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Abstract: The sliced inverse regression (SIR) is the most recognized method in

sufficient dimension reduction. For high-dimensional multivariate applications,

there is promising progress related to the theory and methods of high-dimensional

SIR. However, two problems remain in this context. First, choosing the number

of slices in an SIR is difficult, and depends on the sample size, distributions of

the variables, and other practical considerations. Second, extending SIR from a

univariate response to a multivariate response is not trivial. Targeting the same

dimension reduction subspace as that of the SIR, we propose a new slicing-free

method that provides a unified solution to sufficient dimension reduction for high-

dimensional covariates and univariate or multivariate responses. We achieve this by

adopting the martingale difference divergence matrix (MDDM) and penalized eigen-

decomposition algorithms. To establish the consistency of our method for a high-

dimensional predictor and a multivariate response, we develop a new concentration

inequality for the sample MDDM around its population counterpart using U-

statistics theory, which may be of independent interest. Simulations and a real-

data analysis demonstrate the favorable finite-sample performance of the proposed

method.

Key words and phrases: Multivariate response, sliced inverse regression, sufficient

dimension reduction, U-statistic.

1. Introduction

Sufficient dimension reduction (SDR) is an important statistical analysis

tool for data visualization, summary, and inference. SDR extracts low-rank

projections of the predictorsX that contain all information about the response Y ,

without prespecifying a parametric model. The semiparametric nature of SDR

leads to great flexibility and convenience in practice. After performing SDR,

we can model the conditional distributions of the response, given the lower-

dimensional projected covariate, using existing parametric or nonparametric

methods. A salient feature of SDR is that the low-rank projection space can be

estimated accurately at a parametric rate, with the nonparametric part treated as
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an infinite-dimensional nuisance parameter. For example, in multi-index models,

SDR is used to estimate the multiple projection directions, without estimating

the unspecified link function.

A cornerstone of SDR is the sliced inverse regression (SIR), pioneered by

Li (1991), who first discovered the connection between the low-rank projection

space and the eigen-space of cov(E(X | Y )), under suitable assumptions. SIR

is performed by slicing the response Y , and then aggregating the conditional

mean of the predictor X, given the response Y within each slice. For example,

consider a univariate response Y . Slicing involves picking K + 1 constants

−∞ = a0 < a1 < · · · < aK = ∞, and defining a new random variable H, where

H = k if and only if ak−1 < Y ≤ ak. After a centering and standardization of

the covariate, that is, X → X̃ = Σ
−1/2
X (X−E(X)), a simple eigen-decomposition

can be used to find linear projections that explain most of the variability in

the conditional expectation of the transformed predictor given the response

across slices, that is, cov(E(X̃ | H)). An important variation of the SIR is the

sliced average variance estimation (Cook and Weisberg, 1991), which uses the

conditional variance across slices. A key step in these inverse regression methods

is the choice of the slicing scheme. If Y is sliced too coarsely, we may not be able

to capture the full dependence of Y on the predictors, leading to significant bias

in the estimation of cov(E(X̃ | Y )). In contrast, if Y is sliced too finely, then

the within-slice sample size becomes too small, leading to large variability in the

estimation. Although Li (1991) and Hsing and Carroll (1992) show that SDR

can still be consistent in a large sample even when the slicing scheme is chosen

poorly, Zhu and Ng (1995) argue that the choice of slicing scheme is critical to

achieve high estimation efficiency. However, to the best of our knowledge, there

is little generally applicable guidance in the literature on how to choose a good

slicing scheme.

Zhu, Zhu and Feng (2010) and Cook and Zhang (2014) show that it is

beneficial to aggregate multiple slicing schemes, rather than relying on one,

although their methods focus only on a univariate response, and in many real-life

problems, multi-response data are common. Here, a component-wise analysis

may not be sufficient, because it does not make full use of the component-

wise dependence in the response. However, slicing a multivariate response is

notoriously difficult, owing to the curse of dimensionality, a common problem

in multivariate nonparametric smoothing. As the dimension for the response

becomes moderately large, it becomes increasingly difficult to ensure that each

slice contains a reasonable number of samples, and the estimation can be unstable

in practice. Hence, it is highly desirable to develop new SDR methods that do

not involve slicing.

An important line of research in the recent SDR literature is to develop

SDR methods for data sets with high-dimensional covariates, as motivated by

many contemporary applications. The idea of SDR is naturally attractive for
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high-dimensional data sets, because an effective reduction of the dimension in

X allows us to use existing modeling and inference methods for low-dimensional

covariates. However, most classical SDR methods are not directly applicable to

the large p small n setting, where p is the dimension of X and n is the sample

size. To overcome the challenges associated with high-dimensional covariates,

several methods have been proposed. Lin, Zhao and Liu (2018) show that the

SIR estimator is consistent if and only if lim p/n = 0. When the dimension p

is larger than n, they propose a diagonal thresholding screening SIR (DT-SIR)

algorithm, and show that it is consistent in terms of recovering the dimension

reduction space, under certain sparsity assumptions on both the covariance

matrix of the predictors and the loadings of the directions. Lin, Zhao and

Liu (2019) introduce a simple Lasso regression method that estimates the SDR

space by constructing artificial response variables from the top eigenvectors of

the estimated conditional covariance matrix. Tan et al. (2018a) propose a

two-stage computational framework to solve the sparse generalized eigenvalue

problem, which includes the high-dimensional SDR as a special case, and propose

a truncated Rayleigh flow method (RIFLE) to estimate the leading generalized

eigenvector; see also Lin et al. (2020) and Tan et al. (2018b). Although these

methods provide valuable tools to tackle the high-dimensional SDR problem, they

still rely on the SIR in their methodology and involve choosing a single slicing

scheme, with little guidance on how to choose such a scheme. Consequently, these

methods cannot be applied easily to data with a multivariate response, and the

effect of the choice of slicing scheme is unclear.

In this article, we propose a novel slicing-free SDR method in the high-

dimensional setting. Our proposal is inspired by a recent nonlinear dependence

metric, called the martingale difference divergence matrix (MDDM, Lee and

Shao, 2018). Lee and Shao (2018) developed the MDDM as a matrix-valued

extension of the martingale difference divergence (MDD) of Shao and Zhang

(2014), which measures the (conditional) mean dependence of a response variable

given a covariate, and used it to reduce the dimension of a multivariate time series.

As recently revealed by Zhang, Lee and Shao (2020), at the population level, the

eigenvectors (or generalized eigenvectors) of the MDDM are always contained in

the central subspace. Building on these prior works, we propose using a penalized

eigen-decomposition on the MDDM to perform SDR in high dimensions. When

the covariance matrix of the predictor is the identity matrix, we use the truncated

power method with hard thresholding to estimate the top-K eigenvectors of

the MDDM. For a more general covariance structure, we apply the RIFLE

algorithm (Tan et al., 2018a) to the sample MDDM instead of to the sample

SIR estimator of cov(E(X | Y )). By using the sample MDDM, this approach

is free of slicing, enabling us to treat univariate and multivariate responses in

a unified way, and thus circumventing the practical difficulty of selecting the

number of slices (especially for a multivariate response). From a theoretical
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perspective, we derive a concentration inequality for the sample MDDM around

its population counterpart by using U-statistics theory, and obtain a rigorous

nonasymptotic theoretical justification for the estimated central subspaces for

both settings. The results of simulations and a real-data analysis confirm that

the proposed penalized MDDM outperforms slicing-based methods in terms of

estimation accuracy.

