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Abstract: The sliced inverse regression (SIR) is the most recognized method in
sufficient dimension reduction. For high-dimensional multivariate applications,
there is promising progress related to the theory and methods of high-dimensional
SIR. However, two problems remain in this context. First, choosing the number
of slices in an SIR is difficult, and depends on the sample size, distributions of
the variables, and other practical considerations. Second, extending SIR from a
univariate response to a multivariate response is not trivial. Targeting the same
dimension reduction subspace as that of the SIR, we propose a new slicing-free
method that provides a unified solution to sufficient dimension reduction for high-
dimensional covariates and univariate or multivariate responses. We achieve this by
adopting the martingale difference divergence matrix (MDDM) and penalized eigen-
decomposition algorithms. To establish the consistency of our method for a high-
dimensional predictor and a multivariate response, we develop a new concentration
inequality for the sample MDDM around its population counterpart using U-
statistics theory, which may be of independent interest. Simulations and a real-
data analysis demonstrate the favorable finite-sample performance of the proposed
method.

Key words and phrases: Multivariate response, sliced inverse regression, sufficient
dimension reduction, U-statistic.

1. Introduction

Sufficient dimension reduction (SDR) is an important statistical analysis
tool for data visualization, summary, and inference. SDR extracts low-rank
projections of the predictors X that contain all information about the response Y,
without prespecifying a parametric model. The semiparametric nature of SDR
leads to great flexibility and convenience in practice. After performing SDR,
we can model the conditional distributions of the response, given the lower-
dimensional projected covariate, using existing parametric or nonparametric
methods. A salient feature of SDR is that the low-rank projection space can be
estimated accurately at a parametric rate, with the nonparametric part treated as
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an infinite-dimensional nuisance parameter. For example, in multi-index models,
SDR is used to estimate the multiple projection directions, without estimating
the unspecified link function.

A cornerstone of SDR is the sliced inverse regression (SIR), pioneered by
Li| (1991), who first discovered the connection between the low-rank projection
space and the eigen-space of cov(E(X | Y)), under suitable assumptions. SIR
is performed by slicing the response Y, and then aggregating the conditional
mean of the predictor X, given the response Y within each slice. For example,
consider a univariate response Y. Slicing involves picking K + 1 constants
—o0=ag < a; < -+ <axg = 00, and defining a new random variable H, where
H =k if and only if a;_; < Y < a. After a centering and standardization of
the covariate, that is, X — X = 2¢"/*(X — E(X)), a simple eigen-decomposition
can be used to find linear projections that explain most of the variability in
the conditional expectation of the transformed predictor given the response
across slices, that is, cov(E(X | H)). An important variation of the SIR is the
sliced average variance estimation (Cook and Weisberg, [1991)), which uses the
conditional variance across slices. A key step in these inverse regression methods
is the choice of the slicing scheme. If Y is sliced too coarsely, we may not be able
to capture the full dependence of Y on the predictors, leading to significant bias
in the estimation of cov(E(X | Y)). In contrast, if Y is sliced too finely, then
the within-slice sample size becomes too small, leading to large variability in the
estimation. Although |Li (1991) and [Hsing and Carroll (1992)) show that SDR
can still be consistent in a large sample even when the slicing scheme is chosen
poorly, Zhu and Ngjf (1995) argue that the choice of slicing scheme is critical to
achieve high estimation efficiency. However, to the best of our knowledge, there
is little generally applicable guidance in the literature on how to choose a good
slicing scheme.

Zhu, Zhu and Feng (2010) and Cook and Zhang| (2014) show that it is
beneficial to aggregate multiple slicing schemes, rather than relying on one,
although their methods focus only on a univariate response, and in many real-life
problems, multi-response data are common. Here, a component-wise analysis
may not be sufficient, because it does not make full use of the component-
wise dependence in the response. However, slicing a multivariate response is
notoriously difficult, owing to the curse of dimensionality, a common problem
in multivariate nonparametric smoothing. As the dimension for the response
becomes moderately large, it becomes increasingly difficult to ensure that each
slice contains a reasonable number of samples, and the estimation can be unstable
in practice. Hence, it is highly desirable to develop new SDR methods that do
not involve slicing.

An important line of research in the recent SDR literature is to develop
SDR methods for data sets with high-dimensional covariates, as motivated by
many contemporary applications. The idea of SDR is naturally attractive for
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high-dimensional data sets, because an effective reduction of the dimension in
X allows us to use existing modeling and inference methods for low-dimensional
covariates. However, most classical SDR methods are not directly applicable to
the large p small n setting, where p is the dimension of X and n is the sample
size. To overcome the challenges associated with high-dimensional covariates,
several methods have been proposed. Lin, Zhao and Liu| (2018) show that the
SIR estimator is consistent if and only if limp/n = 0. When the dimension p
is larger than n, they propose a diagonal thresholding screening SIR (DT-SIR)
algorithm, and show that it is consistent in terms of recovering the dimension
reduction space, under certain sparsity assumptions on both the covariance
matrix of the predictors and the loadings of the directions. |Lin, Zhao and
Liu (2019) introduce a simple Lasso regression method that estimates the SDR
space by constructing artificial response variables from the top eigenvectors of
the estimated conditional covariance matrix. Tan et al.| (2018a) propose a
two-stage computational framework to solve the sparse generalized eigenvalue
problem, which includes the high-dimensional SDR as a special case, and propose
a truncated Rayleigh flow method (RIFLE) to estimate the leading generalized
eigenvector; see also Lin et al.| (2020) and [Tan et al. (2018b). Although these
methods provide valuable tools to tackle the high-dimensional SDR, problem, they
still rely on the SIR in their methodology and involve choosing a single slicing
scheme, with little guidance on how to choose such a scheme. Consequently, these
methods cannot be applied easily to data with a multivariate response, and the
effect of the choice of slicing scheme is unclear.

