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Abstract: We propose a general Bayesian criterion for model assessment. The cri-

terion is constructed from the posterior predictive distribution of the data, and can

be written as a sum of two components, one involving the means of the posterior

predictive distribution and the other involving the variances. It can be viewed

as a Bayesian goodness-of-fit statistic which measures the performance of a model

by a combination of how close its predictions are to the observed data and the

variability of the predictions. We call this proposed predictive criterion the L mea-

sure, it is motivated by earlier work of Ibrahim and Laud (1994) and related to a

criterion of Gelfand and Ghosh (1998). We examine the L measure in detail for

the class of generalized linear models and survival models with right censored or

interval censored data. We also propose a calibration of the L measure, defined as

the prior predictive distribution of the difference between the L measures of the

candidate model and the criterion minimizing model, and call it the calibration

distribution. The calibration distribution will allow us to formally compare two

competing models based on their L measure values. We discuss theoretical proper-

ties of the calibration distribution in detail, and provide Monte Carlo methods for

computing it. For the linear model, we derive an analytic closed form expression

for the L measure and the calibration distribution, and also derive a closed form

expression for the mean of the calibration distribution. These novel developments

will enable us to fully characterize the properties of the L measure for each model

under consideration and will facilitate a direct formal comparison between several

models, including non-nested models. Informative priors based on historical data

and computational techniques are discussed. Several simulated and real datasets

are used to demonstrate the proposed methodology.
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1. Introduction

Model assessment and model comparison is a crucial part of statistical analy-
sis. Due to recent computational advances, sophisticated techniques for Bayesian
model assessment are becoming increasingly popular. We have seen a recent
surge in the statistical literature on Bayesian methods for model assessment
and model comparison, including George and McCulloch (1993), Geisser (1993),
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Madigan and Raftery (1994), Ibrahim and Laud (1994), Bernardo and Smith
(1994), Laud and Ibrahim (1995), Kass and Raftery (1995), Raftery, Madigan
and Volinsky (1995), George, McCulloch and Tsay (1996), Gelman, Meng and
Stern (1996), Raftery, Madigan and Hoeting (1997), Gelfand and Ghosh (1998),
Clyde (1999) and Spiegelhalter, Best and Carlin (1998). The scope of Bayesian
model assessment is quite broad, and can be investigated via model diagnostics,
goodness-of-fit measures, or posterior model probabilities (or Bayes factors).

Many of the proposed Bayesian methods for model comparison rely on pos-
terior model probabilities or Bayes factors, and it is well known that to use these
methods, proper prior distributions are needed. It is usually a major task to
specify prior distributions for all models under consideration, especially if the
model space is large. This issue has been discussed in detail by several au-
thors, including Ibrahim and Laud (1994), Laud and Ibrahim (1995) and Chen,
Ibrahim and Yiannoutsos (1999). In addition, it is well known that posterior
model probabilities are generally sensitive to the choices of prior parameters, and
thus one cannot simply select vague proper priors to get around the elicitation
issue. Thus, computing posterior model probabilities can become a monumen-
tal chore if informative prior distributions are difficult to specify. Alternatively,
criterion-based methods can be attractive in the sense that they do not require
proper prior distributions in general, and thus have an advantage over posterior
model probabilities in this sense. Several recent papers advocating the use of
Bayesian criteria for model assessment include Ibrahim and Laud (1994), Laud
and Ibrahim (1995), Gelman, Meng and Stern (1996), Gelfand and Ghosh (1998),
and Spiegelhalter, Best and Carlin (1998). However, posterior model probabilities
are intrinsically well-calibrated since probabilities are relatively easy to interpret,
whereas criterion-based methods are generally not easy to calibrate or interpret.
Thus, one potential criticism of criterion-based methods for model comparison
is that they generally do not have well defined calibrations. Thus, one needs to
calibrate these criteria somehow so that they can be more easily interpreted.