The rest of this paper is organized as follows. In Section 2, we give a brief

review of the MDDM, and then present a new concentration inequality for the

sample MDDM around its population counterpart. In Section 3, we present

our general methodology of adopting the MDDM in both model-free and model-

based SDR problems, where we establish population-level connections between

the central subspace and the eigen-decomposition and the generalized eigen-

decomposition of the MDDM. Algorithms for regularized eigen-decomposition

and generalized eigen-decomposition problems are proposed in Sections 4.1 and

4.2, respectively. Theoretical properties are established in Section 5. Section 6

contains numerical studies. Finally, Section 7 concludes the paper. The Supple-

mentary Material provides all additional technical details and numerical results.

2. The MDDM and Its Concentration Inequality

Consider a pair of random vectors V ∈ Rp and U ∈ Rq, such that E(∥U∥2 +
∥V∥2) < ∞. We use ∥U∥ = |U|q to denote the Euclidean norm in Rq. Define

MDDM(V | U) = −E
[
{V − E(V)}{V′ − E(V′)}T∥U−U′∥

]
∈ Rp×p,

where (V′,U′) is an independent copy of (V,U). Lee and Shao (2018) established

the following key properties of MDDM(V | U): (i) it is symmetric and positive

semi-definite; (ii) E(V | U) = E(V), almost surely, is equivalent to MDDM(V |
U) = 0; (iii) for any p × d matrix A, MDDM(ATV | U) = ATMDDM(V |
U)A; (iv) there exist p − d linearly independent combinations of V that are

(conditionally) mean independent of U if and only if rank(MDDM(V|U)) = d.

Given a random sample of size n, that is, (Uk,Vk)
n
k=1, the sample estimate

of MDDM(V | U), denoted by MDDMn(V | U), is defined as

MDDMn(V | U) = − 1

n2

n∑
j,k=1

(Vj −Vn)(Vk −Vn)
T|Uj −Uk|q, (2.1)

where Vn = n−1
∑n

k=1 Vk is the sample mean.

In the following, we present a concentration inequality for the sample MDDM

around its population counterpart, which plays an instrumental role in our

consistency proof for the proposed penalized MDDM method later. To this end,

we let V = (V1, . . . , Vp)
T ∈ Rp, and assume the following condition.
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(C1) There exist two positive constants σ0 and C0 such that

sup
p

max
1≤j≤p

E{exp(2σ0V
2
j )} ≤ C0,

E{exp(2σ0∥U∥2q)} ≤ C0.
(2.2)

For a matrix A = (aij), we denote its max norm as ∥A∥max = maxij |aij|.

Theorem 1. Suppose that Condition (C1) holds. There exists a positive integer

n0 = n0(σ0, C0, q) < ∞, γ = γ(σ0, C0, q) ∈ (0, 1/2), and a finite positive constant

D0 = D0(σ0, C0, q) < ∞, such that when n ≥ n0 and 16 > ϵ > D0n
−γ, we have

P (∥MDDMn(V|U)−MDDM(V|U)∥max > 12ϵ) ≤ 54p2 exp

{
− ϵ2n

36 log3(n)

}
.

The above bound is nonasymptotic and holds for all (n, p, ϵ), as long as the

condition is satisfied. The exponent ϵ2n/log3(n) is from the use of a truncation

argument, along with Hoeffding’s inequality for U-statistics, and seems hard to

improve. Nevertheless, we achieve an exponential-type bound under a uniform

sub-Gaussian condition on both V and U. This result may be of independent

theoretical interest. For example, in the time series dimension reduction problem

studied by Lee and Shao (2018), our Theorem 1 could potentially help extend

their theory from low-dimensional multivariate time series to higher dimensions.

3. Slicing-free Inverse Regression Using the MDDM

3.1. Inverse regression subspace in SDR

SDR methods aim to identify the central subspace that preserves all in-

formation in the predictors. In this study, we consider the SDR problem of

a multivariate response Y ∈ Rq on a multivariate predictor X ∈ Rp. The

central subspace SY|X is defined as the intersection of all subspaces S such that

Y ⊥⊥ X | PSX, where PS is the projection matrix onto S. By construction,

the central subspace SY|X is the smallest dimension reduction subspace that

contains all information in the conditional distribution of Y given X. Many

methods have been proposed for recovering the central subspace or a portion

of the central subspace (Li, 1991; Cook and Weisberg, 1991; Bura and Cook,

2001; Chiaromonte, Cook and Li, 2002; Yin and Cook, 2003; Cook and Ni, 2005;

Li and Wang, 2007; Zhou and He, 2008); see Li (2018) for a comprehensive

review. Although the central subspace is well defined for both univariate and

multivariate responses, most existing SDR methods consider the case with a

univariate response, and an extension to a multivariate response is nontrivial.

The definition of a central subspace is not very constructive, because it

requires taking the intersection of all subspaces S ⊆ Rp such that Y ⊥⊥ X | PSX.

It is difficult to estimate the central subspace without specifying a model between



6 MAI ET AL.

Y and X. To achieve this, we often need additional assumptions, such as the

linearity and the coverage conditions. The linearity condition requires that, for

any basis of the central subspace β, we must have that E(X | βTX) is linear

in βTX. The linearity condition is guaranteed if X is elliptically contoured, and

allows us to connect the central subspace to the conditional expectation E(X | Y).

Define ΣX as the covariance of X, and the inverse regression subspace

SE(X|Y) ≡ span{E(X | Y = y)− E(X) : y ∈ Rq such that E(X | Y = y) exists}.
(3.1)

The following property is well known, and is often used to develop SDR methods.

Proposition 1. Under the linearity condition, we have SE(X|Y) ⊆ ΣXSY|X ⊆ Rp.

The coverage condition further assumes that SE(X|Y) = ΣXSY|X. It follows

that we can estimate the central subspace by modeling the conditional expecta-

tion of X. Indeed, many SDR methods approximate E(X | Y). For example,

SIR slices the univariate Y into several categories, and estimates the mean of X

within each slice. Most methods follow this slice-and-estimate procedure. The

number of slices is important to the estimation. If there are too few slices, we

may not be able to fully capture the dependence of X on Y ; however, if there

are too many slices, there are insufficient samples within each slice to allow an

accurate estimation.

3.2. The MDDM in SDR

In this section, we lay the foundation for applying the MDDM to SDR.

We show that the subspace spanned by the MDDM coincides with the inverse

regression subspace in (3.1). In particular, we have Proposition 2, which is

also used in Zhang, Lee and Shao (2020), without a proof, in the context of

a multivariate linear regression.

