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S1 Proof of Lemma 1

Let {τ1, . . . , τd+P} be a sequence in [0, T ] such that τj = tj−(d+1)/2 when

d is odd, and τj = (tj−(d+2)/2+ tj−d/2)/2 when d is even. Here we set tj = t0

if j < 0, and tj = tP if j > P . Let bs, j = β(τj). By this construction, it

immediately follows that bj = 0 if Bj(t) entirely lies inside the null region

N(β). Let E = {t : |t−ui| ≥ (d+1)P−1, |t−vi| ≥ (d+1)P−1, i = 1, . . . , q}.

An argument similar to the one used on pages 146 and 147 of de Boor (2001)

shows that |β(t) − βS(t)| < cP−1 holds uniformly on E for some constant

c > 0. By assumption (A1), β is bounded and has finite active intervals.

Supposing that β has K active intervals, by direct calculation, it follows

that

∥β(t)− βS(t)∥22 =
∫
E

[β(t)− βS(t)]
2 dt+

∫
Ec

[β(t)− βS(t)]
2 dt

≤ T × c2P−2 + λ∗(Ec)× 4max{[β(t)]2 : t ∈ [0, T ]}

≤ (c2T )P−2 + 8K(d+ 1)P−1max{[β(t)]2 : t ∈ [0, T ]},

which completes the proof.

S2 Proof of Theorem 1

We only give the proof of the case that M is the full model. The proof

is almost identical for general M which includes all non-zero bj. We first
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introduce some useful properties of B-spline basis functions. Let ⟨·, ·⟩ denote

the L2 inner product on [0, T ]. Recall that Jm is an (d+P )×(d+P ) matrix

with entries (Jm)ij = ⟨DmBi, D
mBj⟩. Letting ∥·∥ denote the spectral norm

of a matrix, we have the following result.

Lemma 1. For m ∈ [0, d], ∥Jm∥ = Θ(P 2m−1).

Proof. We first prove the result when m = 0. The B-spline basis functions

form a partition of unity, that is,
∑d+P

j=1 Bj(t) = 1 for all t ∈ [0, T ]. See page

89 of de Boor (2001) for details. From this, we have ⟨
∑d+P

j=1 Bj,
∑d+P

j=1 Bj⟩ =

1, which implies ∥Jm∥ = Ω(P−1).

It remains to prove ∥Jm∥ = O(P−1). Owning to the compact support

property, it immediately follows that ⟨
∑d+P

j=1 Bj, Bi⟩ ≤ (d+ 1)P−1 for each

i, which implies that the row sums of J0 are less than or equal to (d+1)P−1.

Then ∥Jm∥ = O(P−1) follows from the fact that the largest eigenvalue of

∥Jm∥ is less than or equal to its largest row sum. See Theorem 8.1.22 of

Horn and Johnson (2013).

When m > 0, the mth derivative of Bi(t) is a linear combination of

B-spline basis functions of degree d−m. See page 116 of de Boor (2001) for

details. The reminder of the proof is straightforward and so is omitted.

For simplicity of notation, we first assume the intercept a = 0. In this
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case, the spline estimator b̂ is given by

b̂ = argmin
b∈Rd+P

{
1

n
(Y −Zb)T (Y −Zb) + λnb

TJmb

}
. (S2.1)

We now prove ∥b̂− bS∥ = Op(1) where bS is defined in Section S1.

Let Σ(s, t) = Cov[X(s), X(t)] be the covariance function of the func-

tional predictor X(t), and Σn(s, t) be the sample version of Σ(s, t) defined

by

Σn(s, t) =
1

n

n∑
i=1

(Xi(s)− X̄(s))(Xi(t)− X̄(t)).

As Σ(s, t) is a positive (or semi-positive) definite operator on L2([0, T ]),

with slight abuse of notation, for some f ∈ L2([0, T ]), write

(Σf)(t) =

∫ T

0

Σ(s, t)f(s) dt .

The inner product and the norm induced by Σ(s, t) are defined as ⟨f, g⟩Σ =∫ T

0
(Σf)(t)g(t) dt and ∥f∥Σ = [

∫ T

0
(Σf)(t)f(t) dt]1/2, respectively. Similarly,

we define (Σ̂nf)(t) =
∫ T

0
Σn(s, t)f(s) dt, ⟨f, g⟩Σ̂n

= ⟨Σ̂nf, g⟩, and ∥f∥Σ̂n
=

⟨Σ̂nf, f⟩. In addition, we denote the spectral norm of Σ and Σn by ∥Σ∥

and ∥Σn∥, respectively.

Let Q(b) be the loss function in (S2.1), and write Q(b) = l(b)+λnb
TJ2b.
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We have

l(b) =
1

n
(Y −Zb)T (Y −Zb)

=
1

n

n∑
i=1

[∫ T

0

Xi(t)(β(t)−BT (t)b) dt+ εi

]2
= ∥β −BTb∥2Σn

+
2

n

n∑
i=1

εi⟨β −BTb, Xi(t)⟩+
1

n

n∑
i=1

ε2i .

The gradient of Q(b) is

∇Q(b) = 2⟨BT , BTb− β⟩Σn − 2

n

n∑
i=1

⟨BT , εiXi⟩+ 2λnJmb. (S2.2)

Let H be an (d + P ) × (d + P ) matrix with entries (H)ij = ⟨Bi, Bj⟩Σn .