To motivate the notion of calibration for our proposed methodology, we con-
sider the landmark AIDS study, ACTG036. The ACTG036 study was a double
blind placebo-controlled clinical trial comparing zidovudine (AZT) to placebo in
persons with CD4 counts less than 500. The sample size for this study, excluding
cases with missing data, was n = 183. The response variable (y) for these data is
binary with a 1 indicating death, development of AIDS, or AIDS related complex
(ARC), and a 0 indicates otherwise. Several covariates were also measured. The
ones we use here are CD4 count (x1) (cell count per mm3 of serum), age (x2),
treatment, (x3), and race (x4). The covariates CD4 count and age are continuous,
whereas the other covariates are binary. We consider a logistic regression for the
response y as a function of the covariates (see Chen, Ibrahim and Yiannoutsos
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(1999)). For the ACTG036 data, suppose we consider the two competing mod-
els x1 and the full model (x1, x2, x3, x4), which is also the criterion minimizing
model with respect to the L measure. The L measure values for these models
are 16.82 and 16.30, respectively (See Table 3). Now we ask the question, how
“far” is model (x1) from the criterion-minimizing model (x1, x2, x3, x4)? Can
we formally quantify the size difference in the criterion values between the two
models, that is, can we calibrate the L measure? These are the types of questions
we wish to address. This example thus serves as a good demonstration of the
need for calibrated model selection criteria for comparing models.

In this article, we propose a Bayesian criterion, called the L measure, for
model assessment and model comparison, and also propose a calibration for it.
The L measure criterion is constructed from the posterior predictive distribu-
tion of the data, and can be written as a sum of two components, one involving
the means of the posterior predictive distribution and the other involving the
variances. It can be viewed as a statistic which measures the performance of a
model by a combination of how close its predictions are to the observed data,
and the variability of the predictions. We argue that the proposed criterion can
be used as a general model assessment tool for comparing models and assessing
goodness-of-fit for a particular model, and thus is potentially quite versatile. To
facilitate the formal comparison of several models, we propose a novel calibra-
tion for the L measure by deriving the marginal prior predictive density of the
difference between the L measures of the candidate model and the true model.
We call the calibrating marginal density the calibration distribution. Since, in
practice, the true model will not be known, we use the criterion minimizing
model in place of the true model, and give its theoretical justification. Thus an
L measure statistic and its corresponding calibration distribution are computed
for each candidate model. We discuss theoretical properties of the calibration
distribution in detail. For the linear model, we derive an analytic closed form
expression for the L measure and the calibration distribution. Also, we derive an
analytic expression for the mean of the calibration distribution, which will serve
as a useful summary measure. Although the L measure and calibration distribu-
tion are quite general in their definition and could be applied to any parametric
or semi-parametric model, we focus our applications on generalized linear models
(GLM’s) and survival models with right censored or interval censored data.

The rest of this paper is organized as follows. In Section 2, we motivate
and derive the L measure. In Sections 2.1 and 2.2 we discuss the L measure
for GLM’s and models for survival data, and we present computational formulas
and simplified expressions for the criterion. We also provide Monte Carlo (MC)
methods for computing the L measure. In Section 3, we motivate the calibration
of the L measure, derive the calibration distribution, derive its properties, and
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give MC strategies for computing it. In Section 4, we discuss how informative
prior elicitation based on historical data can facilitate the computation of the
calibration distribution. In Section 5, several theoretical properties of the L
measure and calibration distribution are derived for the linear model. Specifically,
we obtain analytic expressions for the L measure and calibration distribution, as
well as obtaining analytic expressions for the mean of the calibration distribution.
Several theorems are presented which characterize properties of the L measure
and calibration distribution under various settings involving nested and non-
nested models. In Section 6, we present several examples with real data sets that
demonstrate the methodology.

2. The L Measure

Consider an experiment that yields the data y = (y1, . . . , yn). Denote the
joint sampling density of the yi’s by p(y|θ), where θ is a vector of indexing pa-
rameters. In this article, we allow the yi’s to be fully observed, right censored, or
interval censored. In the right censored case, yi may be a failure time or a cen-
sored time. In the interval censored case, we only observe the interval [ali , ari ]
in which yi occurred. Let z = (z1, . . . , zn) denote future values of an imag-
ined replicate experiment. That is, z is a future response vector with the same
sampling density as y|θ. The idea of using a future response vector z in develop-
ing a criterion for assessing a model or comparing several models has been well
motivated in the literature by Geisser (1993) and the many references therein,
Ibrahim and Laud (1994), Laud and Ibrahim (1995), and Gelfand and Ghosh
(1998). The imagined replicate experiment makes y and z directly comparable,
and exchangeable a priori. It seems clear that good models should make pre-
dictions close to what has been observed for an identical experiment. With this
notion in mind, Ibrahim and Laud (1994) defined their statistic as the expected
squared Euclidean distance between y and z,