Proposition 2. For multivariate X ∈ Rp and Y ∈ Rq, assuming the existence of

E(X), E(X | Y), and MDDM(X | Y), we have SE(X|Y) = span{MDDM(X | Y)}.

Therefore, the rank of MDDM(X | Y) is the dimensionality of the inverse

regression subspace, and the nontrivial eigenvectors of MDDM(X | Y) contain all

the information for SE(X|Y). Combining Propositions 1 & 2, we immediately have

that (i) under the linearity condition, Σ−1
X span{MDDM(X | Y)} ⊆ SY|X, and (ii)

under the linearity and coverage conditions, Σ−1
X span{MDDM(X | Y)} = SY|X.

Henceforth, we assume both the linearity and coverage conditions, which

are assumed either explicitly or implicitly in inverse regression-type dimension

reduction methods (e.g., Li, 1991; Cook and Ni, 2005; Zhu, Zhu and Feng, 2010;

Cook and Zhang, 2014). Then, the central subspace is related to the eigen-

decomposition of MDDM(X | Y). Specifically, we have the following scenarios.

If cov(X) = σ2Ip, for some σ2 > 0, then obviously span{MDDM(X | Y)} =

SY|X. This includes single-index and multiple-index models with uncorrelated
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predictors. Let K be the rank of MDDM(X | Y). Then, the dimension of the

central subspace is K, and the first K eigenvectors of MDDM(X | Y) span the

central subspace.

If cov(X | Y) = σ2Ip, for some σ2 > 0, then we have ΣX = σ2Ip +

cov{E(X | Y)}. Because span[cov{E(X | Y)}] = SE(X|Y), we can show that

SY|X = Σ−1
X span{MDDM(X | Y)} = span{MDDM(X | Y)}. To see this, let

cov{E(X | Y)} = UUT, for some U ∈ Rp×K . Then, span(U) = span[cov{E(X |
Y)}] = span{MDDM(X | Y)}, and we may also write MDDM(X | Y) = UΨUT,

for some symmetric positive-definite matrix Ψ ∈ RK×K . The result follows by

applying the Woodbury matrix identity to Σ−1
X = (σ2Ip + UUT)−1 = σ−2Ip

− σ−2U(σ2IK + UTU)−1UT. The nontrivial eigenvectors of MDDM(X | Y)

again span the central subspace.

For a general covariance structure, the d-dimensional central subspace SY|X

= Σ−1
X span{MDDM(X | Y)} can be obtained by using a generalized eigen-

decomposition. Specifically, consider the generalized eigenvalue problem

MDDM(X | Y)vi = φiΣXvi, φi ≥ 0, vi ∈ Rp, (3.2)

where vT
i ΣXvj = 0, for i ̸= j. Then, similarly to Li (2007) and Chen, Zou and

Cook (2010), it is straightforward to show that the generalized eigenvector spans

the central subspace, SY|X = span(v1, . . . ,vK).

Existing works on SDR often focus on the eigen-decomposition or the gener-

alized eigen-decomposition of cov{E(X | Y = y)}, where nonparametric estimates

of E(X | Y = y) are obtained by slicing the support of the univariate response Y .

In contrast, the MDDM approach requires no tuning parameter selection (i.e.,

specifying a slicing scheme). Moreover, a high-dimensional theoretical study

of the MDDM is easier, and does not require additional assumptions on the

conditional mean function E(X | Y), such as smoothness in the empirical mean

function of X given Y (e.g., sliced stable condition in Lin, Zhao and Liu, 2018).

3.3. The MDDM for model-based SDR

Thus far, we have discussed model-free SDR. Another important research

area in SDR is model-based methods, which provide valuable insights when

using an inverse regression estimation under the assumption that the conditional

distribution of X | Y is normal. In this section, we consider the principal fitted

component (PFC) model, which is discussed in detail in Cook and Forzani (2009)

and Cook (2007), and generalize it from a univariate response to a multivariate

response. We argue that the (generalized) eigen-decomposition of the MDDM is

potentially advantageous to likelihood-based approaches under the PFC model.

This is somewhat surprising, but reasonable, considering that the advantages of

the MDDM over least squares and likelihood-based estimations are demonstrated

in Zhang, Lee and Shao (2020) for multivariate linear models.
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Let Xy ∼ X | (Y = y) denote the conditional variable. Then, the PFC

model is

Xy = µ+ Γνy + ε, ε ∼ N(0,∆), (3.3)

where Γ ∈ Rp×K , for K < p, is a nonstochastic orthogonal matrix, and νy ∈ RK

is the latent variable that depends on y. Then, the latent variable νy is fitted

as νy = αfy, with some user-specified functions fy = (f1(y), . . . , fm(y))
T ∈ Rm,

for m ≥ K, which maps a q-dimensional response to an m-dimensional response.

In the univariate PFC model, q = 1, so the m functions can be viewed as an

expansion of the response (similar to slicing). For our multivariate extensions

of the PFC model, there is no requirement of m ≥ q. The PFC model can be

written as

Xy = µ+ Γαfy + ε, (3.4)

where Γ and α are estimated similarly to the multivariate reduced-rank regres-

sion, with X ∈ Rp being the response and fy ∈ Rm being the predictor. Finally,

the central subspace under this PFC model is ∆−1span(Γ), which simplifies

to span(Γ) if we further assume the isotropic error (i.e., isotropic PFC model)

∆ = cov(X | Y) = σ2Ip.

For the PFC model, our MDDM approach is the same as the model-free

MDDM counterpart, and has two main advantages over the likelihood-based PFC

estimation: (i) there is no need to specify the functions fy, and thus no risk of

misspecification, and (ii) extensions to high-dimensional settings are much more

straightforward. Moreover, under the isotropic PFC model, the central subspace

SY|X = span(Γ) is exactly the first K eigenvectors of MDDM(X | Y).

4. Estimation

4.1. Penalized decomposition of the MDDM

Based on the results in the last section, we can use the penalized eigen-

decomposition of the MDDM to estimate the central subspace in high dimensions

when the covariance ΣX or the conditional covariance cov(X | Y) is proportional

to the identity matrix Ip. Here, we construct such an estimate. Note that the

penalized decomposition of the MDDM we develop here is immediately applicable

to the dimension reduction of multivariate stationary time series in Lee and Shao

(2018). However, this is beyond the scope of this study. Moreover, it is well

known that Σ−1
X is not easy to estimate in high dimensions. Then, even for

a general covariance structure, the eigen-decomposition of the MDDM provides

an estimate of the inverse regression subspace (though it may differ from the

central subspace) that is useful for exploratory data analysis (e.g., detecting and

visualizing a nonlinear mean function).

As such, we estimate the eigenvectors of MDDM(X | Y). We assume

that MDDM(X | Y) has K nontrivial eigenvectors, denoted by β1, . . . ,βK ,
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respectively. We use the shorthand notation M = MDDM(X | Y). In addition,

note that, given the first k − 1 eigenvectors, βk is the top eigenvector of Mk,

where Mk = M−
∑

l<k(β
T
l Mβl)βlβ

T
l .