Then the Hessian matrix of Q(b) is

∇2Q(b) = 2H + 2λnJm,

which does not depend on b. Noting that H = n−1ZTZ, under assumptions

(A2) and (A4), it is not hard to see that ∇2l(b) is strictly positive definite

and

uT [∇2l(b)]u = ∥u∥2Ω(P−1) (S2.3)

holds for any non-zero u ∈ Rd+P . So Q(b) is a strictly positive definite

quadratic form with respect to b, which ensures the existence and unique-

ness of the minimizer.

We are now turning to the gradient of Q(b). At the point b = bS, we

have the following result.
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Lemma 2. For non-zero u ∈ Rd+P , [∇l(bS)]
Tu = ∥u∥Op(P

−1).

Proof. We prove this lemma by deriving the asymptotic result for each term

on the right side of (S2.2) at b = bS. For the first term, by using Cauchy-

Schwarz inequality, we have

⟨BT , BTb− β⟩Σnu ≤ ∥BTu∥2 × ∥BTb− β∥2∥Σn∥

≤ ∥u∥ ×O(P−1/2)× (c1P )−1/2 × ∥Σn∥,

where the last inequality results from Lemma 1 and Lemma 1 in the main

paper. By assumption (A3), ∥Σ∥ is bounded. According to Proposition 1

of Dauxois et al. (1982), Σn converges uniformly almost surely to Σ under

assumption (A3). So we have

⟨BT , BTbS − β⟩Σnu = ∥u∥Op(P
−1). (S2.4)

For the second term, under assumption (A3), by the central limit the-

orem, it follows that n−1/2
∑n

i=1 εiXi(t) converges in distribution to a zero-

mean Gaussian random element in L2([0, T ]). Then using Cauchy-Schwarz

inequality and Lemma 1 gives

1

n

n∑
i=1

⟨BT , εiXi⟩u ≤ n−1/2∥BTu∥2 ×

∥∥∥∥∥n−1/2

n∑
i=1

εiXi

∥∥∥∥∥
2

= ∥u∥Op(n
−1/2P−1/2). (S2.5)

For the last term, we have ∥bS∥2 = O(P 1/2) by the construction of bS
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and ∥Jm∥2 = O(P 2m−1) from Lemma 1. Then under assumption (A4), by

using Cauchy-Schwarz inequality, it follows that

∥λnJmbS∥2 ≤ λn∥Jm∥2 × ∥bS∥2 (S2.6)

= o(P−2m−1)×O(P 2m−1)×O(P 1/2) = o(P−3/2).

Combining this with (S2.4) and (S2.5) gives the desired result.

By using Lemma 2 and (S2.3), we have

Q(bS + u)−Q(bS) = ∇l(bS)u+
1

2
uT∇2l(bS)u

= ∥u∥ ×Op(P
−1) + ∥u∥2 × Ω(P−1).

So if ∥u∥ = ω(1) as P, n → ∞, then Q(bS + u) − Q(bS) > 0 holds in

probability. This means the minimizer b̂ in (S2.1) must satisfies ∥b̂−bS∥ =

Op(1). By the triangle inequality, it follows that

∥β̂ − β∥2 ≤ ∥[BT
dP b̂−BT

dPbS∥2 + ∥[BT
dPbS − β∥2

= [(b̂− bS)
TJ0(b̂− bS)]

1/2 + ∥[BT
dPbS − β∥2

= Op(P
−1/2) +O(P−1/2)

= Op(P
−1/2),

where the third equality results from Lemma 1 and Lemma 1 in the main

paper.



8Yunxiang Huang AND Qihua Wang

When a ̸= 0, an argument similar to above can show that besides

∥β̂ − β∥22 = Op(P
−1), |â− a| = Op(P

−1/2) also holds.

S3 Proof of Theorem 2

Obviously, Theorem 2 holds trivially when β(t) is identical to zero on

[0, T ]. In what follows we assume that β is active on finite intervals.

Under assumptions (A1) and (A3), by the construction of βS(t) in Sec-

tion S1, it follows that

µi =

∫ T

0

Xi(t)βS(t) dt+

∫ T

0

Xi(t)[β(t)−βS(t)] dt =: ZibS +µbias, i, (S3.1)

with µbias, i = O(P−1/2) for all i.

We first give a sufficient condition for the underfitted models in M

such that the mean squared biases of the smoothing spline estimator for µ

dominate P−1.

Lemma 3. If ∥bS(M c)∥2 = Ω(P δ) holds for some δ ≥ 0, then

∆n(M) =:
1

n
∥µ−H(M)µ∥2 = Ω(P−1+δ). (S3.2)

Proof. Observing [I − H(M)][Z(M)bS(M)] = 0 and that [I − H(M)] is
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idempotent, we have

1

n
∥µ−H(M)µ∥2 (S3.3)

=
1

n
∥[I −H(M)][Z(M)bS(M) +Z(M c)bS(M

c) + µbias]∥2

≥ 1

n
∥[I −H(M)][Z(M c)bS(M

c)]∥2 + 2

n
µT

bias[I −H(M)]Z(M c)bS(M
c).

For the first term on the right side of the last inequality of (S3.3), we have

1

n
∥[I −H(M)][Z(M c)bS(M

c)]∥2

=
1

n
bTS (M

c){ZT (M c)Z(M c)

−ZT (M c)Z(M)(ZT (M)Z(M))−1Z(M)TZ(M c)}bS(M c).