LIL = E[(z − y)′(z − y)] , (2.1)

where the expectation is taken with respect to the posterior predictive distribu-
tion of z|y,

p(z|y) =
∫

p(z|θ) p(θ|y) dθ . (2.2)

Here θ denotes the vector of indexing parameters, p(z|θ) is the sampling distri-
bution of the future vector z, and p(θ|y) denotes the posterior distribution of θ.
Straightforward algebra shows that LIL can be written as

LIL =
n∑

i=1

(
Var(zi|y) + (E(zi|y) − yi)2

)
, (2.3)
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and thus LIL can be written as a sum of two terms, one involving the predictive
variances and the other term is like a bias term involving the squared difference
between the predictive means and the observed data.

A more general version of (2.1) is as follows. For a given model, we first
define the statistic

L1(y, b, k) = E
[
(z − b)′(z − b)

]
+ k(y − b)′(y − b) , (2.4)

where the expectation is taken with respect to the posterior predictive distri-
bution of z|y. We note here that y and z may represent a transformation of
the original data. For example, in survival analysis, it is common to take the
logarithms of the survival times, and in this case y would represent the logs of
the survival times. Logarithms are also a common transformation in Poisson
regression.

The statistic in (2.4) takes the form of a weighted discrepancy measure. The
vector b = (b1, . . . , bn) is an arbitrary location vector to be chosen, and k is
a nonnegative scalar that weights the discrepancy based on the future values
relative to the observed data. Setting b = y, we get the criterion of Ibrahim and
Laud (1994) given in (2.1). The case k = 0 can be interpreted as a squared error
loss discrepancy measure in the future response vector. The general criterion
in (2.4) is a special case of a class considered by Gelfand and Ghosh (1998),
motivated by a Bayesian decision theoretic viewpoint. We refer the reader to
their paper for more detail.

In scalar notation, (2.4) can be written as

L1(y, b, k) =
n∑

i=1

{
V ar(zi|y) + (µi − bi)2 + k(yi − bi)2

}
, (2.5)

where µi = E(zi|y). We follow Gelfand and Ghosh (1998) by selecting b as the
minimizer of (2.5),

b̂ = (1 − ν)µi + ν yi, (2.6)

where ν = k/(k + 1). Upon substitution in (2.5),

L2(y, ν) =
n∑

i=1

V ar(zi|yi) + ν
n∑

i=1

(µi − yi)2. (2.7)

Clearly 0 < ν < 1, where ν = 0 if k = 0, and ν → 1 as k → ∞. The quantity
ν plays a major role in (2.7) (see Section 5). Ibrahim and Laud (1994) use
ν = 1, and thus give equal weight to the squared bias and variance components.
However there is no theoretical justification for such a weight and, indeed, using
ν = 1 may not be desirable in certain situations. Allowing ν to vary between
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zero and one gives the user a great deal of flexibility in the tradeoff between
bias and variance. This suggests the question of whether certain values of ν are
“optimal” in some sense for model selection purposes. In Section 5, we address
this optimality issue for the linear model and show that certain values of ν yield
desirable properties of the L measure and the calibration distribution. These are
novel developments and appear to shed light on the role and interpretation of ν

in model selection.
If y is fully observed, (2.7) is straightforward to compute. However if y con-

tains right censored or interval censored observations, then (2.7) is computed
by taking the expectation of these censored observations with respect to this
posterior predictive distribution. Let y = (yobs, ycens), where yobs denotes the
completely observed components of y, and ycens denotes the censored compo-
nents. Here we assume that ycens is a random quantity and al < ycens < ar,
where al and ar are known. For ease of exposition, we let D = (n, yobs, al, ar)
denote the observed data. Then (2.7) is modified as

