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Abstract: We propose modeling raw functional data as a mixture of a smooth

function and a high-dimensional factor component. The conventional approach

to retrieving a smooth function from raw data is to use a smoothing technique.

However, the smoothing model is unable to recover the smooth curve or capture the

data variation in some situations, for example, when there is a large measurement

error, the smoothing basis functions are incorrectly identified, or the step jumps in

the functional mean levels are neglected. We propose a factor-augmented smoothing

model to address these challenges, and implement an iterative numerical estimation

approach. Including the factor model component in the proposed method solves the

aforementioned problems because a few common factors often drive the variation

that cannot be captured by the smoothing model. We also establish asymptotic

theorems to demonstrate the effects of including factor structures on the smoothing

results. Specifically, we show that the smoothing coefficients projected on the

complement space of the factor loading matrix are asymptotically normal. Of

independent interest, we present an estimator for the population covariance matrix

of the raw data, based on the proposed model. Extensive simulation studies show

that these factor adjustments are essential to improving the estimation accuracy

and avoiding the curse of dimensionality. Lastly, we demonstrate the performance

of our model by applying it to Australian temperature data.

Key words and phrases: Basis function misspecification, functional data smoothing,

high-dimensional factor model, measurement error, statistical inference on covari-

ance estimation.

1. Introduction

Functional data analysis (FDA) has become increasingly popular as data

storage technology has improved. Functional data are realizations of smooth

random objects using curves, images, and shapes. Ramsay and Silverman (2002,

2005) and Ramsay and Hooker (2017) discuss the methodology and applications

of FDA; see also Ferraty and Vieu (2006), Horváth and Kokoszka (2012) Cuevas

(2014), Febrero-Bande, Galeano and González-Manteiga (2017), Goia and Vieu

(2016), Reiss et al. (2017) and Wang, Chiou and Müller (2016). One of the main

challenges in an FDA is that we cannot observe functional curves directly, but

only discrete points, which are often contaminated by measurement errors. To
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model a mixture of functional data and high-dimensional measurement errors, we

introduce a factor-augmented smoothing model (FASM).

We denote a random sample of n functional data as Xi(u), for i = 1, . . . , n,

and u ∈ I ⊂ R, where I is a compact interval on the real line R. In practice,

the observed data are discrete points and are often contaminated by noise or

measurement errors. We use Yij to represent the jth observation on the ith

subject. The observed data can then be expressed as a “signal plus noise” model:

Yij = Xi(uj) + ηij, i = 1, . . . , n, j = 1, . . . , p.

We use Xi(uj) to denote the realization of the jth discrete point on the curve Xi(·),
and ηij is the noise or measurement error. We assume that a measurement error

occurs only where the measurements are taken; thus, the error ηi = (ηi1, . . . , ηip)

is a multivariate term of dimension p. However, in practice, although the signal

function component X i = {Xi(u1), . . . ,Xi(uj)} is of the same dimension p, it

differs from ηi in nature. Although functions are potentially infinite-dimensional,

we may impose smoothing assumptions on them, which usually implies that they

possess one or more derivatives. This smoothness feature is used to separate the

functions from the measurement errors, that is, a functional smoothing procedure.

When the variance of the noise level is a tiny fraction of the variance of the

function, we say the signal-to-noise ratio is high. In this case, classic smoothing

tools can be applied to the functional data, including kernel methods (e.g., Wand

and Jones (1995)), local polynomial smoothing (e.g., Fan and Gijbels (1996)),

and spline smoothing (e.g., Wahba (1990); Eubank (1999); Green and Silverman

(1999)). Once we have pre-smoothed functions, we can obtain estimates such as

the mean and covariance functions. More recent studies on functional smoothing

approaches include those of Cai and Yuan (2011), Yao and Li (2013), and Zhang

and Wang (2016). In this study, we apply basis smoothing to the functions

Xi(u); that is, we represent Xi(u) as Xi(u) =
∑K

k=1 cikφk(u), where {φk(u), k =

1, . . . ,K} are the basis functions and {cik, i = 1, . . . , n, k = 1, . . . ,K} are the

smoothing coefficients. The smoothing model then becomes

Yij =
K∑

k=1

cikφk(uj) + ηij, i = 1, . . . , n, j = 1, . . . , p.

When the signal-to-noise level is low, smoothing tools may not adequately

remove the measurement error, resulting in an inefficient estimation of the

smoothing coefficients. Here we examine further the measurement error ηij. In

an FDA, the number of discrete points p on each subject is often large compared

with the sample size n. Hence, the term ηi is a high-dimensional component. In

this case, the observed data are a mixture of functional data and high-dimensional

data. The existence of the large measurement error ηij causes the curse of

dimensionality problem, requiring that we apply dimension-reduction models to
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ηij. Here, factor models are widely used as a dimension-reduction technique for

high-dimensional data; among these, factor models are widely used (e.g., Fan,

Fan and Lv (2008); Lam, Yao and Bathia (2011)).

We propose using a factor model for the measurement error term. Without

further information on the measurement error, the factor model is appropriate

because the estimation of the latent factors does not require any observed

variables. The high-dimensional measurement error is assumed to be driven by a

small number of unobserved common factors:

ηij = a>j fi + εij, i = 1, . . . , n, j = 1, . . . , p,

where fi ∈ Rr are the unobserved factors, aj ∈ Rr are the unobserved factor

loadings, r is the number of latent factors, and εij are idiosyncratic errors with

mean zero. Thus, the observed data Yij can be written as the sum of two

components:

Yij =
K∑

k=1

cikφk(uj) + a>j fi + εij, i = 1, . . . , n, j = 1, . . . , p.

This is a basis smoothing model with a factor-augmented form. This

proposed model can be modified easily for nonparametric smoothing methods. In

Section S1, we illustrate the use of spline smoothing approaches. In Section S3.3,

we apply the nonparametric smoothing model to simulated data.

The following three cases motivate the proposed FASM. In each case, using

the proposed model remedies the defects of the traditional smoothing model.