Let A = ZT (M c)Z(M c), B = ZT (M c)Z(M), C = ZT (M)Z(M). Accord-

ing to the inverse of a partitioned matrix formula for Hermitian matrices

on page 472 of Horn and Johnson (2013), A B

BT C


−1

=

 (A−BCBT )−1 A−1B(BTA−1B − C)−1

(BTA−1B − C)−1BTA−1 (C −BTAB)−1

 ,

it is not hard to see that the minimum eigenvalue of (A − BC−1BT ) is

Θp(nM
−1) under condition (A2). As a result, we have, for all M satisfying

∥bS(M c)∥2 = Ω(P δ),

1

n
∥[I −H(M)][Z(M c)bS(M

c)]∥2 = 1

n
∥bS(M c)∥2Θ(nP−1) = Ω(P−1+δ).

(S3.4)
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For the last term on the right side of the last inequality of (S3.3), by using

the Cauchy–Schwarz inequality, we have, for all M satisfying ∥bS(M c)∥2 =

Ω(P δ),

|µT
bias[I −H(M)]Z(M c)bS(M

c)|
∥[I −H(M)][Z(M c)bS(M c)]∥2

(S3.5)

≤ ∥µbias∥ × ∥[I −H(M)][Z(M c)bS(M
c)]∥

∥[I −H(M)][Z(M c)bS(M c)]∥2

=
n−1/2∥µbias∥

n−1/2∥[I −H(M)][Z(M c)bS(M c)]∥

=
O(P−1/2)

Ω(P−1/2+δ/2)
= O(P−δ/2).

Combining (S3.3)–(S3.5) gives the desired result.

Lemma 4. Let M1 denote a subset of M such that dim(M0 \M) = Θ(P )

for each M ∈ M1. It follows that ∥b(M c)∥2 = Ω(P ) for M ∈ M1 and

hence ∆n(M) = Ω(1) by using Lemma 3.

Proof. By the construction of bS, the behavior of P−1
∑j1

k=j0
b2k for j1 ≥ j0

is analogy to a Riemann sum. Under assumption (A1), one can verify

that P−1
∑j1

k=j0
b2k =

∫ τ(j1)

τ(j0)
[β(t)]2 dt + O(P−1) for all j0 − (d + 1)/2 ≥ 1,

j1 − d/2 ≤ P , and (τ(j0), τ(j1)) ∈ A(β) where τj is defined in Section S1.

Now ∥b(M c)∥2 = Ω(P ) follows immediately from the fact that for a given

l > 0, there exists a C(l) > 0 such that

inf
E⊂A(β), λ∗(E)≥l

[∫
E

(β(t))2 dt

]
≥ C(l). (S3.6)
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Next, we show that the within-sample mean squared error of the spline

estimator and that of the least squares estimator are close as (P, n) → ∞.

Lemma 5. The following result holds uniformly for all M ∈ M:∣∣∣∣ 1n∥(I −H(M))Y ∥2 − 1

n
∥(I −Hλn(M))Y ∥2

∣∣∣∣ = op(P
−1),

where H(M) = Z(M)[ZT (M)Z(M)]−1ZT (M).

Proof. The following proof works uniformly over M ∈ M. For brevity,

we shall drop M in parentheses in this proof. By assumption (A2), it

is apparent that all the eigenvalues of n−1ZT (M)Z(M) lie in the interval

[c2P
−1, c3P

−1] for any M ∈ M. According to Section 5.8 in Horn and

Johnson (2013), it follows that

∥(ZTZ + nλnJm)
−1 − (ZTZ)−1∥ ≤ ∥(ZTZ)−1∥2∥nλnJm∥

1− ∥(ZTZ)−1(nλnJm)∥

=
O(P 2n−2)×O(nλnP

2m−1)

1−O(Pn−1)× (nλnP 2m−1)
=

O(n−1λnP
2m+1)

1−O(λnP 2m)
= o(n−1),

and hence

∥(ZTZ + nλnJm)
−1(ZTZ)(ZTZ + nλnJm)

−1 − (ZTZ + nλnJm)
−1∥

= ∥(ZTZ + nλnJm)
−1[(ZTZ)(ZTZ + nλnJm)

−1 − I]∥

≤ ∥(ZTZ + nλnJm)
−1∥ × ∥(ZTZ)∥ × ∥(ZTZ + nλnJm)

−1 − (ZTZ)−1]∥

= o(n−1).
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Observing that H2 = H , we have∣∣∣∣ 1n∥(I −H)Y ∥2 − 1

n
∥(I −Hλn)Y ∥2

∣∣∣∣
=

1

n

∣∣−Y THY + 2Y THλnY − Y TH2
λn
Y
∣∣

≤ 1

n
|Y T (H −Hλn)Y |+ 1

n
|Y T (Hλn −H2

λn
)Y |

=
1

n
Y TZ

[
(ZTZ + nλnJm)

−1 − (ZTZ)−1
]
ZTY

+
1

n
Y TZ

[
(ZTZ + nλnJm)

−1(ZTZ)(ZTZ + nλnJm)
−1

−(ZTZ + nλnJm)
−1
]
ZTY

≤ 1

n
∥ZTY ∥2

∥∥(ZTZ + nλnJm)
−1 − (ZTZ)−1

∥∥
+

1

n
∥ZTY ∥2

∥∥(ZTZ + nλnJm)
−1(ZTZ)(ZTZ + nλnJm)

−1

−(ZTZ + nλnJm)
−1
∥∥

=
1

n
Y TZZTY × o(n−1)

≤ 1

n
Y TY × ∥ZTZ∥ × o(n−1)

= op(P
−1),

where the last equality results from the law of large numbers.