L(yobs, ν) = Eycens|D[I(al < ycens < ar)L2(y, ν)], (2.8)

where I(al < ycens < ar) is 1 if al < ycens < ar and 0 otherwise. (Note that when
al, ycens, and ar are vectors, al < ycens < ar means that the double inequalities
hold for each component of these vectors). We call (2.8) the L measure, small
values implying a good model. Specifically, we can write (2.8) as

L(yobs, ν) =
∫ ∫ ar

al

L2(y, ν) p(ycens|θ) p(θ|D) dycens dθ, (2.9)

where p(ycens|θ) is the sampling density of ycens and p(θ|D) is the posterior
density of θ given the observed data D. If y has right censored observations, ar =
∞ and al is a vector of censoring times; if y has interval censored observations,
(al, ar) is a sequence of finite interval censoring times; if y is fully observed,
(2.8) reduces to (2.7) and L(yobs, ν) ≡ L2(y, ν). We use (2.8) throughout as our
Bayesian criterion for model assessment and model comparison. We note here
that our definition in (2.8) is quite different from the development of Gelfand
and Ghosh (1998) and Sinha, Chen and Ghosh (1999).

It can be shown that

L2(y, ν) =
n∑

i=1

{
Eθ|D

(
E
[
(zi)2|θ

])
− µ2

i

}
+ ν

n∑
i=1

(µi − yi)2, (2.10)

where µi = Eθ|D[E(zi|θ)]. Thus (2.7) and (2.8) can be computed by sam-
pling from the posterior distribution of θ. Once the posterior samples of θ are
obtained, (2.10) and (2.8) can be evaluated. More specifically, suppose that
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{θ(r), r = 1, 2, . . . , R} is a sample from p(θ|D) and {y(r)
cens, r = 1, 2, . . . , R} is

a sample from the truncated posterior predictive distribution I(al < ycens <

ar) p(ycens|θ) p(θ|D). Then, an MC estimate of L(yobs, ν) is given by

L̂(yobs, ν) =
n∑

i=1

{
1
R

R∑
r=1

(
E
[
(zi)2|θ(r)

])
− µ̂2

i

}

+ν




∑
i: yi observed

(µ̂i − yi)2 +
1
R

R∑
r=1


 ∑

i: yi censored
(µ̂i − y

(r)
cens,i)

2




 , (2.11)

where µ̂i =
1
R

R∑
r=1

E(zi|θ(r)). If E
[
(zi)2|θ

]
and E(zi|θ) are not analytically avail-

able, we need an MC sample {z(r), r = 1, 2, . . . , R} from the complete posterior
predictive distribution p(z|θ)p(θ|D). Then, in (2.11), we replace

1
R

R∑
r=1

(E[(zi)2|θ(r)]) and
1
R

R∑
r=1

E(zi|θ(r)) by
1
R

R∑
r=1

(z(r)
i )2 and

1
R

R∑
r=1

z
(r)
i .

Thus, computing L(yobs, ν) is relatively straightforward, but may be intensive for
some models. Gibbs sampling from the posterior distribution of θ for generalized
linear models and most survival data models is straightforward.

If the posterior expectation in (2.10) is finite, L2(y, ν) is well defined. For
the class of GLM’s and the survival models we consider here, the posterior ex-
pectation in (2.10) exists when the data is left untransformed or is transformed
to logarithms. The posterior expectation in (2.10) can exist even when the prior
for θ is improper.

2.1. L measure for generalized linear models

Suppose that y1, . . . , yn are independent observations with density

p(yi | xi, θi, τ) = exp
{
a−1

i (τ)(yiθi − b(θi)) + c(yi, τ)
}

, i = 1, . . . , n , (2.12)

indexed by canonical parameter θi and scale parameter τ , where b(.) c(.) are
known functions. Further suppose the θi’s satisfy the equations

θi = θ(ηi) , i = 1, . . . , n , (2.13)

η = Xβ , (2.14)

where ηi = x′
iβ are the components of η, X is an n × p full rank matrix of

covariates, β = (β1, . . . , βp)′ is a p × 1 vector of regression coefficients, and θ

is a monotonic differentiable function. We assume that the covariates are fixed
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throughout and, for ease of exposition, we assume a−1
i (τ) = 1, as in logistic and