It is well known that the eigenvectors cannot be estimated accurately

in high dimensions without additional assumptions. We adopt the popular

sparsity assumption that many entries in βk are zero. To estimate these sparse

eigenvectors, denote M̂1 = MDDMn(X | Y), where the sample MDDMn is

defined in (2.1). We find β̂k, for k = 1, . . . ,K, as follows:

β̂k = argmax
β

βTM̂kβ s.t. βTβ = 1, ∥β∥0 ≤ s, (4.1)

where M̂1 = MDDMn(X | Y), M̂k = M̂1 −
∑

l<k δlβ̂lβ̂
T
l , for k > 1, with δl =

β̂T
l M̂1β̂l, and s is a tuning parameter.

We solve the above problem by combining the truncated power method with

hard thresholding. For a vector v ∈ Rp and a positive integer s, denote v∗s as

the sth largest value of |vj|, for j = 1, . . . , p. The hard-thresholding operator is

HT(v, s) = (v1I(|v1| ≥ v∗s), . . . , vpI(|vp| ≥ v∗s))
T, which sets the p− s elements in

v to zero. We solve (4.1) using Algorithm 1, where the initialization β̂
(0)
1 may be

randomly generated. Note that Yuan and Zhang (2013) proposed Algorithm 1 to

perform a principal component analysis using the penalized eigen-decomposition

on the sample covariance.

In our algorithm, we require a prespecified sparsity level s and subspace

dimension K. In terms of theory, we show that our estimators for βk, for

k = 1, . . . ,K, are all consistent for their population counterparts when the

sparsity s is sufficiently large (i.e., larger than the population sparsity level) and

the number of directions K is no bigger than the true dimension of the central

subspace. Therefore, our method is flexible in the sense that the prespecified s

and K do not have to be exactly correct. In practice, especially in exploratory

data analysis, the number of sequentially extracted directions is often set to be

small (i.e., K = 1, 2, or 3). Determining the true central subspace dimension is

a separate and important research topic in SDR (e.g., Bura and Yang, 2011; Luo

and Li, 2016), and is beyond the scope of this study. Moreover, the prespecified

sparsity level s combined with ℓ0-regularization is potentially convenient for post-

dimension reduction inference (Kim et al., 2020), as in the post-selection inference

of a canonical correlation analysis over subsets of variables with prespecified

cardinalities (McKeague and Zhang, 2020).

As pointed out by a referee, other sparse principal component analysis (PCA)

methods can potentially be applied to decompose the MDDM. We choose to

extend the algorithm in Yuan and Zhang (2013) to facilitate computation and

theoretical development. For computationally efficient sparse PCA methods such

as Zou, Hastie and Tibshirani (2006) and Witten, Tibshirani and Hastie (2009),

their theoretical properties are unfortunately unknown. Hence, we expect the
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Algorithm 1 Penalized eigen-decomposition of MDDM.

1. Input: s,K, M̂1 = M̂ = MDDMn(X | Y).

2. Initialize β̂
(0)
1 .

3. For k = 1, . . . ,K, do

(a) Iterate over t until convergence:

i. Set β̂
(t)
k = M̂kβ̂

(t−1)
k .

ii. If ∥β̂(t)
k ∥0 ≤ s, set

β̂
(t)
k =

β̂
(t)
k

∥β̂(t)
k ∥2

;

else

β̂
(t)
k =

HT(β̂
(t)
k , s)

∥HT(β̂
(t)
k , s)∥2

.

(b) Set β̂k = β̂
(t)
k at convergence and M̂k+1 = M̂k − β̂T

k M̂β̂k · β̂kβ̂
T
k .

4. Output ŜY|X = span(β̂1, . . . , β̂K).

theoretical study of their MDDM-variants to be very challenging. On the other

hand, for the theoretically justified sparse PCA methods such as Vu and Lei

(2013) and Cai, Ma and Wu (2013), the computation is less efficient.

4.2. Generalized eigenvalue problems with the MDDM

Now, we consider the general (arbitrary) covariance structure ΣX. We

continue to use β1, . . . ,βK to denote the nontrivial eigenvectors of Σ−1
X

span(MDDM(X | Y)) so that the central subspace is spanned by β. Again,

we assume that these eigenvectors are sparse. In principle, we could assume that

Σ−1
X is also sparse, and construct its estimate accordingly. However, Σ−1

X is a

nuisance parameter for our ultimate goal, and additional assumptions on it may

unnecessarily limit the applicability of our method. Hence, we take a different

approach.

To avoid estimating Σ−1
X , we note that β1, . . . ,βK can also be viewed as the

generalized eigenvectors defined as follows, which is equivalent to (3.2):

βk = argmax
β

βTMβ, s.t. βTΣXβ = 1,βT
l ΣXβ = 0 for any l < k. (4.2)

Directly solving the generalized eigen-decomposition problem in (4.2) is not

easy if we want to impose further penalties, because it is difficult to satisfy the

orthogonality constraints. Therefore, we consider another form for (4.2) that

does not involve the orthogonal constraints. This alternative form is based on
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the following lemma.

Lemma 1. Let λj = βT
j Mβj and Mk = M−ΣX(

∑
j<k λjβjβ

T
j )ΣX. We have

βk = argmax
β

βTMkβ, s.t. βTΣXβ = 1. (4.3)

Motivated by Lemma 1, we consider the penalized problem that βk =

argmaxβ βTM̂kβ such that βTΣXβ = 1, ∥β∥0 ≤ s, where M̂1 = MDDMn(X | Y)

and M̂k = M̂1 − Σ̂X(
∑

l<k δlβ̂lβ̂
T
l )Σ̂X, for k > 1, with δl = β̂T

l M̂β̂l, and s is a

tuning parameter. We adopt the RIFLE algorithm of Tan et al. (2018a) to solve

this problem; see Algorithm 2. In our simulation studies, we consider a randomly

generated initial value β̂
(0)
1 and a fixed step size η = 1, and observe reasonably

good performance.

Although Algorithm 2 is a generalization of the RIFLE algorithm of Tan

et al. (2018a), there are important differences between the two. On the one

hand, the RIFLE algorithm extracts only the first generalized eigenvector,

whereas Algorithm 2 is capable of estimating multiple generalized eigenvectors

by properly deflating the MDDM. In SDR problems, the central subspace often

has a structural dimension greater than one, and it is necessary to find more

than one generalized eigenvectors. Hence, Algorithm 2 is potentially more useful

than the RIFLE algorithm, in practice. On the other hand, the usefulness of

the RIFLE algorithm has been demonstrated in several statistical applications,

including sparse sliced inverse regression. Here, Algorithm 2 decomposes the

MDDM, which is the first time the penalized generalized eigenvector problem

has been used to perform SDR in a slicing-free manner in high dimensions. A

brief analysis of the computation complexity is included in Section S3 in the

Supplementary Material.

5. Theoretical Properties

In this section, we consider the theoretical properties of the generalized

eigenvectors of (MDDM(X | Y),ΣX). Recall that if we know that ΣX = I,

the generalized eigenvectors reduce to eigenvectors, and can be estimated using

Algorithm 1. If we do not have any information about ΣX, we can find the

generalized eigenvectors using Algorithm 2. Either way, we let βk, for k =

1, . . . ,K, be the firstK (generalized) eigenvectors of MDDM(X | Y). Throughout

the proof, we let C denote a generic constant that can vary based on the context.