In this article, we propose a novel slicing-free SDR method in the high-
dimensional setting. Our proposal is inspired by a recent nonlinear dependence
metric, called the martingale difference divergence matrix (MDDM, Lee and
Shaol 2018). |Lee and Shao| (2018) developed the MDDM as a matrix-valued
extension of the martingale difference divergence (MDD) of [Shao and Zhang
(2014)), which measures the (conditional) mean dependence of a response variable
given a covariate, and used it to reduce the dimension of a multivariate time series.
As recently revealed by [Zhang, Lee and Shao| (2020), at the population level, the
eigenvectors (or generalized eigenvectors) of the MDDM are always contained in
the central subspace. Building on these prior works, we propose using a penalized
eigen-decomposition on the MDDM to perform SDR in high dimensions. When
the covariance matrix of the predictor is the identity matrix, we use the truncated
power method with hard thresholding to estimate the top-K eigenvectors of
the MDDM. For a more general covariance structure, we apply the RIFLE
algorithm (Tan et al., 2018a) to the sample MDDM instead of to the sample
SIR estimator of cov(E(X | Y)). By using the sample MDDM, this approach
is free of slicing, enabling us to treat univariate and multivariate responses in
a unified way, and thus circumventing the practical difficulty of selecting the
number of slices (especially for a multivariate response). From a theoretical
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perspective, we derive a concentration inequality for the sample MDDM around
its population counterpart by using U-statistics theory, and obtain a rigorous
nonasymptotic theoretical justification for the estimated central subspaces for
both settings. The results of simulations and a real-data analysis confirm that
the proposed penalized MDDM outperforms slicing-based methods in terms of
estimation accuracy.

The rest of this paper is organized as follows. In Section 2, we give a brief
review of the MDDM, and then present a new concentration inequality for the
sample MDDM around its population counterpart. In Section 3, we present
our general methodology of adopting the MDDM in both model-free and model-
based SDR problems, where we establish population-level connections between
the central subspace and the eigen-decomposition and the generalized eigen-
decomposition of the MDDM. Algorithms for regularized eigen-decomposition
and generalized eigen-decomposition problems are proposed in Sections 4.1 and
4.2, respectively. Theoretical properties are established in Section 5. Section 6
contains numerical studies. Finally, Section 7 concludes the paper. The Supple-
mentary Material provides all additional technical details and numerical results.

2. The MDDM and Its Concentration Inequality

Consider a pair of random vectors V € R? and U € RY, such that E(||U|* +
[V]]?) < co. We use ||U|| = |U|, to denote the Euclidean norm in R?. Define

MDDM(V | U) = —E [{V - E(V){V' - E(V)}"||U - U'|] e R,

where (V’, U’) is an independent copy of (V, U). |Lee and Shao (2018) established
the following key properties of MDDM(V | U): (i) it is symmetric and positive
semi-definite; (ii) E(V | U) = E(V), almost surely, is equivalent to MDDM(V |
U) = 0; (iii) for any p x d matrix A, MDDM(A™V | U) = ATMDDM(V |
U)A; (iv) there exist p — d linearly independent combinations of V that are
(conditionally) mean independent of U if and only if rank(MDDM(V|U)) = d.

Given a random sample of size n, that is, (U, V)7, the sample estimate
of MDDM(V | U), denoted by MDDM,,(V | U), is defined as

1 & — —
MDDM,,(V | U) = - > (V= V)(Vi = V) |U; = Uy, (2.1)

jk=1

where V,, =n~1 37" | 'V, is the sample mean.

In the following, we present a concentration inequality for the sample MDDM
around its population counterpart, which plays an instrumental role in our
consistency proof for the proposed penalized MDDM method later. To this end,
we let V.= (V4,...,V,)T € RP, and assume the following condition.



SLICING-FREE INVERSE REGRESSION 5
(C1) There exist two positive constants o and Cj such that

sup max E{exp(20,V?)} < Co,
p 1<j<p (22)
E{exp(20[U[12)} < Co.

For a matrix A = (a;;), we denote its max norm as || A||;nee = max;; |a;;].

Theorem 1. Suppose that Condition (C1) holds. There exists a positive integer
no = no(0o, Co, q) < 00, v = (09, Co,q) € (0,1/2), and a finite positive constant
Dy = Dy(09,Cl, q) < 00, such that when n > ny and 16 > € > Don™", we have

2
P(|[MDDM,, (V[U) = MDDM(V|U)||1max > 12€) < 54p? exp {—”ﬁ)} .
361og”(n)

The above bound is nonasymptotic and holds for all (n,p, €), as long as the
condition is satisfied. The exponent €>n/log®(n) is from the use of a truncation
argument, along with Hoeffding’s inequality for U-statistics, and seems hard to
improve. Nevertheless, we achieve an exponential-type bound under a uniform
sub-Gaussian condition on both V and U. This result may be of independent
theoretical interest. For example, in the time series dimension reduction problem
studied by [Lee and Shao| (2018), our Theorem 1 could potentially help extend
their theory from low-dimensional multivariate time series to higher dimensions.

3. Slicing-free Inverse Regression Using the MDDM
3.1. Inverse regression subspace in SDR

SDR, methods aim to identify the central subspace that preserves all in-
formation in the predictors. In this study, we consider the SDR problem of
a multivariate response Y € R? on a multivariate predictor X € RP. The
central subspace Sy|x is defined as the intersection of all subspaces S such that
Y L X | PsX, where Pg is the projection matrix onto S. By construction,
the central subspace Syx is the smallest dimension reduction subspace that
contains all information in the conditional distribution of Y given X. Many
methods have been proposed for recovering the central subspace or a portion
of the central subspace (Li, 1991; Cook and Weisberg, [1991; Bura and Cook,
2001} |Chiaromonte, Cook and Li, [2002; [Yin and Cook, [2003} |Cook and Nil, 2005}
Li and Wang, 2007; |Zhou and He, [2008); see Li (2018) for a comprehensive
review. Although the central subspace is well defined for both univariate and
multivariate responses, most existing SDR methods consider the case with a
univariate response, and an extension to a multivariate response is nontrivial.

The definition of a central subspace is not very constructive, because it
requires taking the intersection of all subspaces S C R? such that Y 1L X | PsX.
It is difficult to estimate the central subspace without specifying a model between
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Y and X. To achieve this, we often need additional assumptions, such as the
linearity and the coverage conditions. The linearity condition requires that, for
any basis of the central subspace 3, we must have that E(X | 87X) is linear
in BTX. The linearity condition is guaranteed if X is elliptically contoured, and
allows us to connect the central subspace to the conditional expectation E(X | Y).
Define ¥« as the covariance of X, and the inverse regression subspace

Sexly) =span{E(X | Y =y) — E(X) : y € R? such that E(X | Y =y) exists}.
(3.1)
The following property is well known, and is often used to develop SDR methods.

Proposition 1. Under the linearity condition, we have Sgxjy) € LxSyjx C RP.

The coverage condition further assumes that Sgxjv) = XxSyx. It follows
that we can estimate the central subspace by modeling the conditional expecta-
tion of X. Indeed, many SDR methods approximate E(X | Y). For example,
SIR slices the univariate Y into several categories, and estimates the mean of X
within each slice. Most methods follow this slice-and-estimate procedure. The
number of slices is important to the estimation. If there are too few slices, we
may not be able to fully capture the dependence of X on Y'; however, if there
are too many slices, there are insufficient samples within each slice to allow an
accurate estimation.