Poisson regression.
For the class of generalized linear models (GLM’s), L2(y, ν) ≡ L(yobs, ν) and

we can write

L(yobs, ν) =
n∑

i=1

[
Eβ|y(b′′(θi)) −

{
Eβ|y(b′(θi))

}2
]

+ ν
n∑

i=1

[
Eβ|y

(
b′(θi)

)− yi

]2
,

(2.15)
where primes indicate differentiation with respect to θi. We mention here that
b′(.) and b′′(.) are the mean and variance functions of the GLM, respectively, and
have simple closed forms as functions of β (see McCullagh and Nelder (1989)).
Thus, L(yobs, ν) is easily computed for GLM’s via Gibbs sampling, once samples
from the posterior distribution of β|y are obtained.

2.2. L measure for survival data

A proportional hazards model is defined by a hazard function of the form

h(y, x) = h0(y) exp(x′β) , (2.16)

where h0(y) denotes the baseline hazard function at time y, x denotes the covari-
ate vector for an arbitrary individual in the population, and β denotes a vector
of regression coefficients. The likelihood function for a set of right censored data
on n individuals in a proportional hazards model is

L (β, h0(y)) =
n∏

i=1

[h0(yi) exp(ηi)]
δi
(
S0(yi)exp(ηi)

)
, (2.17)

where ηi = x′
iβ, yi is an observed failure time or censoring time for the ith indi-

vidual and δi is 1 if yi is a failure time and 0 if it is a censoring time. Further,
S0(·) is the baseline survivor function which, since we consider continuous sur-
vival distributions, is related to h0(·) by S0(y) = exp (− ∫ y

0 h0(u) du). The log
transformation of survival time is quite common so as to define the observables
(survival times) on the entire real line, and often results in a more symmetric
posterior predictive distribution for z|y.

For the exponential model with right censored data, we have h0(y) = 1 and

L(yobs, ν)) =
∫

L2(y, ν) p(ycens|D) dycens, (2.18)

where

L2(y, ν) =
n∑

i=1

[
Eβ|D(exp(−2ηi)) −

{
Eβ|D(exp(−ηi))

}2
]

+ν
n∑

i=1

[
Eβ|D(exp(−ηi)) − yi

]2
.
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Similar expressions for L2(y, ν) can be obtained for the Weibull or extreme value
models but without closed forms for L2(y, ν). For example, the L measure can be
computed for semi-parametric survival models in which a suitable prior process is
defined for the unspecified baseline hazard rate. See Sinha and Dey (1997) for a
recent review of semiparametric Bayesian survival analysis and prior processes for
hazard rates. We can also entertain semi-parametric survival models with interval
censored survival data as well as non-proportional hazards models, models with
time varying covariates, and frailty models. We demonstrate the L measure for
parametric and semi-parametric survival models with right censored and interval
censored data in Section 6. In addition, we examine survival models with time
varying covariates.

3. The Calibration Distribution

Criterion-based methods typically rely on the minimum criterion value as
the basis for model selection. However this basis is not satisfactory in general,
since it does not allow a formal comparison of criterion values between two or
more competing models. For example, in variable subset selection, a model
with 5 predictors might achieve the minimum criterion value while a model with
3 predictors achieves a slightly larger value. Which model should be chosen?
This situation arises often in practice, and in these cases it is desirable to have
a calibration of the criterion to formally compare criterion values between the
candidate models. Thus, one of the crucial steps in using criterion-based methods
for model assessment and model choice is to define a calibration for the criterion.

To motivate our calibration distribution, let Lc(yobs, ν) denote the L measure
for the candidate model c, and let Lt(yobs, ν) denote the L measure for the true
model t. Now consider the difference

D(yobs, ν) ≡ Lc(yobs, ν) − Lt(yobs, ν) . (3.1)

The quantity in (3.1) is a random variable in yobs, and depends on ν. To calibrate
the L measure, we construct the marginal distribution of D(yobs, ν), computed
with respect to the prior predictive distribution of yobs under the true model t:

pt(yobs) =
∫

pt(yobs|θ)πt(θ) dθ. (3.2)

Note that Box (1980) developed similar ideas in calibration using the prior pre-
dictive distribution, and Gelman, Meng and Stern (1996) developed calibration
measures using the posterior predictive distribution.