Examples of the three cases are provided in Section 2:

1. In traditional smoothing models, the measurement error ηij is assumed to

be non-informative and independently and identically distributed (i.i.d.) in

both directions. This is an unrealistic assumption when the measurement

errors contain information. By applying the factor model, we assume

that a small number of unobserved factors capture the covariance in the

measurement error. This is usually reasonable in practice, because a few

common factors are often the cause of systematic measurement errors.

2. When the smoothing basis functions are incorrectly identified, the smooth-

ing model leads to an erroneous coefficient estimate and large residuals.

The proposed model deals with this problem, because the unexplained

variation from the misidentification can be modeled using a small number

of unobserved common factors.

3. When there are step jumps in the mean levels of the functions, neglecting

these mean shifts in a smoothing model results in large residuals at the

points where the jumps occur. The changes in the mean levels of the
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functions come from a universal source, and can be modeled by common

factors.

Because the latent factors are unobserved, we propose an iterative approach

to simultaneously estimate the smooth function and the factors. We use a

principal component analysis (PCA) to estimate the factor model, and apply

a penalized least squares estimation to construct the estimator for the smoothing

coefficient cik. We establish the asymptotic theory of the smoothing coefficient

estimator, and prove the consistency of the estimator. We also provide the

asymptotic distribution of the projected estimator in the orthogonal complement

of the space spanned by the factors fi. Here, we see the interplay between the

smooth component and the factor model component.

The remainder of this paper is structured as follows. In Section 2, we

elaborate on the previously mentioned three motivations, and provide examples.

In Section 3, we formally state the model, and provide an iterative estimation

approach. We discuss the asymptotic properties of the smoothing coefficients

under various assumptions in Section 4. In Section 5, we conduct Monte Carlo

simulations on the proposed model under different settings. A real-data example

is given in Section 6, and Section 7 concludes the paper. In the Supplementary

Material, we provide several important model extensions and data analysis, as

well as proofs for the theorems.

2. Motivation

We introduce three examples to motivate the proposed model. In each case,

the smoothing model is inadequate for capturing the signal information of the raw

data. In the first example, a large measurement error exists, and the residuals

after smoothing are large with extreme values. In the second example, the basis

functions are selected incorrectly, and part of the functions’ variation cannot be

captured by the smoothing model. In the third example, there are step jumps

in the functional data, and the residuals after smoothing contain gaps. These

examples demonstrate that further modeling of the smoothing residuals is needed.

2.1. Functional data with measurement errors

Figure 1 shows rainbow plots of the average daily temperature and log

precipitation at 35 locations in Canada. Because of the nature of the two

kinds of data, it is reasonable to assume that temperature and log precipitation

are functions over time. However, the two graphs display distinct features.

Although there are some perturbations in the temperature plot, it is relatively

easy to discern each curve’s shape. However, in the precipitation plot, there

is a tremendous amount of variability in the raw data, such that it is almost

impossible to observe the underlying shape of the curves.

Smooth temperature data can be retrieved without much difficulty using
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Figure 1. Average daily temperature and log precipitation from 35 Canadian weather
stations, averaged over the period 1960 to 1994.

basic smoothing techniques. The residuals are small, with constant variation.

On the other hand, the residuals after smoothing exhibit a high level of variation

for the precipitation data, and even contain some extreme values. Our model

endeavors to explain the large residuals in similar cases to the precipitation data;

we show the fitting result in Section S4.

2.2. Misidentification of the basis function

It is important to choose appropriate basis functions for the smoothing

method. In this example, we show the inadequacy of the smoothing model

when the basis functions are misidentified. We generate functional data using

basis functions with changing frequencies. The raw data are shown in Figure 2a.

Fourier basis functions are used. In the second half of the data, the frequency

of the Fourier basis functions increases, so the data set exhibits more variation

toward the right end. Suppose we are unaware of the change in the frequencies

of the basis functions, and so used the basis of the first half of the data for the

complete curve. The result is shown in Figure 2b. The residuals are large in the

second half of the data, but the smoothing model fails to reduce the residuals.

Here, a factor model can be used to further model the signal hidden in the

large residuals. The data-generating process and further analysis are provided in

Section S3.4.

2.3. Functional data with step jumps in the mean level

Suppose we observe a sample of raw functional data, shown in Figure 3a,

where there is a jump at around u = 0.5. The jump applies to all sample data, so

this sudden shift is at the mean level. We explain how the data are generated in

Section S3.5. The residuals after smoothing are presented in Figure 3b. The large

residuals around the jump indicate that without measures to deal with the step

jumps, smoothing itself is not enough to model these kinds of data. We show

in Section S3.5 that applying the proposed model to the same data generates
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Figure 2. A simulated sample of functional data with changing basis functions.
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Figure 3. A simulated sample of functional data with step jump.

smaller residuals and has less flexibility, which is one of our main goals.

3. Model Specification and Estimation

We formally state the proposed model in Section 3.1, and present the

estimation method in Section 3.2. We first show how the smoothing coefficient ci
and the latent factors fi are estimated separately, and then introduce an iterative

approach to find these estimates simultaneously.

3.1. Factor-augmented smoothing model

We consider a sample of functional data Xi(u), that takes values in the space

H := L2(I) of real-valued square integrable functions on I. The space H is

a Hilbert space, equipped with the inner product 〈x, y〉 :=
∫
x(u)y(u)du. The

function norm is defined as ‖x‖ := 〈x, x〉1/2. The functional nature of Xi(u) allows

us to represent it as a linear expansion of a set of K smooth basis functions:
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Xi(u) =
K∑

k=1

cikφk(u), u ∈ I,

where {φk(u), k = 1, . . . ,K} is a set of common basis functions and cik is the kth

coefficient for the ith curve. Therefore, we can express the full model as

Yij =
K∑

k=1

cikφk(uj) + ηij,

ηij = a>j fi + εij, i = 1, . . . , n, j = 1, . . . , p,

where fi ∈ Rr are the unobserved common factors, aj ∈ Rr are the unobserved

factor loadings, and r is the number of factors. We call this model the FASM.