3.2. The MDDM in SDR

In this section, we lay the foundation for applying the MDDM to SDR.
We show that the subspace spanned by the MDDM coincides with the inverse
regression subspace in . In particular, we have Proposition 2, which is
also used in [Zhang, Lee and Shao (2020), without a proof, in the context of
a multivariate linear regression.

Proposition 2. For multivariate X € R? and Y € R?, assuming the existence of
E(X), E(X|Y), and MDDM(X | Y), we have Sgx|y) = span{MDDM(X | Y)}.

Therefore, the rank of MDDM(X | Y) is the dimensionality of the inverse
regression subspace, and the nontrivial eigenvectors of MDDM(X | Y') contain all
the information for Sgx|y). Combining Propositions 1 & 2, we immediately have
that (i) under the linearity condition, Xx'span{MDDM (X | Y)} C Syx, and (ii)
under the linearity and coverage conditions, X3 'span{MDDM(X | Y)} = Syx.

Henceforth, we assume both the linearity and coverage conditions, which
are assumed either explicitly or implicitly in inverse regression-type dimension
reduction methods (e.g., Li, |1991; |Cook and Ni, 2005; Zhu, Zhu and Feng 2010;
Cook and Zhang, [2014). Then, the central subspace is related to the eigen-
decomposition of MDDM(X | Y). Specifically, we have the following scenarios.

If cov(X) = 0?1, for some o2 > 0, then obviously span{MDDM(X | Y)} =
Syx. This includes single-index and multiple-index models with uncorrelated
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predictors. Let K be the rank of MDDM(X | Y). Then, the dimension of the
central subspace is K, and the first K eigenvectors of MDDM(X | Y) span the
central subspace.

If cov(X | Y) = ¢%I,, for some o® > 0, then we have ¥x = ¢°I, +
cov{E(X | Y)}. Because span[cov{E(X | Y)}| = Sgx|v), we can show that
Syjx = Ex'span{MDDM(X | Y)} = span{MDDM(X | Y)}. To see this, let
cov{E(X | Y)} = UUT", for some U € RP*¥. Then, span(U) = span[cov{E(X |
Y)}] = span{MDDM(X | Y)}, and we may also write MDDM(X | Y) = U®U",
for some symmetric positive-definite matrix ¥ € RE*X. The result follows by
applying the Woodbury matrix identity to ¥%' = (021, + UUT)™! = 0721,
— 07?U(c’Ix + UTU)'UT. The nontrivial eigenvectors of MDDM(X | Y)
again span the central subspace.

For a general covariance structure, the d-dimensional central subspace Sy |x
= Xi'span{MDDM(X | Y)} can be obtained by using a generalized eigen-
decomposition. Specifically, consider the generalized eigenvalue problem

MDDM(X | Y)Vl = ()Oizxvi, Vi > 0, V; € Rp, (32)

where v ¥xv; = 0, for i # j. Then, similarly to Li (2007) and |Chen, Zou and
Cook (2010), it is straightforward to show that the generalized eigenvector spans
the central subspace, Syjx = span(vi,...,Vg).

Existing works on SDR often focus on the eigen-decomposition or the gener-
alized eigen-decomposition of cov{E(X | Y = y)}, where nonparametric estimates
of E(X | Y = y) are obtained by slicing the support of the univariate response Y.
In contrast, the MDDM approach requires no tuning parameter selection (i.e.,
specifying a slicing scheme). Moreover, a high-dimensional theoretical study
of the MDDM is easier, and does not require additional assumptions on the
conditional mean function E(X | Y), such as smoothness in the empirical mean
function of X given Y (e.g., sliced stable condition in Lin, Zhao and Liu, [2018]).

3.3. The MDDM for model-based SDR

Thus far, we have discussed model-free SDR. Another important research
area in SDR is model-based methods, which provide valuable insights when
using an inverse regression estimation under the assumption that the conditional
distribution of X | Y is normal. In this section, we consider the principal fitted
component (PFC) model, which is discussed in detail in |Cook and Forzani| (2009)
and |Cook| (2007, and generalize it from a univariate response to a multivariate
response. We argue that the (generalized) eigen-decomposition of the MDDM is
potentially advantageous to likelihood-based approaches under the PFC model.
This is somewhat surprising, but reasonable, considering that the advantages of
the MDDM over least squares and likelihood-based estimations are demonstrated
in Zhang, Lee and Shao (2020) for multivariate linear models.
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Let Xy, ~ X | (Y = y) denote the conditional variable. Then, the PFC
model is
X, =p+Tu, +e, e~ N0, A), (3.3)

where I' € RP*X | for K < p, is a nonstochastic orthogonal matrix, and v, € R¥
is the latent variable that depends on y. Then, the latent variable vy is fitted
as vy, = afy, with some user-specified functions f, = (fi(y),..., fm(y))" € R™,
for m > K, which maps a ¢-dimensional response to an m-dimensional response.
In the univariate PFC model, ¢ = 1, so the m functions can be viewed as an
expansion of the response (similar to slicing). For our multivariate extensions
of the PFC model, there is no requirement of m > g. The PFC model can be
written as

X, =p+Tafy +¢, (3.4)

where I and «a are estimated similarly to the multivariate reduced-rank regres-
sion, with X € R” being the response and f,, € R™ being the predictor. Finally,
the central subspace under this PFC model is A~'span(I'), which simplifies
to span(T') if we further assume the isotropic error (i.e., isotropic PFC model)
A =cov(X |Y) =%,

For the PFC model, our MDDM approach is the same as the model-free
MDDM counterpart, and has two main advantages over the likelihood-based PFC
estimation: (i) there is no need to specify the functions f,, and thus no risk of
misspecification, and (ii) extensions to high-dimensional settings are much more
straightforward. Moreover, under the isotropic PFC model, the central subspace
Sy|x = span(I') is exactly the first K eigenvectors of MDDM(X | Y).

4. Estimation
4.1. Penalized decomposition of the MDDM

Based on the results in the last section, we can use the penalized eigen-
decomposition of the MDDM to estimate the central subspace in high dimensions
when the covariance ¥x or the conditional covariance cov(X | Y) is proportional
to the identity matrix I,. Here, we construct such an estimate. Note that the
penalized decomposition of the MDDM we develop here is immediately applicable
to the dimension reduction of multivariate stationary time series in |Lee and Shao
(2018). However, this is beyond the scope of this study. Moreover, it is well
known that X3’ is not easy to estimate in high dimensions. Then, even for
a general covariance structure, the eigen-decomposition of the MDDM provides
an estimate of the inverse regression subspace (though it may differ from the
central subspace) that is useful for exploratory data analysis (e.g., detecting and
visualizing a nonlinear mean function).