Our proposed calibration distribution is

pLc ≡ p(D(yobs, ν)), (3.3)
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the marginal distribution of D(yobs, ν), computed with respect to the prior predic-
tive distribution of yobs under the true model t. We refer to pLc as the calibration
distribution for the candidate model c. Since pLc is a univariate distribution, it
is easily tabulated and plotted. If the candidate model is “close” to the true
model pLc should have a mean (or mode) that is close to zero and much of its
mass should be centered around this point. On the other hand, if the candidate
model and true model are far apart, then pLc will have a mean (or mode) that is
far from zero. Clearly pLc depends on c. We also see from (3.3) that, for pLc to
be well defined, we need a proper prior distribution for θ. The definition at (3.3)
is appealing since it avoids the potential problem of a double use of the data, as
discussed by Bayarri and Berger (1999).

The definition of pLc depends on the data only through yobs. For GLM’s,
yobs = y, and (3.3) is clear. When we have right censored data, yobs consists of
observed failure times and pLc is a function of them and its computation does not
depend on censoring times. In situations where all observations are censored as,
for example, with case-2 interval censored data (see Section 6), then yobs consists
of the empty set. In this case, the definition of pLc in (3.3) must be slightly
modified. We “impute” each interval censored observation by sampling from the
truncated prior predictive distribution, where the truncation is taken to be the
endpoints of the interval censored observation. Thus, if yi is interval censored in
the interval [ali , ari ], we impute yi by replacing it with a sample of size 1 from

pt(yi) ∝
∫

pt(yi|θ) πt(θ) dθ, ali < yi < ari , (3.4)

i = 1, . . . , n. We denote the sampled value by ỹi for each interval censored
observation and take ỹ = (ỹ1, . . . , ỹn). We then treat ỹ as yobs. This technique
for obtaining the calibration distribution pLc when all of observations are interval
censored produces good results, as demonstrated in Section 6. This technique
could also be used when all of the observations in a given data set are right
censored, but this scenario is much less common in practice.

Once pLc is computed, several statistical summaries can be obtained from
it. These include various HPD intervals and the mean of D(yobs, ν). The mean
is denoted by

µc(ν) = Et(D(yobs, ν)) , (3.5)

where Et(.) denotes the expectation with respect to the prior predictive distri-
bution of the true model. This summary µc(ν) is attractive since it measures, on
average, how close the centers are of the candidate and true models. We show in
Section 5 that µc(ν) has some attractive properties for the linear model.



BAYESIAN MODEL ASSESSMENT 429

Since the true model t will not be known in practice, we use the criterion
minimizing model tmin in place of t for computing (3.1). Thus, in practice, we
compute

D̂(yobs, ν) = Lc(yobs, ν) − Ltmin(yobs, ν) , (3.6)

p̂Lc = p(D̂(yobs, ν)) , (3.7)

where p̂Lc is computed with respect to the prior predictive distribution of the
criterion minimizing model. Also, µc(ν) is estimated by µ̂(ν), where µ̂(ν) =
Etmin [D̂(yobs, ν)]. It turns out that, for the linear model, the criterion minimizing
model yields many of the same theoretical properties as the true model (See
Section 5).

We briefly describe how to compute the calibration distribution pLc via MC
sampling. For illustrative purposes, we consider only the case where yobs is
not empty (the computation is even much simpler when yobs is empty). For a
candidate model c,
(i) Generate a pseudo observation ỹ from the prior predictive distribution pt(y|θ)
πt(θ).

(ii) Set yobs = ỹ and use the method described in Section 2 to obtain an MC
estimate of Lc(yobs, ν).

We repeat (i) and (ii) R times to obtain an MC sample of Lc(yobs, ν). Then
we repeat (i) and (ii) R times using the criterion minimizing model to obtain
an MC sample of Ltmin(yobs, ν). Using these MC samples, we can compute the
entire calibration distribution pLc , for example, by using the kernel method (see
Silverman (1986)). We note that step (ii) may be computationally intensive but
the entire computational procedure is quite straightforward. In the examples
given in Section 6, for a medium sample size, say 100 < n < 500, the entire
computational time for obtaining the criterion and the calibration distribution
ranges from one to five hours on a standard digital alpha machine.