For the model to be identifiable, we require the following condition.

Condition 1 (Identification condition). We require

(i) {Xi(uj) : i = 1, . . . , n; j = 1, . . . , p} are independent of {ηij : i = 1, . . . , n;

j = 1, . . . , p};

(ii) p−1
∑p

j=1 aja
>
j

p→ Σa > 0, for some r × r matrix Σa as p → ∞;

n−1
∑n

i=1 fif
>
i

p→ Σf > 0, for some r × r matrix Σf as n→∞.

The first part of the identification condition ensures that the signal function

component and the factor model component are independent. The second part

ensures the existence of r factors, each of which makes a nontrivial contribution

to the variance of ηij, which in turn guarantees the identifiability between the

factors and the error term εij.

We treat the basis functions {φk(u) : k = 1, 2, . . . ,K} as known, and the

number of basis functions K can be fixed or can go to infinity. There are

various choices for basis functions in empirical data analysis, and the decision

can be subjective. For example, Fourier bases are preferred for periodic data,

whereas spline basis systems are most commonly used for nonperiodic data. Other

bases include wavelet, polynomial, and ad-hoc basis functions. The number of

basis functions K controls the smoothness of the predicted functions. As K

increases, the estimator variance increases, but the bias decays. Cross-validation,

for instance, can be used to determine K (Wahba and Word (1975)). We estimate

our model using a roughness penalty approach explained in the next section. The

smoothness of the functional component is switched from being determined by

K to being determined by the tuning parameter of the penalty term. In practice,

we can use a relatively large K and select the tuning parameter carefully. In

Remark 4, we discuss common methods for selecting the tuning parameter.
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3.2. Penalized estimation approach

We can write the model for the ith object as

Yi = Φci +Afi + εi, i = 1, . . . , n, (3.1)

where

Yi =

Yi1

...

Yip

 , ci =

 ci1...
ciK

 , Φ =

φ1(u1) · · · φK(u1)
...

...

φ1(up) · · · φK(up)

 , A =

a
>
1
...

a>p

 , ε =

εi1...
εip

 .
Combining all the objects, we have, in matrix form,

Y = ΦC +AF> +E, (3.2)

where Y is p × n and C = (c1, . . . , cn) is a K × n matrix containing all

the smoothing coefficients. The matrix F = (f1, . . . ,fn)> is n × r and E =

(ε1, . . . , εn) is p×n. Because Φ is assumed to be known, we show how to estimate

the parameters C,A, and f .

For the latent factor estimation, there is an identification problem because

AF> = AUU−1F> for any r × r invertible matrix U . Thus, we impose the

following normalization restriction on the matrices A and F :

A>A

p
= Ir, and F>F is a diagonal matrix. (3.3)

We propose implementing a penalized least squares, where the objective

function is defined as

SSR(ci,A,f) =
1

np

n∑
i=1

{
(Yi −Φci −Afi)>(Yi −Φci −Afi) + αPEN2(Xi)

}
,

where PEN2(Xi) is a penalty term used for regularization, and α is the tuning

parameter controlling the degree of regularization. The same α is used for all

the functional observations i. This is a simplified case, where we assume a

similar degree of smoothness for all curves. The tuning parameter can be chosen

using cross-validation or information criteria. We penalize the “roughness” of the

function term. To quantify the notion of “roughness” in a function, we use the

square of the second derivative. Define the measure of roughness as

PEN2(Xi) =

∫
I

{
D2Xi(s)

}2
ds,

where D2Xi denotes taking the second derivative of the function Xi. Here, a larger

tuning parameter α indicates a smoother estimated function. Furthermore, we
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denote

Φ(u) = {φ1(u), . . . , φK(u)}> . (3.4)

Then,

Xi(u) = c>i Φ(u).

We can re-express the roughness penalty PEN2(Xi) in matrix form, as follows:

PEN2(Xi) =

∫
I

{
D2Xi(s)

}2
ds

=

∫
I

{
D2c>i Φ(s)

}2
ds

=

∫
I
c>i D

2Φ(s)D2Φ>(s)cids

= c>i

{∫
I
D2Φ(s)D2Φ>(s)ds

}
ci

= c>i Rci, i = 1, . . . , n,

where

R ≡
∫
I
D2Φ(s)D2Φ>(s)ds. (3.5)

The matrix R is the same for all subjects, and the penalty term PEN2(Xi) differs

for each subject only by the coefficient ci.

Remark 1. The number of smoothing coefficients ci increases as the sample size

increases. The penalty term penalizes the “roughness” of the smoothed function

and mitigates the effect of the increasing number of parameters, thus controling

the model flexibility.

Therefore, the objective function can be written as

SSR(ci,A,f) =
1

np

n∑
i=1

{
(Yi −Φci −Afi)>(Yi −Φci −Afi) + αc>i Rci

}
,

subject to the constraint A>A/p = Ir.

We aim to estimate the smoothing coefficient ci. We left multiply a matrix

to each term in (3.1) to project the factor model term onto a zero matrix. Define

the projection matrix

MA ≡ Ip −A(A>A)−1A> = Ip −
AA>

p
. (3.6)

Then,

MAAfi =

(
Ip −

AA>

p

)
Afi =

(
A− AA

>A

p

)
fi = 0.
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Therefore, we estimate ci from the projected equation

MAYi = MAΦci +MAεi.

The projected objective function becomes

SSR(ci,A) =
1

np

n∑
i=1

{
(MAYi −MAΦci)

>(MAYi −MAΦci) + αc>i Rci
}
.

(3.7)

By taking the derivative of SSR(ci,A) with respective to each ci and setting it

to zero, we can solve for the estimator ĉi:

∂SSR(ciA)

∂ci
= − 1

np
(MAYi −MAΦci)

>(MAΦ) +
1

np
αc>i R.

Setting the derivative to zero and rearranging the terms, we have(
Φ>M>

AMAΦ + αR
)
ci = Φ>M>

AMAYi.