As such, we estimate the eigenvectors of MDDM(X | Y). We assume
that MDDM(X | Y) has K nontrivial eigenvectors, denoted by 3i,..., 0k,
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respectively. We use the shorthand notation M = MDDM(X | Y). In addition,
note that, given the first k£ — 1 eigenvectors, B is the top eigenvector of My,
where M, = M — Y, (8 Mg,) 3,8,

It is well known that the eigenvectors cannot be estimated accurately
in high dimensions without additional assumptions. We adopt the popular
sparsity assumption that many entries in 3 are zero. To estimate these sparse
eigenvectors, denote M; = MDDM,,(X | Y), where the sample MDDM,, is
defined in . We find Bk: for k=1,..., K, as follows:

B = arggnaxBTl\//\Ik,B st. BT8=1,8| < s, (4.1)

where M; = MDDM,,(X | Y), My, = M, — 3, 88,87, for k > 1, with §, =
BZTI/\\/L@, and s is a tuning parameter.

We solve the above problem by combining the truncated power method with
hard thresholding. For a vector v € R? and a positive integer s, denote v} as
the sth largest value of |v;|, for j = 1,...,p. The hard-thresholding operator is
HT(v,s) = (viI(Jv| > v%),...,v,I(Jv,| > v2))", which sets the p — s elements in
v to zero. We solve using Algorithm 1, where the initialization ,350) may be
randomly generated. Note that Yuan and Zhang| (2013) proposed Algorithm 1 to
perform a principal component analysis using the penalized eigen-decomposition
on the sample covariance.

In our algorithm, we require a prespecified sparsity level s and subspace
dimension K. In terms of theory, we show that our estimators for 3, for
k = 1,...,K, are all consistent for their population counterparts when the
sparsity s is sufficiently large (i.e., larger than the population sparsity level) and
the number of directions K is no bigger than the true dimension of the central
subspace. Therefore, our method is flexible in the sense that the prespecified s
and K do not have to be exactly correct. In practice, especially in exploratory
data analysis, the number of sequentially extracted directions is often set to be
small (i.e., K =1,2, or 3). Determining the true central subspace dimension is
a separate and important research topic in SDR (e.g., Bura and Yang, 2011} Luo
and Li, |2016)), and is beyond the scope of this study. Moreover, the prespecified
sparsity level s combined with £y-regularization is potentially convenient for post-
dimension reduction inference (Kim et al.,|2020), as in the post-selection inference
of a canonical correlation analysis over subsets of variables with prespecified
cardinalities (McKeague and Zhang), [2020)).

As pointed out by a referee, other sparse principal component analysis (PCA)
methods can potentially be applied to decompose the MDDM. We choose to
extend the algorithm in |[Yuan and Zhang| (2013) to facilitate computation and
theoretical development. For computationally efficient sparse PCA methods such
as Zou, Hastie and Tibshirani| (2006) and Witten, Tibshirani and Hastie (2009),
their theoretical properties are unfortunately unknown. Hence, we expect the
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Algorithm 1 Penalized eigen-decomposition of MDDM.
1. Input: s, K, M; = M = MDDM,,(X | Y).

2. Initialize 8.
3. Fork=1,...,K, do

(a) Tterate over ¢ until convergence:
v
ii. If ||§,(:)||0 < s, set
3(®)

2t) k
/Bk == ;
1B

else -
s HT(B,”,s)

k —_ =/ -
[T (B, )]

(b) Set Ek = ,@,Ef) at convergence and ﬁk_H = 1\//\1;c - @fﬁﬁk B\kﬁg

4. Output §Y|X = span(ﬁl, ... ,B\K)

theoretical study of their MDDM-variants to be very challenging. On the other
hand, for the theoretically justified sparse PCA methods such as [Vu and Lei
(2013) and |Cai, Ma and Wu| (2013)), the computation is less efficient.

4.2. Generalized eigenvalue problems with the MDDM

Now, we consider the general (arbitrary) covariance structure 3x. We
continue to use Bi,...,B8x to denote the nontrivial eigenvectors of 33’
span(MDDM(X | Y)) so that the central subspace is spanned by 8. Again,
we assume that these eigenvectors are sparse. In principle, we could assume that
3% is also sparse, and construct its estimate accordingly. However, 33" is a
nuisance parameter for our ultimate goal, and additional assumptions on it may
unnecessarily limit the applicability of our method. Hence, we take a different
approach.

To avoid estimating X', we note that B34, ..., Bk can also be viewed as the
generalized eigenvectors defined as follows, which is equivalent to :

B = argmax BTMg, s.t. BTExB =1,82xB =0 for any I < k. (4.2)
B

Directly solving the generalized eigen-decomposition problem in is not
easy if we want to impose further penalties, because it is difficult to satisfy the
orthogonality constraints. Therefore, we consider another form for that
does not involve the orthogonal constraints. This alternative form is based on
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the following lemma.
Lemma 1. Let \; = B;MB; and My = M — 2x (3, N;8;8] ) Ex. We have

B, = argmax 3"M,,3, s.t. BTExB = 1. (4.3)
B

Motivated by Lemma 1, we consider the penalized problem that 8, =
arg maxg 3TM,3 such that 8TEx3 = 1, |80 < s, where M; = MDDM,,(X | Y)
and M, = M, — iX(Zl<k 5;3;,3?)2)(, for k > 1, with §, = BlTl/\\/IBl, and s is a
tuning parameter. We adopt the RIFLE algorithm of Tan et al. (2018a) to solve
this problem; see Algorithm 2. In our simulation studies, we consider a randomly

generated initial value 8%

and a fixed step size 7 = 1, and observe reasonably
good performance.

Although Algorithm 2 is a generalization of the RIFLE algorithm of [Tan
et al.| (2018a), there are important differences between the two. On the one
hand, the RIFLE algorithm extracts only the first generalized eigenvector,
whereas Algorithm 2 is capable of estimating multiple generalized eigenvectors
by properly deflating the MDDM. In SDR problems, the central subspace often
has a structural dimension greater than one, and it is necessary to find more
than one generalized eigenvectors. Hence, Algorithm 2 is potentially more useful
than the RIFLE algorithm, in practice. On the other hand, the usefulness of
the RIFLE algorithm has been demonstrated in several statistical applications,
including sparse sliced inverse regression. Here, Algorithm 2 decomposes the
MDDM, which is the first time the penalized generalized eigenvector problem
has been used to perform SDR in a slicing-free manner in high dimensions. A
brief analysis of the computation complexity is included in Section S3 in the
Supplementary Material.