Write Ln(M) = n−1∥µ−H(M)Y ∥, and

Rn(M) = E(Ln(M)) = ∆n(M) +
1

n
σ2 dim(M).

The following lemma provides an asymptotic expression for FICf(M), which

is crucial to our approach.
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Lemma 6. Under assumptions (A1) – (A8), the following result holds

uniformly for M ∈ M:

FICf(M) = Ln(M) +
1

n
∥ε∥2 − 2

n
σ2 dim(M) (S3.7)

+
1

n
σ̂2pP, n(dim(M)) + op(Ln(M)) + op(P

−1).

When ε is Gaussian, assumption (A6) can be replaced by (A6′).

Proof. By Lemma 5, we have

FICf(M) =
1

n
∥(I −H(M))(µ+ ε)∥2 + 1

n
σ̂2pP, n(dim(M)) + op(P

−1)

= Ln(M) +
1

n
∥ε∥2 − 2

n
εTH(M)ε+

2

n
εT (I −H(M))µ

+
1

n
σ̂2pP, n(dim(M)) + op(P

−1),

holds uniformly for all M ∈ M. Now it suffices to prove

max
M∈M

∣∣∣∣Rn

Ln

− 1

∣∣∣∣ p→ 0, (S3.8)

max
M∈M

∣∣∣∣σ2 dim(M)− εTH(M)ε

nRn

∣∣∣∣ p→ 0, (S3.9)

and

max
M∈M

∣∣∣∣εT (I −H(M))µ

nRn(M)

∣∣∣∣ p→ 0. (S3.10)

Note that (S3.8) is a direct consequence of (S3.9) and (S3.10). So it suffices

to prove (S3.9) and (S3.10).
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Recall that each M ∈ M satisfies assumption (A5), which implies that

there are at most polynomial rate of candidate models in M. As a conse-

quence, under assumption (A7), it follows that

∑
M∈M

1

[nRn(M)]l
p→ 0. (S3.11)

Now under (S3.11), (S3.9) and (S3.10) can be shown in a similar way on

page 970 of Li (1987).

In the case that ε is Gaussian and assumption (A6) is replace by (A6′),

denoting the cardinality of candidate model set M by card(M), we have

card(M) = o(2M). Then it is not hard to verify that

∑
M∈Mn

δnRn(M) → 0, (S3.12)

for any 0 < δ < 1 when β(t) is not identical to zero. Now, (S3.9) can be

shown by using Lemma 2.1 in Shibata (1981), and the derivation of (S3.10)

is analogous that of equation (2.4) in Shibata (1981).

We are now in a position to complete the proof. Let M0 ∈ M be the

largest model satisfying inf{|bS(j)| : j ∈ M0} > 0. By the construction

of βS(t), we have λ∗{N(β)△ N(M0)} → 0 as (P, n) → ∞. Therefore, to

develop the region selection consistency of N(M̂), it suffices to prove

λ∗[N(M0)△N(M̂)] = op(1). (S3.13)
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Since Ln(M) = ∆n(M) + n−1εTHε = ∆n(M) + Op(n
−1P ), by using

Theorem 1, it follows that Ln(M0) = Op(P
−1). Using Lemma 6 and as-

sumption (A9.3), we have the following result:

min
M∈M1

[
FICf(M)− 1

n
∥ε∥2

]
−
[
FICf(M0)−

1

n
∥ε∥2

]
(S3.14)

= min
M∈M1

[
Ln(M)− 2

n
σ2 dim(M) +

1

n
σ̂2pP, n(dim(M)) + op(Ln(M))

]
−

[
Ln(M0)−

2

n
σ2 dim(M0) +

1

n
σ̂2pP, n(dim(M0)) + op(Ln(M0))

]
+ op(P

−1)

= min
M∈M1

{
[Ln(M) + op(Ln(M))]−

[
2

n
σ2(dim(M)− dim(M0))

]
+

[
1

n
σ̂2pP, n(dim(M))− 1

n
σ̂2pP, n(dim(M0))

]}
− [Ln(M0) + op(Ln(M0))] + op(P

−1)

= min
M∈M1

[Ln(M) + op(Ln(M))]

+O(Pn−1) + op(1) +Op(P
−1) + op(P

−1).
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By using (S3.9), we have

max
M∈M

∣∣∣∣εTH(M)ε

nLn

∣∣∣∣ (S3.15)

≤ max
M∈M

∣∣∣∣εTH(M)ε

nRn

∣∣∣∣× max
M∈M

∣∣∣∣Ln

Rn

∣∣∣∣
≤

[
max
M∈M

∣∣∣∣σ2 dim(M)− εTH(M)ε

nRn

∣∣∣∣+ max
M∈M

∣∣∣∣σ2 dim(M)

nRn

∣∣∣∣]
×

[
max
M∈M

∣∣∣∣Ln

Rn

− 1

∣∣∣∣+ 1

]
=

[
op(1) + max

M∈M

∣∣∣∣σ2 dim(M)

nRn

∣∣∣∣]× [op(1) + 1].