Using the fact that M>
AMA = (Ip −AA>/p)>(Ip −AA>/p) = MA, we obtain

the least squares estimator for ci given A:

ĉi =
(
Φ>MAΦ + αR

)−1
Φ>MAYi.

Next, to estimate A and fi, we focus on the factor model

ηi = Afi + εi,

expressed in matrix form as

Z = AF> +E,

where Z = (η1, . . . ,ηn). In high-dimensional cases, the unknown factors and

loadings are typically estimated using least squares (i.e., the principal component

analysis; see, e.g., Fan, Fan and Lv (2008), Onatski (2012)). The least squares

objective function is

tr
{

(Z −AF>)(Z −AF>)>
}
. (3.8)

Minimizing the objective function with respect to F>, we have F> = (A>A)−1

A>Z = A>Z/p, using (3.3). Substituting in (3.8), we obtain the objective

function

tr

{(
Z − AA

>Z

p

)(
Z − AA

>Z

p

)>}
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= tr

(
ZZ> − ZZ

>AA>

p
− ZZ

>AA>

p
+
AA>ZZ>AA>

p2

)
= tr(ZZ>)− tr(A>ZZ>A)

p
,

where the last equality uses (3.3) and tr(ZZ>AA>) = tr(A>ZZ>A). Thus,

minimizing the objective function is equivalent to maximizing tr(A>ZZ>A)/p.

The estimator for A is obtained by finding the first r eigenvectors corresponding

to the r largest eigenvalues of the matrix (1/p)ZZ> in descending order, where

1

p
ZZ> =

1

p

n∑
i=1

ηiη
>
i =

1

p

n∑
i=1

(Yi −Φci)(Yi −Φci)
>.

Therefore, knowing ci, we solve for Â using{
1

np

n∑
i=1

(Yi −Φci)(Yi −Φci)
>

}
Â = ÂVnp, (3.9)

where Vnp is an r× r diagonal matrix containing the r eigenvalues of the matrix

in the square brackets in decreasing order. The additional coefficient 1/n is used

for scaling.

Remark 2. The number of factors r is selected using some criteria on the

eigenvalues. There have been many studies on this topic. For example, Bai

and Ng (2002) propose two model selection criteria functions, Onatski (2010)

estimate the number of factors using differenced adjacent eigenvalues, and Ahn

and Horenstein (2013) select the number based on the ratio of two adjacent

eigenvalues. A modified ratio criterion of Ahn and Horenstein (2013) is proposed

in Section S3.1. Note that the simulations and empirical applications presented

here show that our model performs well under various common selection criteria

in the literature.

We need A to find ĉi, and ci to find Â. The final estimator (ĉi, Â) is the

solution of the set of equations
ĉi =

(
Φ>MÂΦ + αR

)−1
Φ>MÂYi, i = 1, . . . , n{

1

np

∑n
i=1 (Yi −Φĉi) (Yi −Φĉi)

>
}
Â = ÂVnp.

(3.10)

Because there is no closed-form expression of Â and ĉi, we propose using

numerical iterations to find the estimates.

Remark 3. In this paper, we use Â(0) = 0. This means we start by ignoring the

factor model component, so the initial value for the smoothing coefficient ĉ
(0)
i =(

Φ>Φ + αR
)−1

Φ>Yi, which is simply the ridge estimator. The convergence of
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Algorithm 1: Iterations for estimating FASM.

1. Denote the initial value as Â(0). Using (3.10), we obtain ĉ
(0)
i = (Φ>MÂ(0)Φ

+ αR)−1Φ>MÂ(0)Yi.

2. With ĉ
(t)
i , we substitute into the second equation of (3.10) to obtain

Â(t+1) = (â
(t+1)
1 , . . . , â

(t+1)
r )>, where â

(t+1)
j is the eigenvector of the matrix

(np)−1
∑n

i=1(Yi −Φĉ
(t+1)
i )(Yi −Φĉ

(t+1)
i )> corresponding to its jth largest

eigenvalue.

3. With Â(t+1), we obtain ĉ
(t+1)
i =

(
Φ>MÂ(t+1)Φ + αR

)−1
Φ>MÂ(t+1)Yi

using (3.10).

4. We then repeat steps 2 and 3 until ‖ĉ(t+1)
i − ĉ(t)i ‖ < δ, where δ is a prescribed

small positive value.

Newton’s numeric iteration requires the convergence of this estimator, which, in

turn, requires the factor model component ηij to have an expectation of zero.

The stopping criterion focuses only on ĉi, because we are interested in estimating

ηij as a whole.

Remark 4. Common methods for selecting the shrinkage parameter α include

Akaike’s information criterion (AIC; Akaike (1974)), the Bayesian information

criterion (BIC; Schwarz (1978)), and cross-validation. We use the mean gener-

alized cross-validation (mGCV) method (Golub, Heath and Wahba (1979)). We

define, at step t,

mGCV(t) =
1

n

n∑
i=1

pSSE
(t)
i

{p− df (t)(α)}2
, (3.11)

where SSE
(t)
i is the sum of squares residual for the ith object at step t, and

df (t)(α) is the equivalent degrees of freedom measure, which can be calculated as

df(t)(α) = tr
{

Φ
(
Φ>MÂ(t)Φ + αR

)−1
Φ>MÂ(t)

}
. (3.12)

At each step of the iteration, the tuning parameter α is chosen by minimizing

the mGCV (t).

Remark 5. Algorithm 1 iterates the ridge regression and the PCA. The

convergence of this iterative algorithm is studied in Jiang et al. (2021). For

instance, Theorem 2 of Jiang et al. (2021) provides sufficient conditions under

which the recursive algorithm converges to the true value, or some other values. In

particular, this algorithm converges to the true parameter when the regressors are

independent of the common factors, or when the factors involved in the regressors

are weaker than the common ones.
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After we obtain the estimates Â and ĉi, the estimated coefficient matrix Ĉ is

constructed as Ĉ = (ĉ1, . . . , ĉn), and the estimated factor can be obtained using

F̂> = Â>(Y −ΦĈ).