5. Theoretical Properties

In this section, we consider the theoretical properties of the generalized
eigenvectors of (MDDM(X | Y),X¥x). Recall that if we know that ¥x = I,
the generalized eigenvectors reduce to eigenvectors, and can be estimated using
Algorithm 1. If we do not have any information about Xx, we can find the
generalized eigenvectors using Algorithm 2. FEither way, we let B, for k =
1,..., K, be the first K (generalized) eigenvectors of MDDM(X | Y). Throughout
the proof, we let C' denote a generic constant that can vary based on the context.
We show the consistency of ,@k by proving that 7, = |sin @(Bk,,@kﬂ < Cse. We
assume that K is fixed, and se < 1. Recall that we define \; = ,GjTMﬂj as the
(generalized) eigenvalue. Further, define d = max’_ {||Bcllo}. When we study
Algorithm 1 or Algorithm 2, we assume that s = d + 2s’, where s’ = Cd for a
sufficiently large C. To apply the concentration inequalities for the MDDM, we
restate Condition (C1) in terms of X and Y as Condition (C1’), along with other
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Algorithm 2 Generalized eigen-decomposition of MDDM.

1. Input: s, K,ﬁl = M, and step size n > 0.
2. Initialize B\EO).
3. Fork=1,...,K, do
(a) Iterate over t until convergence:
i Set o= = (B V)TMLB Y /(B V)TExBL Y.
i C—1+ <n/p<t D). (M - p-DSx).
iii. 87 =cBy /ICBY ..
iv. B = HT(ﬁk, 9)/IHT (B, )2
(b) Set ak = ,@,(:) at convergence and scale it to obtain ,@k = Bk/ nglxﬁk
(c) Set ﬂkH = Mk — ix,@gﬁ,@k Bkﬁgix

4. Output §Y|X = span(ﬁl, .. ,,@K)

suitable conditions:

IN

(C1") There exist two positive constants og and Cy such that E{exp(200[Y||?)}
Cy and sup, max; <j<, E{exp(200X7)} < Co.

(C2) There exist A > 0 such that ming_; g (A — A\py1) > AL

(C3) There exist constants U, L that do not depend on n, p such that L < Ax <
A <U.

(C4) As n— oo, dn~/*(logp)'/?(logn)*/* — 0.

Condition (C2) guarantees that the eigenvectors are well defined. Condition
(C3) imposes bounds on the eigenvalues of M. Researchers often impose similar
assumptions on the covariance matrix to achieve consistent estimation. Condition
(C4) restricts the growth rate of p,d with respect to n. Note that d is the
population sparsity level of By, and s is the user-specified sparsity level in
Algorithms 1 and 2. If we fix d, the dimension is allowed to grow at the rate
logp = o(nlog *n). When we allow d to diverge, we require it to diverge more
slowly than {n/(logplog®n)}"/2.

We present the nonasymptotic results for Algorithm 1 in the following
theorem, where the constants Dy, Ds, 0g, 7y, Cy are defined previously in Theorem
1 under Condition (C1).

Theorem 2. Assume that Conditions (C1"), (C2), and (C3) hold, and ¥x =1.
Further, assume that there exists @ € (0,1/2) such that, for k = 1,..., K, we
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have (8°)" By > 26, and

u::¢@+a{<z)we+j}kﬂ—05m1+9xy—@ﬂa}<1, (5.1)

where v* = {\x — (3/4)A}/{ \x — (1/4)A}. Then, there exists a positive integer
nog = ng(og,Co,q) < o0, v = 7(00,Co,q) € (0,1/2), and a finite positive
Dy = Dy(09,Co,q), such that when n > ngy, we have Dyn™" < A/4s, and
for any Don™" < e < min{A/4s,0}, with a probability greater than 1 —
54p% exp{ —€>n/(361og" n)},

|sin®(By, B)| < Cse, k=1,... K. (5.2)

Let n='/2(log p)*/%log */?n < € < d~'. Then, Theorem 2 directly implies the
following asymptotic result that justifies the consistency of our estimator.

Corollary 1. Assume that Conditions (C1’) and (C2)—(C4) hold. Suppose there
exists v > 0 such that d < s < min[n?,n'/?/{(logp)*/?*(logn)*?}]. Under

the conditions in Theorem 2, the quantities | sin @ (B, Bx)| — 0 with probability
tending to one, fork=1,..., K.

Corollary 1 reveals that, without specifying a model, Algorithm 1 can achieve
consistency when p grows at an exponential rate of n. To be exact, we can
allow logp = o{n/(d?log’n)}. Here, the theoretical results are established for
the output of Algorithm 1, instead of the solution of the optimization problem
. Note that it is possible for there to be a difference between the theoretical
optimal solution of and the estimate we use in practice, because the
optimization problem is nonconvex, and, numerically, we might not achieve the
global maximum. Thus, it might be more meaningful to study the property of the
estimate obtained as the output of Algorithm 1. The above theorem guarantees
that the estimate we use in practice has the desired theoretical properties.

Although our rate in Theorem 2 is not as high as that of a sparse SIR, as
established very recently by |Lin, Zhao and Liu (2018) when ¥x = I and for
general ¥x by Lin, Zhao and Liu (2019), and by [Tan, Shi and Yu| (2020)), we
have some unique advantages over these proposals. For simplicity, we assume
that d is fixed in the subsequent discussion. First, both SIR methods require an
estimation of within-slice means, rather than the MDDM. As shown in Theorem 1,
the MDDM converges to its population counterpart at a slower rate than the
sample within-slice mean does. However, by adopting the MDDM, we no longer
need to determine the slicing scheme, and we do not encounter the curse of
dimensionality when slicing a multivariate response. Second, |Lin, Zhao and Liu
(2018) only achieve the optimal rate when p = o(n?), and cannot handle ultrahigh
dimensions. In contrast, Algorithm 1 allows p to diverge at an exponential
rate of n, and is more suitable for ultrahigh-dimensional data. Third, although
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Tan, Shi and Yu| (2020) achieve consistency when logp = o(n), their model
assumptions are much more restrictive. For example, they assume that Y is
categorical and X is normal within each slice of Y, and they randomly split
the data set to form independent batches to facilitate their proofs, which is not
done in their numerical studies. The theoretical properties for their proposal are
unclear beyond the (conditionally) Gaussian model and without sample splitting.
In contrast, our method makes no model assumption between X and Y, and our
theory requires no sample splitting. Thus, our results are more widely applicable,
and we obtain good rates. Furthermore, unlike the theory in [Tan, Shi and Yu
(2020), our theoretical result characterizes the same method we use in practice.
Moreover, the convergence rate of our method has an additional factor of log®(n)
compared to Tan, Shi and Yu| (2020)), which grows at a slow rate of n that only
imposes mild restriction on the dimensionality. For example, for any positive
constant £ € (0,1), if logp = O(n'~¢), our method is consistent. In this sense,
although we cannot handle the optimal dimensionality of log p = o(n), the gap is
very small.