Hence on M1 we have

max
M∈M1

∣∣∣∣εTH(M)ε

nLn

∣∣∣∣ = op(1). (S3.16)

Combining (S3.9) and (S3.10) gives

max
M∈M

∣∣∣∣εT (I −H(M))µ

nLn(M)

∣∣∣∣ p→ 0. (S3.17)

Then by using (S3.16) and (S3.17), we have

max
M∈M1

∣∣∣∣∆n(M)

Ln(M)
− 1

∣∣∣∣ = max
M∈M1

∣∣∣∣2εT (I −H(M))µ− εTH(M)ε

nLn(M)

∣∣∣∣. = op(1).

(S3.18)

Therefore for M ∈ M1, it follows that Ln(M) = ∆n(M) + op(1) = Θp(1)

holds uniformly and hence FICf(M) − FICf(M0) > 0 also holds uniformly

in probability as P, n → ∞.

On the other hand, let M2 be a subset of M\M1 such that dim(M)−
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dim(M0) = Θ(P ) for each M ∈ M2. Again, as P, n → ∞, we have

min
M∈M2

[
FICf(M)− 1

n
∥ε∥2

]
−

[
FICf(M0)−

1

n
∥ε∥2

]
(S3.19)

= min
M∈M2

[
Ln(M)− 2

n
σ2 dim(M) +

1

n
σ̂2pP, n(dim(M))

]
−

[
Ln(M0)−

2

n
σ2 dim(M0) +

1

n
σ̂2pP, n(dim(M0))

]
+ op(Ln(M)) + op(Ln(M0)) + op(P

−1)

≥ min
M∈M2

{
1

n
σ̂2[pP, n(dim(M))− pP, n(dim(M0))]

− 2

n
[dim(M)− dim(M0)]

}
+ op(1).

By assumption (A9.2), it is not hard to verify that FICf(M)−FICf(M0) > 0

holds uniformly on M2 in probability as (P, n) → ∞. From Lemma 4, we

have dim(M0 \M) = o(P ) on M\M1. As a result, for M ∈ M2,

dim(M \M0) = dim(M)− dim(M0) + dim(M0 \M)

= dim(M)− dim(M0) + o(P ),

which implies for M ∈ M2, dim(M)− dim(M0) = Θ(P ) also holds.

To summarize, we have proved that

min
M∈M1∪M2

[FICf(M)] > FICf(M0)

holds in probability as P, n → ∞, which implies that P{M̂ ∈ [M\ (M1 ∪

M2)]} → 1. Consequently, dim(M0\M̂) = op(P ) and dim(M̂\M0) = op(P )
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hold simultaneously and hence (S3.13) holds immediately, which completes

the proof.

S4 Proof of Theorem 3

We first assume Ln = Θ(1). The following result is a sharp version of

Lemma 4.

Lemma 7. Let M1(δ1) denote a subset of M such that for any for M ∈

M1(δ1), dim(M0 \ M) = Ω(P (2p+δ1)/(2p+1)) holds for some 0 < δ1 < 1. It

follows that ∥b(M c)∥2 = Ω(P δ1) for M ∈ M1(δ1) and hence ∆n(M) =

Ω(P−1+δ1) by using Lemma 3.

Proof. Recall that each M ∈ M satisfies assumption (A5). If M excludes

some adjacent bk’s inside an active interval, it immediately follows that

dim(M0 \ M) = Θ(P ), and the desired result holds by using Lemma 4.

Consequently, we only need to consider the case that M excludes some

adjacent bk’s at the boundary between an active interval and a null interval.

Suppose that there are k = Ωp(P
(2p+δ1)/(2p+1)) adjacent (bj, . . . , bj+k) such

that bj−1 ∈ M c
0 and bj+k+1 ∈ M0, or bj−1 ∈ M0 and bj+k+1 ∈ M c

0 . When

bj−1 ∈ M c
0 and bj+k+1 ∈ M0, by assumption (A10), it follows that

j+k∑
l=j

b2l = Ω

[
j+k∑
l=j

(P−1(l − j + 1))2p

]
= Ω(P−2pk2p+1) = Ω(P δ1).
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The proof when bj−1 ∈ M0 and bj+k+1 ∈ M c
0 is identical.

Now we are ready to prove Theorem 3. The proof is similar to that of

Theorem 2. For any 0 < δ1 < 1, as P, n → ∞, by using (S3.14), we have

min
M∈M1(δ1)

[
FICf(M)− 1

n
∥ε∥2

]
−

[
FICf(M0)−

1

n
∥ε∥2

]
= min

M∈M1(δ1)

{
[Ln(M) + op(Ln(M))]−

[
2

n
σ2(dim(M)− dim(M0))

]
+

[
1

n
σ̂2pP, n(dim(M))− 1

n
σ̂2pP, n(dim(M0))

]}
− [Ln(M0) + op(Ln(M0))] + op(P

−1)

= min
M∈M1(δ1)

[Ln(M) + op(Ln(M))] +O(P (2p+δ1)/(2p+1)n−1)

+ op(P
−1+δ1) +Op(P

−1) + op(P
−1)

= min
M∈M1(δ1)

[Ln(M) + op(Ln(M))] + op(P
−1+δ1),

where the second inequality is due to assumption (A11.2). Using Lemma 7,

we have ∆n(M) = Ω(P−1+δ1). An argument similar to the one used in the

proof of (S3.18) shows that

max
M∈M1(δ1)

∣∣∣∣∆n(M)

Ln(M)
− 1

∣∣∣∣
= max

M∈M1(δ1)

∣∣∣∣2εT (I −H(M))µ− εTH(M)ε

nLn(M)

∣∣∣∣ = op(1).