Finally, the functional component can be estimated by X̂i(u) = ĉ>i Φ(u), where

Φ(u) is defined in (3.4).

Remark 6. Although we have imposed the constraint in (3.3) and identification

condition 1, A and fi are not determined uniquely, because the model (3.1) is

unchanged if we replace A and fi with AU and U>fi, for any orthogonal r × r
matrix U . However, the linear space spanned by the columns of A is uniquely

defined. Although we are not able to estimate A, we can still estimate a rotation

of A, which spans the same space as A does. The matrix MA defined in (3.6) is

a projecting matrix onto the orthogonal complement of the linear space spanned

by the columns of A. In the next section, we show that the estimator MÂ for

MA is consistent.

4. Asymptotic Theory

In this section, we study the asymptotic properties of the coefficient estimator

ĉi with growing sample size and dimension. We state the assumptions in

Section 4.1 and provide the asymptotic results of ĉi in Section 4.2.

4.1. Assumptions

We use (c0i ,A
0) to denote the true parameters. In this paper, we use the

L2 norm. The norm of a vector x is defined as ‖x‖ =
√
x>x, and the norm

of a matrix U is defined as ‖U‖ =
√
λmax(U>U), where λmax(·) represents the

largest eigenvalue of a matrix. We introduce the matrix

Di(A) ≡ 1

p
Φ>MAΦ− 1

p
Φ>MAΦf>i

(
F>F

n

)>
fi. (4.1)

This matrix plays an important role in the proof of the consistency of ĉi; see

S5.1 Appendix A. The identifying condition for c0i is that Di(A) is positive

definite for all i, which is stated in Assumption 3.

First, we state the assumptions.

Assumption 1.

1

p

∥∥Φ>Φ
∥∥ = O(1), ||R|| = O(1), K = o{min(n, p)}, p = o

(
n2
)
.

In this assumption, the number of basis functions K can either be fixed or

tend to infinity.
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Assumption 2.

‖c0i ‖ = Op(1), for all i = 1, 2, . . . , n.

This assumption is introduced to ensure the consistency of the estimated

coefficients ĉ0i . Note that the dimension of c0i is K, which may go to infinity, but

its norm is restricted to be of constant order. Therefore, this assumption controls

the flexibility of the model.

Assumption 3. Let A = {A : A>A/p = I, and A independent of Φ}. We

assume

inf
A∈A

Di(A) > 0.

This assumption is the identification condition for c0i . The usual assumption

for the least-squares estimator contains only the first term on the right-hand side

of (4.1). The second term arises because of the unobservable matrices F and A.

Assumption 4. For some constant M > 0,

1. E‖a0
j‖4 ≤ M , for j = 1, . . . , p, and (1/p)A>A

p−→ Σa > 0, for some r × r
matrix Σa, as p→∞.

2. E‖fi‖4 ≤ M and (1/n)FF>
p−→ Σf > 0, for some r × r matrix Σf , as

n→∞.

Assumption 5. For some constant M > 0, the error terms εji, for j = 1, . . . , p

and i = 1, . . . , n, are i.i.d. in both directions, with E(εji) = 0, Var(εji) = σ2, and

E|εji|8 ≤M .

Assumption 6. εji is independent of φs, ft, and a0
s, for all j, i, s, t.

We require that the errors are independent in themselves and also of the

functional term φ(u) and the factor model terms fi and a0
j . To highlight the

main contribution of our method, we use a simplified setting on the error terms

to exclude endogeneity. Nevertheless, with simple, but tedious modifications,

Assumption 5 can be relaxed, and our model can be extended to more complicated

settings that allow correlations between the error term and the factor model term.

Assumption 7. The tuning parameter α satisfies α = o(p).

This assumption is conventional in ridge regression (see, e.g., Knight and Fu

(2000)) and ensures that the estimator’s asymptotic bias is zero.

Before stating the next assumption, we introduce some notation. Let ωj, for

j = 1, . . . , p, denote the jth column of the K × p matrix Φ>MA0 , and let ψik

denote the (i, k)th element of the matrix MF , where

MF ≡ In − F
(
F>F

)
F>. (4.2)
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Then, for any vector b = (b1, . . . , bn)>, we can write

1
√
np

Φ>MA0EMF b =
1
√
np

n∑
i

p∑
j

ωjεji

n∑
k

ψikbk ≡
1
√
np

n∑
i

p∑
j

xij. (4.3)

In (4.3), for notational simplicity, we define xij as ωjεji
∑n

k ψikbk. The matrix

Φ>MA0EMF is of interest because it is the main component that contributes

to the asymptotic distribution of the estimators, as shown in the next section.

Let

Lnp ≡
σ2

np

n∑
i

p∑
j

ωjω
>
j

(
n∑
k

ψikbk

)2

. (4.4)

We make the following assumption.

Assumption 8. When K is fixed, we assume there exists a K × K matrix L

such that

L ≡ lim
n,p→∞

Lnp, (4.5)

where Lnp is defined in (4.4). Let ν2 be the smallest eigenvalue of the matrix L

defined in (4.5). Then assume that ν2 > 0, and that, for all ε > 0,

lim
n,p→∞

1

npν2

n∑
i=1

p∑
j=1

E
{
‖xij‖2 I

(
‖xij‖2 ≥ εnpν2

)}
= 0, (4.6)

where I(·) is the indicator function, defined by I(A) = 1 if A occurs, and I(A) = 0

otherwise.

This assumption is the multivariate Lindeberg condition, which is needed

to construct the central limit theorem when K is fixed. This is by no means a

strong condition; for instance, when the factor model component is ignored, ωj

is simply φj, and xij = φjbiεji. Because we assume φj = O(1) in Assumption 1,

the Lindeberg condition in (4.6) is met.