We show the consistency of β̂k by proving that ηk = | sinΘ(β̂k,βk)| ≤ Csϵ. We

assume that K is fixed, and sϵ ≤ 1. Recall that we define λj = βT
j Mβj as the

(generalized) eigenvalue. Further, define d = maxK
k=1{∥βk∥0}. When we study

Algorithm 1 or Algorithm 2, we assume that s = d + 2s′, where s′ = Cd for a

sufficiently large C. To apply the concentration inequalities for the MDDM, we

restate Condition (C1) in terms of X and Y as Condition (C1′), along with other
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Algorithm 2 Generalized eigen-decomposition of MDDM.

1. Input: s,K, M̂1 = M̂, and step size η > 0.

2. Initialize β̂
(0)
1 .

3. For k = 1, . . . ,K, do

(a) Iterate over t until convergence:

i. Set ρ(t−1) = (β̂
(t−1)
k )TM̂kβ̂

(t−1)
k /(β̂

(t−1)
k )TΣ̂Xβ̂

(t−1)
k .

ii. C = I+ (η/ρ(t−1)) · (M̂k − ρ(t−1)Σ̂X).

iii. β̃
(t)
k = Cβ̂

(t−1)
k /∥Cβ̂

(t−1)
k ∥2.

iv. β̂
(t)
k = HT(β̃k, s)/∥HT(β̃k, s)∥2

(b) Set β̃k = β̂
(t)
k at convergence and scale it to obtain β̂k = β̃k/

√
β̃T
k Σ̂Xβ̃k.

(c) Set M̂k+1 = M̂k − Σ̂Xβ̂T
k M̂β̂k · β̂kβ̂

T
k Σ̂X.

4. Output ŜY|X = span(β̂1, . . . , β̂K).

suitable conditions:

(C1′) There exist two positive constants σ0 and C0 such that E{exp(2σ0∥Y∥2q)} ≤
C0 and supp max1≤j≤p E{exp(2σ0X

2
j )} ≤ C0.

(C2) There exist ∆ > 0 such that mink=1,...,K(λk − λk+1) ≥ ∆.

(C3) There exist constants U,L that do not depend on n, p such that L ≤ λK ≤
λ1 ≤ U .

(C4) As n → ∞, dn−1/2(log p)1/2(log n)3/2 → 0.

Condition (C2) guarantees that the eigenvectors are well defined. Condition

(C3) imposes bounds on the eigenvalues of M. Researchers often impose similar

assumptions on the covariance matrix to achieve consistent estimation. Condition

(C4) restricts the growth rate of p, d with respect to n. Note that d is the

population sparsity level of βk, and s is the user-specified sparsity level in

Algorithms 1 and 2. If we fix d, the dimension is allowed to grow at the rate

log p = o(n log−3 n). When we allow d to diverge, we require it to diverge more

slowly than {n/(log p log3 n)}1/2.
We present the nonasymptotic results for Algorithm 1 in the following

theorem, where the constants D1, D2, σ0, γ, C0 are defined previously in Theorem

1 under Condition (C1).

Theorem 2. Assume that Conditions (C1′), (C2), and (C3) hold, and ΣX = I.

Further, assume that there exists θ ∈ (0, 1/2) such that, for k = 1, . . . ,K, we
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have (β̂0
k)

Tβk ≥ 2θ, and

µ =

√[
1 + 2

{(
d

s′

)1/2

+
d

s′

}]
{1− 0.5θ(1 + θ)(1− (γ∗)2)} < 1, (5.1)

where γ∗ = {λK − (3/4)∆}/{λK − (1/4)∆}. Then, there exists a positive integer

n0 = n0(σ0, C0, q) < ∞, γ = γ(σ0, C0, q) ∈ (0, 1/2), and a finite positive

D0 = D0(σ0, C0, q), such that when n > n0, we have D0n
−γ < ∆/4s, and

for any D0n
−γ < ϵ < min{∆/4s, θ}, with a probability greater than 1 −

54p2 exp{−ϵ2n/(36 log3 n)},

| sinΘ(β̂k,βk)| ≤ Csϵ, k = 1, . . . ,K. (5.2)

Let n−1/2(log p)1/2 log 3/2n ≪ ϵ ≪ d−1. Then, Theorem 2 directly implies the

following asymptotic result that justifies the consistency of our estimator.

Corollary 1. Assume that Conditions (C1′) and (C2)–(C4) hold. Suppose there

exists γ > 0 such that d ≤ s ≪ min[nγ , n1/2/{(log p)1/2(log n)3/2}]. Under

the conditions in Theorem 2, the quantities | sinΘ(β̂k,βk)| → 0 with probability

tending to one, for k = 1, . . . ,K.

Corollary 1 reveals that, without specifying a model, Algorithm 1 can achieve

consistency when p grows at an exponential rate of n. To be exact, we can

allow log p = o{n/(d2 log3 n)}. Here, the theoretical results are established for

the output of Algorithm 1, instead of the solution of the optimization problem

(4.1). Note that it is possible for there to be a difference between the theoretical

optimal solution of (4.1) and the estimate we use in practice, because the

optimization problem is nonconvex, and, numerically, we might not achieve the

global maximum. Thus, it might be more meaningful to study the property of the

estimate obtained as the output of Algorithm 1. The above theorem guarantees

that the estimate we use in practice has the desired theoretical properties.

Although our rate in Theorem 2 is not as high as that of a sparse SIR, as

established very recently by Lin, Zhao and Liu (2018) when ΣX = I and for

general ΣX by Lin, Zhao and Liu (2019), and by Tan, Shi and Yu (2020), we

have some unique advantages over these proposals. For simplicity, we assume

that d is fixed in the subsequent discussion. First, both SIR methods require an

estimation of within-slice means, rather than the MDDM. As shown in Theorem 1,

the MDDM converges to its population counterpart at a slower rate than the

sample within-slice mean does. However, by adopting the MDDM, we no longer

need to determine the slicing scheme, and we do not encounter the curse of

dimensionality when slicing a multivariate response. Second, Lin, Zhao and Liu

(2018) only achieve the optimal rate when p = o(n2), and cannot handle ultrahigh

dimensions. In contrast, Algorithm 1 allows p to diverge at an exponential

rate of n, and is more suitable for ultrahigh-dimensional data. Third, although
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Tan, Shi and Yu (2020) achieve consistency when log p = o(n), their model

assumptions are much more restrictive. For example, they assume that Y is

categorical and X is normal within each slice of Y , and they randomly split

the data set to form independent batches to facilitate their proofs, which is not

done in their numerical studies. The theoretical properties for their proposal are

unclear beyond the (conditionally) Gaussian model and without sample splitting.

In contrast, our method makes no model assumption between X and Y , and our

theory requires no sample splitting. Thus, our results are more widely applicable,

and we obtain good rates. Furthermore, unlike the theory in Tan, Shi and Yu

(2020), our theoretical result characterizes the same method we use in practice.