Then it follows that P(M̂ ∈ M1(δ1))
p→ 0 for any 0 < δ1 < 1.

Otherwise, let M2(δ1) be a subset of M\M1(δ1) such that dim(M)−

dim(M0) = Ω(P (2p+δ1)/(2p+1)) for each M ∈ M2. By the definition of
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M1(δ1) in Lemma 7, it follows that dim(M0 \ M) = op(P
(2p+δ1)/(2p+1))

on M ∈ M \M1(δ1). As a result, for M ∈ M2(δ1),

dim(M \M0) = (dim(M)− dim(M0)) + dim(M0 \M)

= (dim(M)− dim(M0)) + o(P (2p+δ1)/(2p+1)),

which means dim(M)−dim(M0) = Ω(P (2p+δ1)/(2p+1)) if and only if dim(M \

M0) = Ω(P (2p+δ1)/(2p+1)) for M ∈ M2(δ1). Again, as P, n → ∞, we have

min
M∈M2(δ1)

[
FICf(M)− 1

n
∥ε∥2

]
−
[
FICf(M0)−

1

n
∥ε∥2

]
= min

M∈M2(δ1)

[
Ln(M) +

1

n
σ̂2pP, n(dim(M)) + op(Ln(M))

]
−

[
Ln(M0) +

1

n
σ̂2pP, n(dim(M0))

]
+Op(P

−1)

≥ min
M∈M2(δ1)

[
1

n
σ̂2(pP, n(dim(M))− pP, n(dim(M0)))

]
− Ln(M0) +Op(P

−1)

≥ 1

n
σ̂2
[
pP, n

(
dim(M0) + ω(P 2p/(2p+1))

)
− pP, n(dim(M0))

]
+Op(P

−1),

where the second last inequality results from the monotonicity of pP, n(M).

By using assumption (A11.1), it follows that P(M̂ ∈ M2(δ1))
p→ 0 for any

0 < δ1 < 1.

To summarize, we have proved that

P{M̂ ∈ [M\ (M1(δ1) ∪M2(δ1))]}
p→ 1,

for any 0 < δ1 < 1. Note that he case that δ1 = 1 has been proved in

Theorem 2 and hence the desired result follows.
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We now turn to the case that ε is Gaussian and Ln = o(1). By using

assumptions (A12.1) and (A12.2), a similar argument shows that the prob-

ability of that M excludes some adjacent bk inside an active interval also

goes to zero as (P, n) → ∞. The rest of the proof is similar to the proof of

Theorem 2 when ε is Gaussian. The details will not be reproduced here.

S5 Additional Simulations

We consider the following three additional models.

Case III No signal. β(t) = 0.

Case IV β(t) = 7t3 + 2 sin(4πt+ 0.2). As β is active on [0, 1] and crosses

zero twice, this is the case that does not favor the FICf procedure

and one does not expect FICf to identify to any null region.

Case V We set

β(t) =



0, 0 ≤ t ≤ 0.25,

1600(t− 0.25)2, 0.25 < t ≤ 0.3,

−20t+ 10, 0.3 < t ≤ 0.7,

−1600(t− 0.75)2, 0.7 < t < 0.75,

0, 0.75 ≤ t ≤ 1.
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In this case, β is not differentiable everywhere on the interior of

the active region, and β(t) = β′(t) = 0 at the boundaries of the

null region.

For case III, ε follows the standard normal distribution. Other settings are

same as those in Section 4 in the main paper.

We use the following two indicators to respectively measure the estima-

tion accuracy and the prediction accuracy: integrated squared estimating

error of β̂ for the selected model,

ISE =

∫ T

0

{β̂(t) I[t ∈ A(M̂)]− β0(t)}2 dt , (S5.1)

and average squared prediction errors of the selected model,

ASPE =
1

N

N∑
i=1

{∫ T

0

X ′
i(t)(β̂(t) I[t ∈ A(M̂)]− β0(t)) dt+ (â− a)

}2

,

(S5.2)

where X ′
i, i = 1, . . . , N are independent copies of X and we set N = 1000

in our simulations.

Tables 1–3 present summaries of ∆λ∗
β(M̂) in the main paper, ISE in

(S5.1) and ASPE (S5.2), respectively.

(Insert Table 1, Table 2 and Table 3 here.)
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S6 Effects of Different Model Complexity Penalty

We conduct a simulation study to investigate the finite sample perfor-

mance of different model complexity penalties pP, n in

FICfn, P (M) =
1

n
Sn(M)2 +

1

n
σ̂2pP, n(dim(M)). (S6.1)

We consider the penalties that have the form of

pP, n(dim(M)) = na1/9

(
dim(M)

P

)a2

, (S6.2)

where a1 ∈ {6, 6.5, 7, 7.5, 8} and a2 ∈ {1, 1.5} are parameters. The set-

tings are same as those in Section 4 in the main paper. We use the length of

the symmetric difference ∆λ∗
β(M̂), ISE and ASPE of the selected model to

measure the quality of the FICf method using different model complex-

ity penalties. The results are summarized in Tables 4 – 6. It can be

seen that the recommended pP, n in Section 2.3 of the main paper with

(a1, a2) = (7, 1) performs well in general.

