The right panel of Figure 2 displays the ratio of the empirical

standard deviation of n1/2[θ∗n(z) − θ0(z)] to the standard deviation based

on the asymptotic theory, and demonstrates that the empirical standard

deviation of θ∗n(z) approaches the standard deviation defined by the limit
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Figure 2: Left: boxplots of θ∗n(z) − θ0(z) with n = 10K in the fully discrete case.
Right: empirical standard errors of n1/2[θ∗n(z)− θ0(z)] divided by the limit theory-based
counterparts for z ∈ {0, 1, . . . , 10}.

theory as the sample size grows, and that θ∗n(z) is more efficient than the

limit theory suggests in smaller samples for small values of z.

Figure 3 displays the ratio of the mean squared errors of the empirical

and sample splitting estimators to that of the maximum likelihood esti-

mator. For the empirical estimator, this ratio approaches one as sample

size grows, which agrees with our theoretical result suggesting that the two

estimators are asymptotically equivalent. However, in small samples, the

maximum likelihood estimator has strictly smaller mean squared error than

the empirical estimator. The mean squared errors of the sample splitting

estimators also approach that of the maximum likelihood estimator as the

sample size grows, which is concurrent with existing theory for n−1/2-rate

asymptotics.



S3. ADDITIONAL SIMULATIONS: DISCRETE CASE

Figure 3: Relative mean squared errors of the empirical estimator and the sample split-
ting estimators to the maximum likelihood estimator for z ∈ {0, 1, . . . , 10} and various
sample sizes n in the fully discrete case. The maximum likelihood has better mean
squared error for y-values greater than one, and the other estimator has better mean
squared error for y-values less than one.

Figure 4 shows the empirical coverage of 95% confidence intervals for

θ0(z) constructed using Wald-type confidence intervals with a plug-in stan-

dard error according to the results presented in Section 4.1 of the main text,

the inverted likelihood ratio test approach of Banerjee and Wellner (2001),

and the sample splitting approach of Banerjee et al. (2019) described in the

main text. We note that the likelihood ratio approach does not provide

intervals at the end point z = 0. The plug-in method is conservative in

small samples, but its coverage approaches 95% for z 6= 0 as n grows. The
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Figure 4: Coverage of 95% CIs in the fully discrete case for z ∈ {0, 1, . . . , 10}, various
sample sizes n, and four methods: the plug-in method centered around the log of the
maximum likelihood estimator (upper left), the inverted likelihood ratio tests (upper
right), and the sample splitting method with m = 5 (lower left) and m = 10 (lower
right). Note that the likelihood ratio method does not provide intervals at the endpoints.

likelihood ratio method provides excellent coverage at all sample sizes. The

sample splitting method has good coverage in large enough sample sizes.
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S4 Additional simulations: continuous case

We now present results from a numerical study of the properties of the

maximum likelihood estimator in the case where both F0 and G0 are fully

continuous. We set F0 and G0 as the distribution functions of exponential

random variables with rates 1 and 2, respectively, and we set π0 to 0.4. We

simulated 1000 datasets each for n ∈ {500, 1000, 5000, 10000} and estimated

the maximum likelihood estimator, the maximum smoothed likelihood es-

timator of Yu et al. (2017), the non-monotone estimator based on kernel

density estimates for each z ∈ {0, 0.1, . . . , 1.9, 2}, and the sample splitting

estimator with m ∈ {5, 10, 20} (Banerjee et al., 2019). We constructed

confidence intervals at each z using the transformed plug-in and likelihood

ratio-based methods described in Section 4.2 of the main text.

Figure 5: Left: boxplots of θ∗n(z) − θ0(z) with n = 10K in the fully continuous case.
Right: empirical standard errors of n1/2[θ∗n(z)− θ0(z)] divided by the limit theory-based
counterparts for z ∈ [0, 2].



TED WESTLING, KEVIN J DOWNES, AND DYLAN S SMALL

The left panel of Figure 5 displays the distribution of θ∗n(z) − θ0(z)

for z ∈ [0, 2], and demonstrates that the sampling distribution of θ∗n is

approximately centered around θ0(z) in large samples for z > 0. The right

panel of Figure 5 displays the ratio of the empirical standard deviation of

n1/2[θ∗n(z)−θ0(z)] to the standard deviation based on the asymptotic theory,

and demonstrates that the empirical standard deviation of θ∗n(z) approaches

the standard deviation defined by the limit theory as the sample size grows.

Figure 6: Relative mean squared errors of the maximum smoothed likelihood estimator,
the kernel density estimator, and the sample splitting estimators to the maximum like-
lihood estimator for z ∈ [0, 2] and various sample sizes n in the fully continuous case.
The maximum likelihood has better mean squared error for y-values greater than one,
and the other estimator has better mean squared error for y-values less than one.

Figure 6 displays the ratio of the mean squared errors of maximum
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smoothed likelihood estimator, the kernel density estimator, and the sam-

ple splitting estimators to the maximum likelihood estimator. The max-

imum smoothed likelihood estimator is more efficient than the maximum

likelihood estimator. The kernel density estimator is more efficient for some

values of z, but less efficient for others. In large enough samples, the sample

splitting estimators are more efficient than the maximum likelihood estima-

tor, but in smaller samples, they are less efficient for some values of z. The

sample size required for improvement grows with m, as does the gain in

asymptotic efficiency.