Next, we consider the penalized generalized eigen-decomposition in Algo-
rithm 2. We assume that the step size 7 satisfies N\ (Xx) < 1/2, and

G e o

where A\pax(Ex), Amin(Ex), and x(Xx) are the largest eigenvalue, smallest

eigenvalue, and condition number of ¥x, respectively. The nonasymptotic results
are as follows.

Theorem 3. Assume that Conditions (C1'), (C2), and (C3) hold. Suppose
there exists v € (0,1/2) such that d < s = o(n”), and there ezists a constant
B(2x), Amax(Ex) A A A ) € (0,1) such that (B)7 8/l > 1— 0.
Then, there exists a positive integer ng = ngy(sg,Co) < oo and four finite
positive constants Dy = Dq(7,00,Co) € (0,00), D1 = D:(Cy) € (0,00),
Dy, = Dy(0¢,Cy) € (0,00), and € = €o(A1, Aoy Amin(X), A) such that for any
€ that satisfies se < ey and Don™" < e < 1, with a probability greater than
1—Dyp*nexp{—Dye®n/log’ n}, we have | sin @(@k,,@kﬂ < Cse, fork=1,...,K.

Theorem 3 is proved by showmg that Mk and Xx are close to their
counterparts in the sense that u™,u and uTSxu are close to uTM,u and
uTXxu, respectively, for any u with only s nonzero elements. Then, because
Algorithm 2 is a generalization of the RIFLE algorithm (Tan et al., 2018a), some
properties of the latter allow us to establish the consistency of Algorithm 2. By
comparison, our proofs are significantly more involved than that in [Tan et al.
(2018a), because we have to estimate K generalized eigenvectors, instead of just
the first one. We need to carefully control the error bounds to guarantee that the
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estimation errors do not accumulate to a higher order beyond the first generalized
eigenvector.

Analogous to Corollary 1, we can easily obtain asymptotic consistency results
by translating Theorem 3.

Corollary 2. Assume that Conditions (C1)—(C4) hold. Suppose there exists v €
(0,1/2) such that d < s < min{n?,n"/?/(logplog®n)'/?}. Under the conditions
in Theorem 3, the quantities |sin @(,@k,ﬁkﬂ — 0 with a probability tending to
one, fork=1,..., K.

Corollary 2 shows that Algorithm 2 produces consistent estimates of the
generalized eigenvectors (3, even when p grows at an exponential rate of the
sample size n, and thus is suitable for ultrahigh-dimensional problems. Similar to
Corollary 1, Corollary 2 has no gap between the theory and the numerical outputs,
because it concerns the outputs of Algorithm 2. Note that the dimensionality in
Corollary 2 is the same as that in Corollary 1. Thus, with a properly chosen
step size n, the penalized generalized eigen-decomposition is intrinsically no
more difficult than the penalized eigen-decomposition. However, if we have
knowledge about ¥x being the identity matrix, it is still beneficial to exploit
such information and use Algorithm 1, because Algorithm 1 does not involve the
step size and is more convenient in practice. Furthermore, although Algorithm 2
does not achieve the same rate of convergence as recent sparse SIR proposals,
it has many practical and theoretical advantages, just as for Algorithm 1, as
discussed earlier.

Finally, note that our theoretical studies require conditions on the initial
value. Specifically, we require the initial value to be non-orthogonal to the truth.
This is a common technical condition for iterative algorithms; see Yuan and
Zhang| (2013) and Tan et al. (2018a)), for example. Such conditions do not seem
critical for our algorithms to work in practice. In our numerical studies, we use
randomly generated initial values, and the performance of our methods appears
to be competitive.

6. Numerical Studies
6.1. Simulations

We compare our slicing-free approaches with state-of-the-art high-dimensional
extensions of SIR estimators. We consider both univariate and multivariate
response settings. Specifically, for the univariate response simulations, we include
RIFLE-SIR (Tan et al., 2018a)) and Lasso-SIR (Lin, Zhao and Liu} 2019) as the
two main competitors; for the multivariate response simulations, we mainly
compare our method with the projective resampling approach to SIR (PR-SIR,
Li, Wen and Zhu, 2008), which is a computationally expensive method that
repeatedly projects the multivariate response to one-dimensional subspaces. For
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RIFLE-SIR, we adopt the RIFLE algorithm to estimate the leading eigenvector
of the sample matrix cov{E(X | Y)} based on slicing. In addition, we include
the oracle-SIR as a benchmark method, where we perform a SIR on the subset
of truly relevant variables (hence, a low-dimensional estimation problem). For
all these SIR-based methods, we include two different slicing schemes by setting
the number of slices to be 3 and 10, where 3 is the minimal number of slices
required to obtain our two-dimensional central subspace, and 10 is a typical
choice in the literature. To evaluate the performance of these SDR methods,
we use the subspace estimation error, defined as D(,@, B) = [Pz — Psllr/V2K,
where B, B € RP*E are the estimated and the true basis matrices, respectively,
of the central subspace, and Pz, Pg € RP*P are the corresponding projection
matrices. This subspace estimation error is always between zero and one, and a
small value indicates a good estimation.

First, we consider the following six models for a univariate response regres-
sion: M; and M, are single-index models (i.e., K = 1); M3-Mj are multiple-
index models (i.e., K = 2); and Mg is an isotropic PFC model with K = 1.
Specifically,

MY = (B]X) +sin(BfX) +¢, My:Y =2arctan(B] X) + 0.1(8] X)* + ¢,
piX

Y = 2 Y = TX TX TX '
Ms 05+ (o + grxye T 026 MaV =B X4 (B X)(B, X) +03c,
2 Y
Ms Y = sign(B7X)log(|B7 X +5]) +0.2¢, My : X = ﬂleglﬂ 4 05e,

where X ~ N,(0,Xx) and € ~ N(0,1) for M;-M;, and Y ~ N(0,1) and € ~
N,(0,1,) for the isotropic PFC model (Mg). The sparse directions in the central
subspace (31,82 € RP are orthogonal, because we let the first s = 6 elements in
B: and elements 6-12 in By be 1/ V6 (all other elements are zero). For M;—
M5, we consider both the independent predictor setting with 3x = I, and the
correlated predictor setting with an auto-regressive correlation that Xx(i,7) =
0.5/"=71, for 4,5 = 1,2,...,p. For each model setting, we vary the sample size
n € {200,500,800} and predictor dimension p € {200, 500, 800, 1200, 2000}, and
simulate 1,000 independent data sets.