(Insert Table 4, Table 5 and Table 6 here.)

S6.1 Application to Canadian Weather Data

The Canadian weather is consisted of mean daily temperature and pre-

cipitation data of 35 Canadian weather stations in a year. The data has been

analysed in Ramsay and Silverman (2005); Ramsay et al. (2009); James
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et al. (2009); Lin et al. (2017) for the purpose of predicting the logarithm

of annual precipitation from daily mean temperature curve plotted in Fig-

ure 1(a).

(Insert Figure 1 here.)

In particular, we are interested in identifying the times of the year that

have an effect on the logarithm of annual precipitation. We restrict the value

of β(t) at start of the year equal to that at end of the year and set m = 3

in equation (2.5) in the main paper as in James et al. (2009). Figure 1(b)

displays the smoothing spline estimate of β(t) on the active region selected

by the FICf method (blue solid line), the smoothing estimate using Fourier

basis with a roughness penalty for the full model (black dotted line), and

the mean selecting frequency of the leave-one-out samples (red dashed line).

The mean squared leave-one-out cross-validation error of the FICf method

and the competing methods are reported in Table 7. In this application,

the FICf method has a lower cross-validated error. The estimate of the

null region is from late March to early October, which implies that the

annual precipitation has no correlation with the daily temperature during

this period. The smoothing spline estimate on the selected active region

indicates a positive relationship from late October to early January in next

year and a negative relationship form late January to late March. This
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result interprets the positive relationship from December to January and

the negative relationship in the spring months in Figure.5 (b) of James et al.

(2009), which has been founded but has not been explored by James et al.

(2009).
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Table 1: Simulation results of the length of the symmetric difference ∆λ∗
β(M̂) in for Cases III

– V. Each entry is the Monte Carlo average of 200 simulation replicates. The corresponding
standard deviation is reported in parentheses. All the values are multiplied by 100. FLiRTI: the
method in James et al. (2009); Two-stage: the two-stage method in Zhou et al. (2013); SLoS:
the smooth and locally Sparse method in Lin et al. (2017); Bliss: Bayesian functional Linear
regression with Sparse Step functions in Grollemund et al. (2019); FICf: the proposed function
information criterion method; FICf0: similar to FICf but not using the smoothing penalty in
region selection.

FLiRTI Two-stage SLoS Bliss* FICf0 FICf
Case III
n = 150 13.3(16.1) 0.74(2.61) 4.99(15.8) – 0.59(0.37) 0.41(2.65)
n = 450 12.3(16.5) 0.13(0.96) 3.76(13.2) – 0.31(0.13) 0(0)
n = 1000 12.2(12.9) 0.11(0.79) 2.20(9.09) – 0.20(0.68) 0(0)
Case IV
n = 150 2.72(2.26) 3.37(8.94) 0.18(1.79) 1.91(4.15) 5.37(4.01) 2.34(5.52)
n = 450 1.88(1.65) 0.27(0.84) 0.00(0.00) – 4.39(3.11) 0.79(1.53)
n = 1000 1.38(1.34) 0.17(0.45) 0.00(0.00) – 4.26(4.10) 0.78(1.15)
Case V
n = 150 41.7(9.24) 14.0(10.7) 9.21(5.62) 4.24(3.37) 38.4(10.4) 8.92(9.33)
n = 450 35.4(11.9) 10.1(8.86) 3.49(3.35) – 11.7(8.37) 4.24(2.22)
n = 1000 35.2(11.5) 7.35(6.99) 1.89(1.27) – 5.40(1.83) 4.57(1.04)

* The Bliss method does not work in Case III, β(t) = 0. We only report the results
of the Bliss method with sample size of 150 due to computational cost.
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Table 2: Simulation results of the integrated squared estimating errors for Cases I – V except for
Case III. Each entry is the Monte Carlo average of 200 simulation replicates. The corresponding
standard deviation is reported in parentheses. All the values are multiplied by 100. Full: the
smoothing spline estimate for the full model; FLiRTI: the method in James et al. (2009); Two-
stage: the two-stage method in Zhou et al. (2013); SLoS: the smooth and locally Sparse method
in Lin et al. (2017); Bliss-smooth: the smooth estimate of Bayesian functional Linear regression
with Sparse Step functions in Grollemund et al. (2019); FICf: the smoothing spline estimate
for the model selected by the proposed function information criterion method; FICf0: similar
to FICf but not using the smoothing penalty in region selection.