Finally, Figure 7 shows the empirical coverage of 95% confidence in-

tervals for θ0(z) constructed using Wald-type confidence intervals with a

plug-in standard error according to the results presented in Section 4.2 of

the main text, the inverted likelihood ratio test approach of Banerjee and

Wellner (2001), and the sample splitting approach of Banerjee et al. (2019)

described in the main text. The plug-in method is conservative in large

enough samples due to the difficulty of accurately estimating the derivative

of θ0. The likelihood ratio method provides slightly conservative coverage

at all sample sizes. The sample splitting method has excellent coverage for

m = 5, but requires larger samples to have good coverage for m = 10.
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Figure 7: Coverage of 95% CIs in the fully continuous case for z ∈ (0, 2], various sample
sizes n, and four methods: the plug-in method (upper left), the inverted likelihood ratio
tests (upper right), and the sample splitting method with m = 5 (lower left) and m = 10
(lower right).
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S5 Additional simulations: flat case with jumps

Here we present results from a numerical study of the properties of the

various estimators in the case where F0 and G0 are mixed distributions,

and θ0 = dF0/dG0 is discontinuous. We set F0 := (2/3)F c
0 + (1/3)δ0, where

F c
0 is the uniform distribution on [0, 1] and δ0 is a discrete distribution with

mass 1/6 at 0, 1/3 at 1/2, and 1/2 at 1. We set G0 := (2/3)F c
0 + (1/3)γ0,

where γ0 is a discrete distribution with mass 1/3 each at 0, 1/2, and 1. We

set π0 to 0.4.

With these definitions, we have θ0(x) = 1/2 for x = 0, θ0(x) = 1

for x ∈ (0, 1), and θ0(x) = 3/2 for x = 1. Hence, θ0 has jumps at the

extremal mass points x = 0 and x = 1, and is flat between these mass

points. Therefore, our large-sample theory does not cover this case for two

reasons: because θ0 is flat in the interior, and because it is discontinuous at

the boundaries.

We simulated 1000 datasets each for n ∈ {500, 1000, 5000, 10000} and

estimated the maximum likelihood estimator, the maximum smoothed like-

lihood estimator of Yu et al. (2017), the non-monotone estimator based

on kernel density estimates for each z ∈ {0, 0.1, . . . , 1.9, 2}, and the sample

splitting estimator with m ∈ {5, 10} (Banerjee et al., 2019). We constructed

confidence intervals at each z using the transformed plug-in and likelihood
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ratio-based methods described in Section 4.2 of the main text. We were un-

able to use the plug-in method of constructing confidence intervals because

it failed in this case due to the difficulty of estimating the derivative of a

flat function.

Figure 8: Boxplots of θ∗n(z)−θ0(z) with n = 10K in the flat case with jumps for z ∈ [0, 1].

Figure 8 displays the distribution of θ∗n(z) − θ0(z) for z ∈ [0, 1]. The

pattern is quite interesting. For z ∈ {0, 1}, the estimator appears to be

centered around the truth. This suggests that the estimator may be consis-

tent at mass points even if the function is discontinuous at these points or

these points lie on the boundary of the domain. However, for z ∈ (0, 0.25),

the distribution of θ∗n(z) is biased downward, and for z ∈ (0.75, 1), the dis-

tribution is biased upward. This is likely due to the discontinuity of θ0 at 0

and 1: although the estimator is consistent for any z ∈ (0, 1), in any finite

sample the estimator is flat in a region of the discontinuity, which biases the
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finite-sample distribution of the estimator near these discontinuities. We

will see below that this also makes inference in these areas challenging.

Figure 9: Relative mean squared errors of the maximum smoothed likelihood estimator,
the kernel density estimator, and the sample splitting estimators to the maximum like-
lihood estimator for z ∈ [0, 1] and various sample sizes n in the flat case with jumps.
.

Figure 9 displays the ratio of the mean squared errors of maximum

smoothed likelihood estimator, the kernel density estimator, and the sample

splitting estimators to the maximum likelihood estimator. The maximum

smoothed likelihood estimator is comparable to the maximum likelihood es-

timator for n ∈ {500, 1000}, but is less efficient for most z in larger samples.

This is especially true for z ∈ {0, 1}, where the maximum likelihood estima-

tor appears to benefit from the mass points. The kernel density estimator
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is less efficient, and in large samples much less efficient, for all z except

those very close to 0 and 1. Somewhat surprisingly, the sample splitting

estimators are less efficient than the maximum likelihood estimator except

for z near the mass points. This is likely due to the fact that the sample

splitting estimator inherit the bias of the maximum likelihood estimator at

a smaller sample size, and the maximum likelihood estimator is biased near

the points of discontinuity.

Figure 10: Coverage of 95% CIs in the flat case with jumps for z ∈ [0, 1], various sample
sizes n, and three methods: the inverted likelihood ratio tests (left) and the sample
splitting method with m = 5 (middle) and m = 10 (right).

Finally, Figure 10 shows the empirical coverage of 95% confidence inter-

vals for θ0(z) constructed using the inverted likelihood ratio test approach of

Banerjee and Wellner (2001) and the sample splitting approach of Banerjee

et al. (2019) described in the main text. None of the methods do well near
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z ∈ {0, 1} due to the bias of the estimators in these regions. The likelihood

ratio method provides conservative coverage at all sample sizes for z near

1/2, which is because it relies on limit theory that only holds when θ0 is

strictly increasing. The sample splitting method has good coverage for z at

the mass points {0, 1/2, 1}, but poor coverage otherwise.
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S6 Additional data analysis results

Figure 11 displays the empirical and likelihood ratio order maximum like-

lihood cumulative distribution function estimates of C-reactive protein for

patients with bacterial infections and those without. Figure 12 displays the

empirical and likelihood ratio order maximum likelihood ordinal dominance

curve estimates for C-reactive protein.

Figure 11: Estimated cumulative distribution functions of C-reactive protein value
among patients with bacterial infections and those without. Both the empirical dis-
tribution functions and the maximum likelihood estimators under the likelihood ratio
order are shown.
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