Moreover, the convergence rate of our method has an additional factor of log3(n)

compared to Tan, Shi and Yu (2020), which grows at a slow rate of n that only

imposes mild restriction on the dimensionality. For example, for any positive

constant ξ ∈ (0, 1), if log p = O(n1−ξ), our method is consistent. In this sense,

although we cannot handle the optimal dimensionality of log p = o(n), the gap is

very small.

Next, we consider the penalized generalized eigen-decomposition in Algo-

rithm 2. We assume that the step size η satisfies ηλmax(ΣX) < 1/2, and√[
1 + 2

{(
d

s′

)1/2

+
d

s′

}][
1− ηλmin(ΣX){1− (λ2/λ1)}

16κ(ΣX) + 16(λ2/λ1)

]
< 1, (5.3)

where λmax(ΣX), λmin(ΣX), and κ(ΣX) are the largest eigenvalue, smallest

eigenvalue, and condition number of ΣX, respectively. The nonasymptotic results

are as follows.

Theorem 3. Assume that Conditions (C1′), (C2), and (C3) hold. Suppose

there exists γ ∈ (0, 1/2) such that d ≤ s = o(nγ), and there exists a constant

θ(κ(ΣX), λmax(ΣX),∆, λ1, λK , η) ∈ (0, 1) such that (β̂0
k)

Tβk/∥β̂0
k∥2 ≥ 1 − θ.

Then, there exists a positive integer n0 = n0(s0, C0) < ∞ and four finite

positive constants D0 = D0(γ, σ0, C0) ∈ (0,∞), D1 = D1(C0) ∈ (0,∞),

D2 = D2(σ0, C0) ∈ (0,∞), and ϵ0 = ϵ0(λ1, λ2, λmin(Σ),∆) such that for any

ϵ that satisfies sϵ < ϵ0 and D0n
−γ < ϵ ≤ 1, with a probability greater than

1−D1p
2n exp{−D2ϵ

2n/ log3 n}, we have | sinΘ(β̂k,βk)| ≤ Csϵ, for k = 1, . . . ,K.

Theorem 3 is proved by showing that M̂k and Σ̂X are close to their

counterparts in the sense that uTM̂ku and uTΣ̂Xu are close to uTMku and

uTΣXu, respectively, for any u with only s nonzero elements. Then, because

Algorithm 2 is a generalization of the RIFLE algorithm (Tan et al., 2018a), some

properties of the latter allow us to establish the consistency of Algorithm 2. By

comparison, our proofs are significantly more involved than that in Tan et al.

(2018a), because we have to estimate K generalized eigenvectors, instead of just

the first one. We need to carefully control the error bounds to guarantee that the
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estimation errors do not accumulate to a higher order beyond the first generalized

eigenvector.

Analogous to Corollary 1, we can easily obtain asymptotic consistency results

by translating Theorem 3.

Corollary 2. Assume that Conditions (C1)–(C4) hold. Suppose there exists γ ∈
(0, 1/2) such that d ≤ s ≪ min{nγ , n1/2/(log p log3 n)1/2}. Under the conditions

in Theorem 3, the quantities | sinΘ(β̂k,βk)| → 0 with a probability tending to

one, for k = 1, . . . ,K.

Corollary 2 shows that Algorithm 2 produces consistent estimates of the

generalized eigenvectors βk even when p grows at an exponential rate of the

sample size n, and thus is suitable for ultrahigh-dimensional problems. Similar to

Corollary 1, Corollary 2 has no gap between the theory and the numerical outputs,

because it concerns the outputs of Algorithm 2. Note that the dimensionality in

Corollary 2 is the same as that in Corollary 1. Thus, with a properly chosen

step size η, the penalized generalized eigen-decomposition is intrinsically no

more difficult than the penalized eigen-decomposition. However, if we have

knowledge about ΣX being the identity matrix, it is still beneficial to exploit

such information and use Algorithm 1, because Algorithm 1 does not involve the

step size and is more convenient in practice. Furthermore, although Algorithm 2

does not achieve the same rate of convergence as recent sparse SIR proposals,

it has many practical and theoretical advantages, just as for Algorithm 1, as

discussed earlier.

Finally, note that our theoretical studies require conditions on the initial

value. Specifically, we require the initial value to be non-orthogonal to the truth.

This is a common technical condition for iterative algorithms; see Yuan and

Zhang (2013) and Tan et al. (2018a), for example. Such conditions do not seem

critical for our algorithms to work in practice. In our numerical studies, we use

randomly generated initial values, and the performance of our methods appears

to be competitive.

6. Numerical Studies

6.1. Simulations

We compare our slicing-free approaches with state-of-the-art high-dimensional

extensions of SIR estimators. We consider both univariate and multivariate

response settings. Specifically, for the univariate response simulations, we include

RIFLE-SIR (Tan et al., 2018a) and Lasso-SIR (Lin, Zhao and Liu, 2019) as the

two main competitors; for the multivariate response simulations, we mainly

compare our method with the projective resampling approach to SIR (PR-SIR,

Li, Wen and Zhu, 2008), which is a computationally expensive method that

repeatedly projects the multivariate response to one-dimensional subspaces. For
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RIFLE-SIR, we adopt the RIFLE algorithm to estimate the leading eigenvector

of the sample matrix cov{E(X | Y )} based on slicing. In addition, we include

the oracle-SIR as a benchmark method, where we perform a SIR on the subset

of truly relevant variables (hence, a low-dimensional estimation problem). For

all these SIR-based methods, we include two different slicing schemes by setting

the number of slices to be 3 and 10, where 3 is the minimal number of slices

required to obtain our two-dimensional central subspace, and 10 is a typical

choice in the literature. To evaluate the performance of these SDR methods,

we use the subspace estimation error, defined as D(β̂,β) = ∥Pβ̂ − Pβ∥F/
√
2K,

where β̂,β ∈ Rp×K are the estimated and the true basis matrices, respectively,

of the central subspace, and Pβ̂,Pβ ∈ Rp×p are the corresponding projection

matrices. This subspace estimation error is always between zero and one, and a

small value indicates a good estimation.

First, we consider the following six models for a univariate response regres-

sion: M1 and M2 are single-index models (i.e., K = 1); M3–M5 are multiple-

index models (i.e., K = 2); and M6 is an isotropic PFC model with K = 1.