Full FLiRTI Two-stage SLoS Bliss-smooth* FICf0 FICf
Case I
n = 150 2.11(1.03) 9.62(4.65) 4.49(2.19) 1.85(0.94) 3.28(1.25) 9.54(8.95) 1.83(1.39)
n = 450 0.75(0.32) 3.23(1.32) 1.92(0.78) 0.76(0.40) – 8.13(5.74) 0.64(0.43)
n = 1000 0.40(0.17) 1.58(0.61) 0.89(0.36) 0.35(0.18) – 8.19(6.10) 0.33(0.26)
Case II
n = 150 3.81(1.71) 9.85(4.30) 5.70(2.22) 3.20(1.26) 4.15(1.35) 7.29(5.12) 3.31(1.99)
n = 450 2.10(0.77) 4.45(4.77) 2.75(0.93) 1.81(0.37) – 7.03(7.95) 1.88(1.06)
n = 1000 1.35(0.37) 2.10(0.70) 1.53(0.40) 1.46(0.21) – 5.48(4.13) 1.26(0.53)
Case IV
n = 150 11.9(6.00) 67.8(32.4) 34.4(24.1) 13.8(7.36) 46.3(13.3) 53.7(40.1) 13.6(9.82)
n = 450 4.73(2.74) 25.5(24.3) 10.6(4.64) 6.12(2.77) – 43.9(31.1) 4.96(2.96)
n = 1000 2.42(1.46) 12.0(3.81) 5.30(1.70) 2.84(1.12) – 42.6(41.0) 2.65(1.70)
Case V
n = 150 14.6(8.21) 15.6(7.98) 14.3(6.76) 10.4(4.75) 11.4(3.58) 19.4(14.1) 12.3(9.55)
n = 450 5.66(1.38) 5.88(5.28) 6.07(2.44) 3.94(1.56) – 13.3(14.4) 5.68(4.40)
n = 1000 3.23(0.69) 3.31(0.96) 3.54(1.59) 2.34(0.56) – 7.56(7.39) 5.08(3.56)

* We only report the results of the Bliss method with sample size of 150 due to computational cost.
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Table 3: Simulation results of the average squared prediction errors for Cases I – V except for
Case III. Each entry is the Monte Carlo average of 200 simulation replicates. The corresponding
standard deviation is reported in parentheses. All the values are multiplied by 104. Full: the
smoothing spline estimator for the full model; FLiRTI: the method in James et al. (2009); Two-
stage: the two-stage method in Zhou et al. (2013); SLoS: the smooth and locally Sparse method
in Lin et al. (2017); Bliss-smooth: the smooth estimate of Bayesian functional Linear regression
with Sparse Step functions in Grollemund et al. (2019); FICf: the smoothing spline estimator
for the model selected by the proposed function information criterion method; FICf0: similar
to FICf but not using the smoothing penalty in region selection.

Full FLiRTI Two-stage SLoS Bliss-smooth* FICf0 FICf
Case I
n = 150 2.88(1.30) 9.71(3.53) 4.85(2.07) 2.60(1.34) 5.36(2.48) 5.91(3.74) 2.36(1.52)
n = 450 1.04(0.42) 3.12(0.96) 2.00(0.71) 0.97(0.49) – 3.07(1.34) 0.81(0.42)
n = 1000 0.51(0.21) 1.44(0.36) 0.84(0.30) 0.42(0.20) – 2.00(6.75) 0.37(0.19)
Case II
n = 150 4.49(1.90) 9.82(3.72) 5.95(2.34) 3.85(1.73) 6.16(2.61) 6.15(2.91) 3.56(2.02)
n = 450 2.08(1.72) 3.61(1.12) 2.45(0.84) 1.72(0.46) – 3.14(1.53) 1.50(0.69)
n = 1000 1.14(0.33) 1.62(0.46) 1.15(0.35) 1.32(0.29) – 1.75(0.62) 0.76(0.29)
Case IV
n = 150 16.8(7.76) 66.9(32.3) 39.9(28.1) 19.5(9.84) 66.6(19.5) 37.7(22.0) 18.8(12.6)
n = 450 6.37(3.15) 22.6(6.71) 12.3(4.94) 7.95(3.42) – 22.3(11.4) 6.46(3.31)
n = 1000 3.13(1.57) 10.8(2.59) 5.87(1.68) 3.59(1.41) – 16.0(8.04) 3.21(1.74)
Case V
n = 150 15.8(6.36) 17.3(7.64) 14.9(6.18) 12.1(5.75) 15.1(5.81) 17.4(8.92) 11.8(6.91)
n = 450 5.64(1.57) 5.22(2.14) 5.52(2.12) 4.16(1.92) – 5.35(3.02) 3.33(1.60)
n = 1000 2.92(0.71) 2.58(0.94) 2.78(1.16) 2.08(0.60) – 2.03(0.99) 1.83(0.54)

* We only report the results of the Bliss method with sample size of 150 due to computational cost.
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Table 7: The mean squared leave-one-out cross-validated errors of different methods for the
Canadian weather data. The corresponding standard deviation is reported in parentheses. All
the values are multiplied by 100. OHPL: the ordered homogeneity pursuit LASSO method
in Lin et al. (2017); Full: the smoothing estimate for the full model; FLiRTI: the method in
James et al. (2009); Two-stage: the two-stage method in Zhou et al. (2013); SLoS: the smooth
and locally Sparse method in Lin et al. (2017); Bliss-smooth: the smooth estimate of Bayesian
functional Linear regression with Sparse Step functions in Grollemund et al. (2019); FICf: the
smoothing spline estimate for the model selected by the proposed function information criterion
method.

Full OHPL FLiRTI Two-stage SLoS BLISS-smooth* FICf
16.3(31.2) 15.9(31.6) 13.8(28.0) –† 16.0(36.1) 53.6(24.8) 12.9(29.0)

* The within-sample mean squared errors are reported instead for the BLISS-smooth
method.

† The full model is selected.
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Figure 1: (a) Daily temperature curves of 35 Canadian weather stations. (b) The smoothing
spline estimate of the slope function β on the region selected by FICf (blue solid line), the
smoothing estimate using the Fourier basis with a roughness penalty for the full model (black
dotted line), and the mean selecting frequency of the leave-one-out samples (red dashed line).
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