Next, we introduce a similar assumption to Assumption 8 for the central

limit theorem when K goes to infinity. Let ω̃j, for j = 1, . . . , p, denote the jth

column of the K × p matrix ((1/p)Φ>MA0Φ)−1Φ>MA0 . Denote

γ>
(

1

p
Φ>MA0Φ

)−1 1
√
np

Φ>MA0EMFb

=
1
√
np

n∑
i

p∑
j

γ>ω̃jεji

n∑
k

ψikbk ≡
1
√
np

n∑
i

p∑
j

x̃ij. (4.7)

Assumption 9. Assume there exists a constant L̃ > 0 such that

L̃ ≡ lim
n,p,K→∞

L̃np, (4.8)
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where L̃np is defined as

L̃np ≡
σ2

np

n∑
i

p∑
j

(
γ>ω̃j

)2( n∑
k

ψikbk

)2

. (4.9)

Moreover, for any small value ε > 0, we assume

lim
n,p,K→∞

1

npν2

n∑
i=1

p∑
j=1

E
{
|x̃ij|2 I

(
|x̃ij|2 ≥ εnpν2

)}
= 0, (4.10)

where I(·) is the indicator function, defined by I(A) = 1 if A occurs, and I(A) = 0

otherwise.

4.2. Asymptotic properties

As mentioned previously, the identification problem of the latent factor

implies that we use Â to estimate a rotation of A0. Based on the objective

function (3.7) in Section 3, we use the following center-adjusted objective

function:

Snp(ci,A) =
1

np

n∑
i=1

{
(Yi −Φci)

>MA(Yi −Φci) + αc>i Rci
}
− 1

np

n∑
i=1

ε>i MA0εi,

(4.11)

where MA is defined in (3.6), satisfying A>A/p = Ir. The second term on the

right-hand side of (4.11) does not contain the unknowns A and ci, so including

this term does not affect the optimization result. This term is only used to adjust

the center. Thus, the resulting objective function has an expectation of zero. We

estimate c0i and A0 by

(ĉi, Â) = argmin
ci,A

Snp(ci,A). (4.12)

In the following, we establish the asymptotic properties for the estimated

coefficient matrix Ĉ. In Theorem 1, we prove the consistency of the matrix Ĉ.

In Theorem 2, we show the rate of convergence of Ĉ. Theorem 3 provides the

asymptotic distribution of Ĉ.

Let PU = U(U>U)−1U> for a matrix U .

Theorem 1. Under Assumptions 1-6, as n, p → ∞, we have the following

statements:

(i) (1/
√
n)‖C − Ĉ‖ p→ 0.

(ii) ‖PÂ − PA0‖ p→ 0.

We start by proving the consistency of the vector ĉi. This consistency is

uniform for all i = 1, . . . , n. Therefore, we can combine ci, for all i = 1, . . . , n,
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and have the result for the coefficient matrix Ĉ in (i). The matrix Ĉ is of

dimension K×n, where K is fixed and the sample size n goes to infinity, so there

is a (
√
n)−1 scale in the result of (i). In the second part of the theorem, note

that PA = Ip −MA, where MA is the projection matrix onto the orthogonal

complement of the linear space spanned by the columns of A. Thus, PÂ and PA0

represent the spaces spanned by Â and A0, respectively, and we show that they

are asymptotically the same in (ii).

Next, we obtain the rate of convergence.

Theorem 2. Under Assumptions 1-6, if p/n→ ρ > 0 as n, p→∞, then∥∥∥∥∥(C0 − Ĉ)√
n

MF

∥∥∥∥∥ = Op

(
1
√
p

)
,

where MF is defined in (4.2).

We study the case when the dimension p and the sample size n are

comparable. We achieve rate
√
p convergence, considering (

√
n)−1‖C0 − Ĉ‖ on

the whole. We expect that the rate of convergence of the smoothing models

depends on the number of discrete points p observed on each curve.

Remark 7. The asymptotic result in Theorem 2 contains a projection matrix

MF . This matrix projects C0−Ĉ onto the space orthogonal to the factor matrix

F . This theorem shows the relationship between C0 and F . When C0 and F

are orthogonal, (C0 − Ĉ)MF = C0 − Ĉ, and we obtain the rate of convergence

of C0 − Ĉ. When C0 and F are not orthogonal, the inference on C0 is affected

by the existence of the factor model component.

We further establish the limiting distribution. In S5.1 Appendix A, we show

that ∥∥∥∥∥√p(C0 − Ĉ)√
n

MF

∥∥∥∥∥ =

∥∥∥∥∥
(

1

p
Φ>MA0Φ

)−1 1
√
np

Φ>MA0EMF

∥∥∥∥∥+ op(1).

The limiting distribution is constructed based on the first term on the right-hand

side.

Theorem 3. In addition to Assumptions 1-8, we assume that K is fixed and, as

n, p→∞, there exists a positive-definite matrix Q̃ such that

Q
(
A0
)
≡ 1

p
Φ>MA0Φ

p−→ Q̃.

Then, we have, for any vector b ∈ Rn,

√
p

(
C0 − Ĉ√

n

)
MF b

d→ N
(
0, Q̃

−1
LQ̃

−1)
,
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where MF is defined in Theorem 2, and L is defined in (4.5). Moreover, if the

limit of ΦQ̃
−1
LQ̃

−1
Φ> exists, we have

√
pΦ

(
C0 − Ĉ√

n

)
MF b

d→ N
(

0, lim
n,p→∞

ΦQ̃
−1
LQ̃

−1
Φ>
)
,√

p

n

(
X − X̂

)
MF b

d→ N
(

0, lim
n,p→∞

ΦQ̃
−1
LQ̃

−1
Φ>
)
.

The vector b comes from the same vector in Lemma 1. The asymptotic bias

is zero, because we assume no serial or cross-sectional correlation in the error

terms. This simplified setting can be extended to allow for weak correlations in

the errors in both directions. In that case, the asymptotic distribution includes

a nonzero bias term.