Specifically,

M1 : Y = (βT
1 X) + sin(βT

1 X) + ϵ, M2 : Y = 2arctan(βT
1 X) + 0.1(βT

1 X)3 + ϵ,

M3 : Y =
βT

1 X

0.5 + (1.5 + βT
2 X)2

+ 0.2ϵ, M4 : Y = βT
1 X+ (βT

1 X)(βT
2 X) + 0.3ϵ,

M5 : Y = sign(βT
1 X) log(|βT

2 X+ 5|) + 0.2ϵ, M6 : X =
2β1 exp(Y )

3
+ 0.5ϵ,

where X ∼ Np(0,ΣX) and ϵ ∼ N(0, 1) for M1–M5, and Y ∼ N(0, 1) and ϵ ∼
Np(0, Ip) for the isotropic PFC model (M6). The sparse directions in the central

subspace β1,β2 ∈ Rp are orthogonal, because we let the first s = 6 elements in

β1 and elements 6–12 in β2 be 1/
√
6 (all other elements are zero). For M1–

M5, we consider both the independent predictor setting with ΣX = Ip and the

correlated predictor setting with an auto-regressive correlation that ΣX(i, j) =

0.5|i−j|, for i, j = 1, 2, . . . , p. For each model setting, we vary the sample size

n ∈ {200, 500, 800} and predictor dimension p ∈ {200, 500, 800, 1200, 2000}, and
simulate 1,000 independent data sets.

For our method, we apply the generalized eigen-decomposition algorithm

(Algorithm 2) in all six models (even when the covariance of X is the identity

matrix). In the single-index models M1 and M2, we use a random initializa-

tion (β̂(0) is generated randomly from p-dimensional standard normal) for our

algorithm and RIFLE-SIR to demonstrate their robustness to initialization. The

step size in the algorithm is simply fixed as η = 1. For the more challenging

multiple-index models, M3 − M6, we consider the best-case scenarios for each

method. Therefore, the true parameter β is used as the initial value, and an

optimal η ∈ {0.1, 0.2, . . . , 1.0} is selected from a separate training sample with 400
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Table 1. Averaged subspace estimation errors and the corresponding standard errors
(after multiplied by 100) for univariate response models (n = 200, p = 800).

ΣX MDDM Oracle-SIR(3) Oracle-SIR(10) RIFLE-SIR(3) RIFLE-SIR(10) LassoSIR(3) LassoSIR(10)

Error SE Error SE Error SE Error SE Error SE Error SE Error SE

Ip

M1 10.1 0.1 12.5 0.1 10.3 0.1 25.2 1.0 53.7 1.4 37.9 0.4 59.9 0.7

M2 10.3 0.1 13.1 0.1 10.6 0.1 26.1 1.0 54.7 1.4 40.1 0.4 61.5 0.7

M3 17.7 0.2 40.8 0.2 27.7 0.2 71.3 0.0 71.2 0.0 76.5 0.2 85.0 0.2

M4 23.0 0.2 45.8 0.3 36.4 0.3 71.9 0.0 71.6 0.0 85.2 0.2 91.5 0.2

M5 30.8 0.6 28.8 0.2 22.1 0.1 71.6 0.0 71.2 0.0 71.2 0.3 81.3 0.3

AR

M1 18.7 0.3 21.0 0.2 17.6 0.2 34.7 0.8 39.8 1.1 35.3 0.3 35.5 0.3

M2 14.2 0.2 20.7 0.2 14.8 0.2 33.1 0.7 33.6 1.1 34.6 0.3 30.5 0.3

M3 25.2 0.3 44.6 0.2 34.1 0.2 71.5 0.0 71.3 0.0 54.8 0.2 47.1 0.3

M4 59.1 0.5 75.1 0.2 69.9 0.3 81.0 0.2 78.7 0.2 89.7 0.2 92.1 0.2

M5 46.2 0.6 46.4 0.2 35.5 0.2 73.8 0.1 72.4 0.0 66.5 0.2 61.4 0.3

PFC M6 34.6 0.6 48.9 0.5 33.4 0.5 40.1 0.7 30.8 0.6 70.7 0.0 70.7 0.0

observations. The results based on 1,000 replications for n = 200 and p = 800 are

summarized in Table 1; the remaining results can be found in the Supplementary

Material. Overall, the slicing-free MDDM approach is much more accurate than

existing SIR-based methods. It is almost as accurate as the oracle-SIR. Moreover,

it is clear that SIR-type methods are rather sensitive to the choice of the number

of slices.

Next, we consider three multivariate response models, where the response

dimension is q = 4. These three models are a multivariate linear model, a single-

index heteroschedastic error model, and an isotropic PFC model. The predictors

satisfy X ∼ Np(0, Ip) in the following two forward regression models. Therefore,

we apply Algorithm 1 for our method under modelsM7 andM8. For the isotropic

PFC model M9, where X | Y ∼ Np(βf(Y), Ip), we still apply Algorithm 2, to

be consistent with the univariate case. For the projective resampling methods,

PR-SIR and PR-Oracle-SIR, we generate a sufficiently large number of n log(n)

random projections so that the PR methods reach their fullest potential.

M7 : Y1 = βT
1 X + ϵ1, Y2 = βT

2 X + ϵ2, Y3 = ϵ3, and Y4 = ϵ4. The errors

(ϵ1, . . . , ϵ4) are independent standard normal, except for cov(ϵ1, ϵ2) = −0.5.

For this model, the central subspace is spanned by β1 = (1, 0, 0, 0, . . . , 0)T

and β2 = (0, 2, 1, 0, . . . , 0)T.

M8 : Y1 = exp(ϵ1) and Yi = ϵi, for i = 2, 3, 4, where (ϵ1, . . . , ϵ4) are independent

standard normal, except for cov(ϵ1, ϵ2) = sin(βTX). For this model, the

central subspace is β = (0.8, 0.6, 0, 0, . . . , 0)T. Note that, marginally, each

response is independent of X.

M9 : X = β{(1/3) sin(Y1)+(2/3) exp(Y2)+Y3}+ϵ, where β = (1/
√
6 ·16, 0p−6),

and ϵ ∼ N(0, Ip). Hence, SY|X = span(β).
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Table 2. Averaged subspace estimation errors and the corresponding standard errors
(after multiplying by 100) for multivariate response models.

n = 100 n = 200 n = 400

p = 100 p = 200 p = 400 p = 100 p = 200 p = 400 p = 100 p = 200 p = 400

Error SE Error SE Error SE Error SE Error SE Error SE Error SE Error SE Error SE

M7

MDDM 37.1 0.5 39.8 0.5 42.5 0.5 24.0 0.4 25.3 0.4 26.9 0.4 16.1 0.3 17.3 0.3 18.6 0.3

PR-Oracle-SIR(3) 12.6 0.2 12.2 0.2 12.0 0.2 8.8 0.1 8.5 0.1 8.7 0.1 5.9 0.1 5.8 0.1 5.8 0.1

PR-Oracle-SIR(10) 16.2 0.3 15.7 0.3 15.6 0.3 9.6 0.2 9.4 0.2 95.2 0.2 6.0 0.1 6.0 0.1 6.0 0.1

PR-SIR(3) 79.9 0.1 88.2 0.1 93.5 0.0 67.9 0.1 79.3 0.1 87.8 0.0 54.6 0.1 67.6 0.1 79.0 0.0

PR-SIR(10) 83.5 0.1 90.6 0.1 94.9 0.0 70.1 0.1 81.6 0.1 90.1 0.1 55.3 0.1 68.2 0.1 80.2 0.1

M8

MDDM 79.4 0.9 85.8 0.8 90.0 0.7 55.9 1.2 61.0 1.2 68.4 1.2 27.1 0.9 30.3 1.0 31.0 1.0

PR-Oracle-SIR(3) 40.9 0.9 41.3 0.9 41.4 0.9 26.0 0.7 24.9 0.7 25.0 0.6 14.9 0.4 14.9 0.4 15.0 0.4