For our method, we apply the generalized eigen-decomposition algorithm
(Algorithm 2) in all six models (even when the covariance of X is the identity
matrix). In the single-index models M; and M, we use a random initializa-
tion (B(O) is generated randomly from p-dimensional standard normal) for our
algorithm and RIFLE-SIR to demonstrate their robustness to initialization. The
step size in the algorithm is simply fixed as n = 1. For the more challenging
multiple-index models, M3 — Mg, we consider the best-case scenarios for each
method. Therefore, the true parameter 3 is used as the initial value, and an
optimal € {0.1,0.2,...,1.0} is selected from a separate training sample with 400
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Table 1. Averaged subspace estimation errors and the corresponding standard errors
(after multiplied by 100) for univariate response models (n = 200, p = 800).

¥x MDDM Oracle-SIR(3) Oracle-SIR(10) RIFLE-SIR(3) RIFLE-SIR(10) LassoSIR(3) LassoSIR(10)
Error SE Error SE  Error SE Error SE  Error SE Error SE Error SE
M; 10.1 0.1 125 0.1 10.3 0.1 25.2 1.0 53.7 1.4 379 0.4 59.9 0.7

My 103 0.1 13.1 0.1 10.6 0.1 26.1 1.0 54.7 1.4 40.1 04 615 0.7
I, M3 17.7 0.2 408 0.2 27.7 0.2 71.3 0.0 71.2 0.0 76.5 0.2 85.0 0.2
My 230 02 45.8 0.3 36.4 0.3 71.9 0.0 71.6 0.0 85.2 0.2 915 0.2
Ms 308 0.6 28.8 0.2 22.1 0.1 71.6 0.0 71.2 0.0 712 03 813 03
M; 18.7 0.3 21.0 0.2 17.6 0.2 34.7 0.8 39.8 1.1 353 03 355 03
My 142 02 207 0.2 14.8 0.2 33.1 0.7 33.6 1.1 346 03 305 0.3
M3z 252 0.3 44.6 0.2 34.1 0.2 71.5 0.0 71.3 0.0 54.8 0.2 471 0.3
My 591 0.5 751 0.2 69.9 0.3 81.0 0.2 78.7 0.2 89.7 0.2 921 0.2
M5 46.2 0.6 46.4 0.2 35.5 0.2 73.8 0.1 72.4 0.0 66.5 0.2 614 0.3
PFC Mg 34.6 0.6 48.9 0.5 334 0.5 40.1 0.7 30.8 0.6 70.7 0.0 70.7 0.0

AR

observations. The results based on 1,000 replications for n = 200 and p = 800 are
summarized in Table 1; the remaining results can be found in the Supplementary
Material. Overall, the slicing-free MDDM approach is much more accurate than
existing SIR-based methods. It is almost as accurate as the oracle-SIR. Moreover,
it is clear that SIR-type methods are rather sensitive to the choice of the number
of slices.

Next, we consider three multivariate response models, where the response
dimension is ¢ = 4. These three models are a multivariate linear model, a single-
index heteroschedastic error model, and an isotropic PFC model. The predictors
satisfy X ~ N,(0,1I,) in the following two forward regression models. Therefore,
we apply Algorithm 1 for our method under models M, and My. For the isotropic
PFC model My, where X | Y ~ N,(Bf(Y),L,), we still apply Algorithm 2, to
be consistent with the univariate case. For the projective resampling methods,
PR-SIR and PR-Oracle-SIR, we generate a sufficiently large number of nlog(n)
random projections so that the PR methods reach their fullest potential.

M; Y, = 0BIX +6,Y, = B]X + 6, Y3 =€, and Yy = €. The errors
(€1,...,€) are independent standard normal, except for cov(ey, e2) = —0.5.
For this model, the central subspace is spanned by 8; = (1,0,0,0,...,0)T
and B, = (0,2,1,0,...,0)T.

Mg Yy =exp(e) and Y; = ¢;, for i = 2,3, 4, where (e1,...,€,) are independent
standard normal, except for cov(ey,€;) = sin(BTX). For this model, the
central subspace is 3 = (0.8,0.6,0,0,...,0)". Note that, marginally, each
response is independent of X.

My + X = B{(1/3)sin(V1) + (2/3) exp(Ys) + ¥} +€, where 8 = (1//6- 15,0, )
and € ~ N(0,1,). Hence, Sy|x = span(83).
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Table 2. Averaged subspace estimation errors and the corresponding standard errors
(after multiplying by 100) for multivariate response models.

n =100 n = 200 n = 400
p=100 p=200 p=400 p=100 p=200 p=400 p=100 p=200 p =400
Error SE Error SE Error SE Error SE Error SE Error SE Error SE Error SE Error SE
My
MDDM 37.1 0.5 39.8 0.5 425 0.5 24.0 0.4 253 0.4 269 04 16.1 0.3 173 0.3 18.6 0.3
PR-Oracle-SIR(3) 12.6 0.2 12.2 0.2 12.0 0.2 88 01 85 0.1 87 0.1 59 01 58 0.1 58 0.1
PR-Oracle-SIR(10) 16.2 0.3 15.7 0.3 156 0.3 9.6 0.2 94 0.2 952 0.2 6.0 0.1 6.0 0.1 6.0 0.1

PR-SIR(3) 79.9 0.1 88.2 0.1 93.5 0.0 679 0.1 79.3 0.1 87.8 0.0 54.6 0.1 67.6 0.1 79.0 0.0
PR-SIR(10) 83.5 0.1 90.6 0.1 949 0.0 70.1 0.1 81.6 0.1 90.1 0.1 55.3 0.1 68.2 0.1 80.2 0.1
Mg
MDDM 79.4 0.9 8.8 0.8 90.0 0.7 55.9 1.2 61.0 1.2 684 1.2 27.1 09 30.3 1.0 31.0 1.0

PR-Oracle-SIR(3) 409 0.9 41.3 0.9 41.4 0.9 26.0 0.7 249 0.7 25.0 0.6 149 0.4 149 04 15.0 04
PR-Oracle-SIR(10) 44.1 0.9 43.8 0.9 43.5 0.9 25.1 0.6 23.7 0.6 24.1 0.6 13.1 0.3 13.0 0.3 13.2 0.3