Remark 8. Theorem 3 shows that the asymptotic distribution of the coefficient

matrix Ĉ relies on the unobserved factor loading matrix A0. Although we are

unable to consistently estimate A0 using Â, what we need is the projected matrix

MA0 , which can be estimated using MÂ. We derive the following estimators for

Q and L based on MÂ:

Q̂ =
1

p
Φ>MÂΦ

L̂ =
σ2

np

n∑
i

p∑
j

ω̂>j ω̂j

(
n∑
k

ψ̂ikbk

)2

,

where ω̂j is the jth column of the K × p matrix Φ>MÂ, and ψ̂ik is the (i, k)th

element in the matrix MF̂ .

When K goes to infinity, the random vector {(C0 − Ĉ)/
√
n}MF b considered

in Theorem 3 is a high-dimensional random vector. Then, we establish the

asymptotic distribution for some linear combination of this random vector in

the following theorem.

Theorem 4. Suppose Assumptions 1-7 and Assumption 9 are satisfied. As

n, p,K tend to infinity, we have, for any vectors γ ∈ RK and b ∈ Rn,

√
pγ>

(
C0 − Ĉ√

n

)
MF b

d→ N
(
0, L̃

)
, (4.13)

where L̃ is defined in (4.8).

5. Simulation Studies

In this section, we use simulated data to demonstrate the performance of the

proposed model. We compare the FASM with three other models. The first is
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the basis smoothing model with a penalty (Bsmooth). We use the same basis

functions as those of the FASM and the L2-penalty. Thus, the Bsmooth model

differs from the FASM only in that it does not consider the augmented factor

component. The second model is the local linear smoothing model (Localin).

Here, we use Cross-validation to choose the bandwidth parameter. The third

model is the principal component analysis with conditional expectation (PACE),

proposed in Yao, Müller and Wang (2005). This method is mainly used for sparse

data, where very few data points are observed on each functional curve.

5.1. Data-generating process

Setting 1. We generate simulated data Yij, where i = 1, . . . , n and j = 1, . . . , p,

from the following model:

Yij = Xi(uj) + ηij + εji

=
13∑
k=1

cikφk(uj) +
4∑

k=1

fikakj + εji,

where φk(u) are chosen as B-spline basis functions of order four and the smoothing

coefficients cik are generated from N (0, 1.52). The factor loadings akj follow

N (0, 0.62), and the factors (fi1, fi2, fi3, fi4)
> ∼ N (µ,Σ), where Σ is a 4 × 4

covariance matrix. We set the multivariate mean term µ = 0 and the variance

Σ = σ2I4. We adjust the value of σ2 to control the signal-to-noise ratio. When

σ2 is large, the signal-to-noise level is low, and when σ2 is small, the level is high.

The random error terms εji follow N (0, 0.52).

Setting 2. We generate simulated data Yij, where i = 1, . . . , n and j = 1, . . . , p,

from the following model:

Yij = Xi(uj) + ηij + εji

=
5∑

k=1

cikφk(uj) +
4∑

k=1

fikakj + εji,

where φk(u) are chosen as B-spline basis functions of order four and the smoothing

coefficients cik are generated from N (0, γ2
k), where γ1 = 3, γ2 = 2.5, γ3 = 2, γ4 =

1.5, and γ5 = 1. The factor loadings akj follow N (0, 0.82) and the factors

(fi1, fi2, fi3, fi4)
> ∼ N (µ,Σ), where Σ is a 4 by 4 covariance matrix. We set

the multivariate mean term µ = 0 and variance Σ = σ2I4. We adjust the value

of σ2 to control the signal-to-noise ratio. When σ2 is large, the signal-to-noise

level is low, and when σ2 is small, the signal-to-noise level is high. The random

error terms εji follow N (0, 0.52).

Setting 3. We generate simulated data as in Setting 1, except that we use
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K = 21 B-spline basis functions. We use n = 40 and p = 50. Here, we show how

the model works when the number of basis functions is large compared with n

and p.

5.2. Results

We repeat the simulation setup 500 times and obtain the estimated smooth

function X̂i(u) = ĉ>i Φ(u). The mean integrated squared error (MISE) for the

function estimation is calculated as

MISE =
1

n

n∑
i=1

∫ {
Xi(u)− X̂i(u)

}2

du. (5.1)

The results for Settings 1 and 2 are reported in Tables 1 and 2, respectively.

With the same sample size n, increasing the number of points p on the curve

decreases the estimation error. However, with the same value for p, increasing

the sample size does not decrease the estimation error. This is consistent with

the convergence rate stated in Section 4, where the estimator converges with the

rate related to p.

When σ is large, that is, the signal-to-noise ratio is high, the FASM

outperforms the smoothing model. When σ = 0, the actual data are generated

without the factor model component. The performance of the two methods is

identical. This implies that the proposed model is robust in that it improves the

estimation when there is a measurement error, and is no worse than the ordinary

smoothing model when there is no measurement error. This is credited to the

selection criterion used in (S3.4), which always selects zero factors when there

are no common factors.

In Table 3, we show the MISE result from Setting 3. Again, the proposed

model shows its superiority when K is large compared with n and p. This

setting corresponds to allowing the number of basis functions K to go to infinity,

discussed in Section 4.

6. Application to Climatology

Here, we apply the aforementioned FASM, Bsmooth, Localin, and PACE

methods to real data sets. This section examines the Friday temperature data

at Adelaide airport. We provide analysis of Canadian annual temperature and

precipitation data in the Supplementary Material.

We choose Adelaide because it tends to have the hottest temperature among

Australia’s big cities. Data from other weekdays exhibit similar features, and

thus are not shown here. The data are measured every half an hour for the

period 1997 to 2007. The sample size n is 508, and the number of discrete data

points p from each curve is 48. A plot of the raw data is shown in Figure 4a.

The data are quite noisy, with extreme values in some of the curves due to large
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Table 1. Setting 1: The MISE of the function estimates with different samples sizes and
dimensions. The σ2-value is used to control the signal-to-noise ratio.