PR-Oracle-SIR(10) 44.1 0.9 43.8 0.9 43.5 0.9 25.1 0.6 23.7 0.6 24.1 0.6 13.1 0.3 13.0 0.3 13.2 0.3

PR-SIR(3) 99.3 0.0 99.7 0.0 99.8 0.0 99.2 0.0 99.7 0.0 99.8 0.0 98.8 0.0 99.6 0.0 99.8 0.0

PR-SIR(10) 99.3 0.0 99.7 0.0 99.9 0.0 99.1 0.0 99.6 0.0 99.8 0.0 98.4 0.1 99.6 0.0 99.8 0.0

M9

MDDM 15.3 0.3 15.4 0.3 15.7 0.3 9.9 0.1 10.1 0.1 10.0 0.1 7.1 0.1 7.2 0.1 7.1 0.1

PR-Oracle-SIR(3) 15.2 0.2 15.2 0.2 14.9 0.2 10.5 0.1 10.6 0.1 10.5 0.1 7.5 0.1 7.6 0.1 7.4 0.1

PR-Oracle-SIR(10) 13.8 0.2 13.9 0.2 13.6 0.2 9.4 0.1 9.7 0.1 9.6 0.1 6.8 0.1 6.8 0.1 6.7 0.1

PR-SIR(3) 58.5 0.2 72.3 0.2 84.0 0.2 44.6 0.1 58.2 0.1 71.4 0.1 33.1 0.1 44.6 0.1 57.9 0.1

PR-SIR(10) 54.8 0.2 68.5 0.2 80.6 0.2 41.1 0.2 54.3 0.2 67.7 0.2 30.2 0.1 41.0 0.1 54.2 0.1

Again, we consider various sample sizes and predictor dimension setups, each

with 1,000 replicates. We summarize the subspace estimation errors in Table 2.

For p = 800 and 1200, the results are gathered in Section S1 in the Supplementary

Material. It is clear that the proposed MDDM approach is much better than

PR-SIR, and also improves much faster than PR-SIR does when we increase

the sample size. Note too that the MDDM method performs better in inverse

regression models, such as the isotropic PFC model, than it does in forward

regression models, such as the linear model and index models. This finding is

more apparent in the multivariate response simulations than in the univariate

response simulations. This is expected, because the MDDM directly targets the

inverse regression subspace, which is more directly driven by the response in the

isotropic PFC models.

6.2. Real-data illustration

In this section, we use our method to analyze the NCI-60 data set (Shoe-

maker, 2006) that contains microRNA expression profiles and cancer drug activity

measurements on the NCI-60 cell lines. The multivariate response is the cancer

drug activities of q = 15 drugs; the predictor is p = 365 different microRNA; the

sample size is n = 60.

First, we examine the predictive performance of our method on 500 random
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Figure 1. Quantile–quantile plots for prediction error comparisons between MDDM
and Lasso-SIR (left panel), and between MDDM-ID and Lasso-SIR (right panel). Each
point corresponds to the prediction mean squared errors for one of the q = 15 response
variables, where different shapes represent different quantiles.
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Figure 2. The averaged prediction error over 500 training-testing sample splits and over
q = 15 response variables.

training–testing sample splits; each time, we randomly pick five observations to

form the test set. We consider K = 5 for all methods. For the MDDM, we

include both the eigen-decomposition (Algorithm 1) and the generalized eigen-

decomposition (Algorithm 2). To distinguish between the two versions of the

MDDM, we have “MDDM-ID” for the eigen-decomposition approach, because

it implicitly assumes that the covariance of X or the conditional covariance of
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X | Y is a constant times the identity matrix. We use random initial values, and

choose the sparsity level to be s = 25 in the way described in Section S2 in the

Supplementary Material. Then, the five reduced predictors βT
k X, for k = 1, . . . , 5,

are fed into a generalized additive model for each drug. Finally, we evaluate the

mean squared prediction error based on the test sample. The RIFLE-SIR can only

estimate a one-dimensional subspace, which did not yield an accurate prediction

in this data set. Hence, for comparison, we compute five leading directions from

the Lasso-SIR. The 25th, 50th, and 75th percentiles of the squared prediction

errors for each of the 15 responses for all three models are obtained, and we

construct quantile–quantile plots in Figure 1. The red line is the y = x line, and

the black dashed line is a simple linear regression fit for the results indicated by

the y-axis label against that indicated by the x-axis. Clearly, for all the quantiles

and for all the response variables, the MDDM results (MDDM or MDDM-ID) are

better than those of Lasso-SIR in terms of prediction. In addition, we construct

side-by-side box plots of the prediction error averaged over all response variables

in Figure 2 to evaluate the overall improvement. Interestingly, the MDDM-

ID is slightly better than the MDDM approach. This is likely because of the

small sample size. With a training sample of size 55, the sample covariance of

p = 365 variables is difficult to estimate accurately. We include additional real-

data analysis results in Section S2 in the Supplementary Material.

7. Discussion

We have proposed a slicing-free high-dimensional SDR method based on a

penalized eigen-decomposition of a sample MDDM. Our proposal is motivated

by the usefulness of the MDDM for dimension reduction, and yields a relatively

straightforward implementation of the recently developed RIFLE algorithm (Tan

et al., 2018a) by simply replacing the slicing-based estimator with the sample

MDDM. Our methodology and implementation involve no slicing, and treats

univariate and multivariate responses in a unified fashion. Theoretical support

and finite-sample investigations provide convincing evidence that the MDDM is

a very competitive alternative to SIR, and may be used as a surrogate for an

SIR-based estimator in many related SDR problems.

As with most SDR methods, our proposal requires the linearity condition, the

violation of which can make SDR very challenging. Existing works that relax the

linearity condition are often practically difficult, owing to excessive computational

costs, and cannot be easily extended to high dimensions (Cook and Nachtsheim,

1994; Ma and Zhu, 2012). One potentially useful approach is to transform data

before SDR to alleviate obvious violations of the linearity assumption (Mai and

Zou, 2015). In addition, we observe from our simulation studies that the RIFLE

algorithm requires choosing several tuning parameters, such as the step size and

the initial value, and that the optimization error could depend on these tuning
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parameters in a nontrivial way. Further investigation on the optimization error

and data-driven choices for these tuning parameters are desirable, and are left

for future research.

As pointed out by a referee, many SDR methods beyond SIR involve slicing.

It will be interesting to study how to perform them in a slicing-free fashion as

well. For example, Cook and Weisberg (1991) attempt to perform dimension

reduction by estimating the conditional covariance of X, while Yin and Cook

(2003) consider the conditional third moment. These methods slice the response

to estimate the conditional moments. In the future, one can develop slicing-free

methods to estimate these higher-order moments and conduct SDR.

Supplementary Material

The online Supplementary Material provides additional simulation results

and proofs.
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