PR-SIR(3) 99.3 0.0 99.7 0.0 99.8 0.0 99.2 0.0 99.7 0.0 99.8 0.0 98.8 0.0 99.6 0.0 99.8 0.0
PR-SIR(10) 99.3 0.0 99.7 0.0 99.9 0.0 99.1 0.0 99.6 0.0 99.8 0.0 984 0.1 99.6 0.0 99.8 0.0
My
MDDM 15.3 0.3 154 0.3 157 0.3 9.9 0.1 10.1 0.1 100 0.1 7.1 0.1 72 0.1 7.1 0.1

PR-Oracle-SIR(3) 152 0.2 15.2 0.2 149 0.2 10.5 0.1 106 0.1 105 0.1 7.5 0.1 7.6 0.1 7.4 0.1
PR-Oracle-SIR(10) 13.8 0.2 13.9 0.2 136 0.2 94 01 9.7 0.1 96 01 6.8 01 6.8 0.1 6.7 0.1
PR-SIR(3) 58.5 0.2 723 0.2 84.0 0.2 446 0.1 582 0.1 71.4 0.1 33.1 0.1 446 0.1 579 0.1
PR-SIR(10) 54.8 0.2 685 0.2 80.6 0.2 41.1 0.2 54.3 0.2 67.7 0.2 30.2 0.1 41.0 0.1 54.2 0.1

Again, we consider various sample sizes and predictor dimension setups, each
with 1,000 replicates. We summarize the subspace estimation errors in Table 2.
For p = 800 and 1200, the results are gathered in Section S1 in the Supplementary
Material. It is clear that the proposed MDDM approach is much better than
PR-SIR, and also improves much faster than PR-SIR does when we increase
the sample size. Note too that the MDDM method performs better in inverse
regression models, such as the isotropic PFC model, than it does in forward
regression models, such as the linear model and index models. This finding is
more apparent in the multivariate response simulations than in the univariate
response simulations. This is expected, because the MDDM directly targets the
inverse regression subspace, which is more directly driven by the response in the
isotropic PFC models.

6.2. Real-data illustration

In this section, we use our method to analyze the NCI-60 data set (Shoe-
maker}, 2006) that contains microRNA expression profiles and cancer drug activity
measurements on the NCI-60 cell lines. The multivariate response is the cancer
drug activities of ¢ = 15 drugs; the predictor is p = 365 different microRNA; the
sample size is n = 60.

First, we examine the predictive performance of our method on 500 random
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Figure 1. Quantile-quantile plots for prediction error comparisons between MDDM
and Lasso-SIR (left panel), and between MDDM-ID and Lasso-SIR (right panel). Each
point corresponds to the prediction mean squared errors for one of the ¢ = 15 response
variables, where different shapes represent different quantiles.
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Figure 2. The averaged prediction error over 500 training-testing sample splits and over
q = 15 response variables.

training—testing sample splits; each time, we randomly pick five observations to
form the test set. We consider K = 5 for all methods. For the MDDM, we
include both the eigen-decomposition (Algorithm 1) and the generalized eigen-
decomposition (Algorithm 2). To distinguish between the two versions of the
MDDM, we have “MDDM-ID” for the eigen-decomposition approach, because
it implicitly assumes that the covariance of X or the conditional covariance of
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X Y is a constant times the identity matrix. We use random initial values, and
choose the sparsity level to be s = 25 in the way described in Section S2 in the
Supplementary Material. Then, the five reduced predictors Bf X, for k = 1,...,5,
are fed into a generalized additive model for each drug. Finally, we evaluate the
mean squared prediction error based on the test sample. The RIFLE-SIR can only
estimate a one-dimensional subspace, which did not yield an accurate prediction
in this data set. Hence, for comparison, we compute five leading directions from
the Lasso-SIR. The 25th, 50th, and 75th percentiles of the squared prediction
errors for each of the 15 responses for all three models are obtained, and we
construct quantile—quantile plots in Figure 1. The red line is the y = x line, and
the black dashed line is a simple linear regression fit for the results indicated by
the y-axis label against that indicated by the x-axis. Clearly, for all the quantiles
and for all the response variables, the MDDM results (MDDM or MDDM-ID) are
better than those of Lasso-SIR in terms of prediction. In addition, we construct
side-by-side box plots of the prediction error averaged over all response variables
in Figure 2 to evaluate the overall improvement. Interestingly, the MDDM-
ID is slightly better than the MDDM approach. This is likely because of the
small sample size. With a training sample of size 55, the sample covariance of
p = 365 variables is difficult to estimate accurately. We include additional real-
data analysis results in Section S2 in the Supplementary Material.

7. Discussion

We have proposed a slicing-free high-dimensional SDR method based on a
penalized eigen-decomposition of a sample MDDM. Our proposal is motivated
by the usefulness of the MDDM for dimension reduction, and yields a relatively
straightforward implementation of the recently developed RIFLE algorithm (Tan
et al.l 2018a) by simply replacing the slicing-based estimator with the sample
MDDM. Our methodology and implementation involve no slicing, and treats
univariate and multivariate responses in a unified fashion. Theoretical support
and finite-sample investigations provide convincing evidence that the MDDM is
a very competitive alternative to SIR, and may be used as a surrogate for an
SIR-based estimator in many related SDR problems.

As with most SDR methods, our proposal requires the linearity condition, the
violation of which can make SDR very challenging. Existing works that relax the
linearity condition are often practically difficult, owing to excessive computational
costs, and cannot be easily extended to high dimensions (Cook and Nachtsheim,
1994; [Ma and Zhu, [2012). One potentially useful approach is to transform data
before SDR to alleviate obvious violations of the linearity assumption (Mai and
Zou, |2015)). In addition, we observe from our simulation studies that the RIFLE
algorithm requires choosing several tuning parameters, such as the step size and
the initial value, and that the optimization error could depend on these tuning
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parameters in a nontrivial way. Further investigation on the optimization error
and data-driven choices for these tuning parameters are desirable, and are left
for future research.

As pointed out by a referee, many SDR methods beyond SIR involve slicing.
It will be interesting to study how to perform them in a slicing-free fashion as
well. For example, Cook and Weisberg| (1991)) attempt to perform dimension
reduction by estimating the conditional covariance of X, while [Yin and Cook
(2003)) consider the conditional third moment. These methods slice the response
to estimate the conditional moments. In the future, one can develop slicing-free
methods to estimate these higher-order moments and conduct SDR.

Supplementary Material

The online Supplementary Material provides additional simulation results
and proofs.
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