MISE

Sample Size Dimension Size of η FASM Bsmooth Localin PACE

n = 20 p = 51 σ = 0 0.058 0.058 0.075 0.238

σ = 0.5 0.131 0.131 0.149 0.587

σ = 0.75 0.204 0.208 0.226 1.026

σ = 1 0.297 0.318 0.336 1.676

n = 20 p = 101 σ = 0 0.031 0.031 0.043 0.238

σ = 0.5 0.076 0.076 0.089 0.595

σ = 0.75 0.115 0.123 0.136 1.020

σ = 1 0.159 0.187 0.201 1.686

n = 50 p = 51 σ = 0 0.058 0.058 0.076 0.195

σ = 0.5 0.131 0.135 0.153 0.543

σ = 0.75 0.186 0.214 0.233 1.013

σ = 1 0.248 0.314 0.331 1.668

n = 100 p = 101 σ = 0 0.031 0.031 0.044 0.170

σ = 0.5 0.062 0.074 0.089 0.463

σ = 0.75 0.090 0.118 0.132 0.908

σ = 1 0.133 0.181 0.194 1.570

Table 2. Setting 2: The MISE of the function estimates with different samples sizes and
dimensions. The σ2-value is used to control the signal-to-noise ratio.

MISE

Sample Size Dimension Size of η FASM Bsmooth Localin PACE

n = 20 p = 51 σ = 0 0.024 0.024 0.070 0.116

σ = 0.5 0.086 0.085 0.195 0.621

σ = 0.75 0.160 0.160 0.340 1.431

σ = 1 0.272 0.280 0.538 2.685

n = 20 p = 101 σ = 0 0.012 0.012 0.040 0.089

σ = 0.5 0.047 0.046 0.117 0.660

σ = 0.75 0.079 0.079 0.192 1.434

σ = 1 0.135 0.138 0.301 2.549

n = 50 p = 51 σ = 0 0.025 0.025 0.070 0.076

σ = 0.5 0.087 0.086 0.202 0.584

σ = 0.75 0.162 0.169 0.348 1.435

σ = 1 0.250 0.269 0.522 2.557

n = 100 p = 101 σ = 0 0.012 0.012 0.041 0.033

σ = 0.5 0.045 0.045 0.114 0.518

σ = 0.75 0.085 0.085 0.195 1.337

σ = 1 0.138 0.139 0.299 2.618
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Table 3. Setting 3: The MISE of the function estimates when K is large compared with
n and p. The σ2-value is used to control the signal-to-noise ratio.

MISE

Sample Size Dimension Size of η FASM Bsmooth Localin PACE

n = 50 p = 40 σ = 0 0.097 0.097 0.121 0.225

σ = 0.5 0.206 0.207 0.235 0.590

σ = 0.75 0.291 0.309 0.335 1.044

σ = 1 0.390 0.457 0.466 1.747
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Figure 4. Half-hourly temperature data on Fridays at Adelaide airport.

measurement errors.

We use B-spline basis functions of order four with knots at every data point.

We show the residuals from the four models in Figure 5. Apart from the FASM,

the other models produce large residuals, with some extreme values. To examine

the residual struture from Bsmooth model, we conduct a principal component

analysis on the residuals. Figure 4b shows the screeplot of the eigenvalues. The

residuals from Bsmooth model exhibit a “spike” structure, where the first few

eigenvalues are significantly larger than the rest. This means the residuals contain

information that can be captured by only a few factors, which calls for a further

dimension reduction model on the residuals.

7. Conclusion

In this paper, we propose an FASM for functional data. We study raw

functional data, a mixture of functional curves, and high-dimensional errors.

When the measurement error is informative, a smoothing model alone is

inadequate for capturing data variation and recovering the signal functional

component. The proposed model incorporates a factor structure into the

smoothing model to further explain the large residuals. We propose a numerical

iteration approach to obtain estimates in the smoothing and the factor models



FACTOR-AUGMENTED SMOOTHING MODEL 23

0 10 20 30 40

−3
0

−2
0

−1
0

0
10

Half−hour

R
es
id
ua
l

(a) Residuals of FASM

0 10 20 30 40

−3
0

−2
0

−1
0

0
10

Half−hour

R
es
id
ua
l

(b) Residuals of the Bsmooth

0 10 20 30 40

−3
0

−2
0

−1
0

0
10

Half−hour

R
es
id
ua
ls

(c) Residuals of Localin

0 10 20 30 40

−3
0

−2
0

−1
0

0
10

Half−hour

R
es
id
ua
ls

(d) Residuals of PACE

Figure 5. Half-hourly temperature data on Friday at Adelaide airport.

simultaneously. The asymptotic distribution of the estimators is given, with a

proof. Our model also serves as a dimension-reduction method for functional

and high-dimensional mixture data, easing the path to making inferences.

We provide an example in which we construct a covariance estimator for the

raw data. Furthermore, we show that the model can be applied when there

is a misidentification in the data structure, two examples of which are the

misspecification of the smoothing basis functions and neglecting the step jumps

in the mean level of the functions. The advantages of the proposed model are

demonstrated using simulation studies. We also show how our model performs

by applying it to Australian temperature data.

The proposed model is a good starting point for modeling complex data

structures. We deal with a mixture of smooth functional curves and high-

dimensional measurement errors. The factor model component can be regarded

as a “boosting component” that improves model accuracy. Extending this idea,

the model can be applied to other data structures, such data that contain

change points. The change point is a popular problem in many statistics and

econometric topics, and has been studied extensively in multivariate settings.

Previous works on change points in functional data include those of Berkes et al.

(2009), Hörmann and Kokoszka (2010), and Hörmann, Kidziński and Hallin

(2015). In our simulations, we show examples that our model can be used to
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model functional data with change points in the cross-sectional direction. The

model can be modified to account for change points in the sample direction. This

is left to future research.

Supplementary Material

In the online Supplementary Material, we extend our model to nonparametric

settings, introduce a covariance estimator, and present extensive simulated and

real-data analysis. Here, we also provide proofs for the theorems and additional

results.
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Hörmann, S. and Kokoszka, P. (2010). Weakly dependent functional data. The Annals of

Statistics 38, 1845–1884.
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