To compute pLc , we need proper prior distributions. Although we show in
Sections 5 and 6 that pLc is not sensitive to choices of vague proper priors, suit-
able choices of informative priors can be quite useful in improving the precision in
the estimation of pLc , and hence sharpening the comparisons between the candi-
date models. Towards this goal, potential choices of informative priors are those
developed in Ibrahim, Ryan and Chen (1998), Chen, Ibrahim and Yiannoutsos
(1999), and Ibrahim and Chen (1998). These priors are constructed from histor-
ical data and appear to be useful for inference and for computing pLc. We note
here that other types of informative priors may be used as well, such as those
discussed in Box and Tiao (1973), Gelman et al. (1995), and Carlin and Louis
(1996). In the next section, we give a brief review of informative priors based on
historical data.
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4. Informative Prior Distributions

The informative prior construction is based on the existence of historical data
measuring the same response variable and covariates as the current study. We
assume only one historical dataset, as the extension to multiple historical datasets
is straightforward. Let n0 denote sample size for the historical data, y0 be an
n0 × 1 response vector, and X0 the n0 × p matrix of covariates corresponding to
y0. Also, let y0i denote the ith component of y0, x′

0i = (x0i1, x0i2, . . . , x0ip) be the
ith row of X0 with x0i1 = 1 corresponding to an intercept, and D0 = (n0, y0,X0)
the historical data. Denote the likelihood function of θ based on the historical
data D0 by L(θ|D0). The informative prior is

π(θ|D0, a0) ∝ [L(θ|D0)]
a0 π0(θ|c0), (4.1)

where π0(θ|c0) is an initial prior. That is, π0(θ|c0) is the prior for θ with the
historical data being the “current data”. The prior parameter c0 controls the
impact of π0(θ|c0) on the entire prior, and 0 ≤ a0 ≤ 1 is a scalar prior precision
parameter that weights the historical data relative to the likelihood of the current
study. Ibrahim and colleagues have called the prior in (4.1) the power prior since
it is based on exponentiating the likelihood function of the historical data. Small
values of a0 give little prior weight to the historical control data relative to the
likelihood of the current study whereas values of a0 close to 1 give roughly equal
weight to the prior and the likelihood of the current study. In particular, the case
a0 = 1 corresponds to the update of π0(θ|c0) using Bayes theorem; the case a0 = 0
results in no incorporation of historical data and π(θ|D0, a0 = 0) ≡ π0(θ|c0).
We make use of the power prior in this paper to compute the L measure and
calibration distribution pLc .

The prior specification is completed by specifying a prior distribution for a0.
We take a beta prior for a0, and propose a joint prior distribution for (θ, a0) of
the form

π(θ, a0 | D0) ∝ [L(θ|D0)]
a0 π0(θ|c0) aδ0−1

0 (1 − a0)λ0−1, (4.2)

where (δ0, λ0) are specified prior hyperparameters. The joint posterior distribu-
tion of θ and a0 is given by

p(θ, a0|D,D0) ∝ L(θ|D) [L(θ|D0)]
a0 aδ0−1

0 (1 − a0)λ0−1. (4.3)

The priors in (4.2) have been proposed and discussed in detail for generalized
linear models and survival models; see Ibrahim, Ryan and Chen (1998), Chen,
Ibrahim and Yiannoutsos (1999) and Ibrahim and Chen (1998). In these papers,
various properties of the power prior π(θ, a0 | D0) are also derived. We refer the
reader to these papers for motivation and detailed discussion of the power prior.
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5. Properties of the Calibration Distribution

In this section, we examine some properties of the L measure and the cali-
bration distribution pLc for the linear model. Consider the linear model

y = Xβ + ε , (5.1)

where β is a p× 1 vector of regression coefficients, X is an n× p full rank matrix
of covariates, and ε ∼ Nn(0, σ2I). For the purposes of our illustrations, and
without loss of generality, we take σ2 to be known. Consider the usual conjugate
prior

β|σ2 ∼ Np(µ0, σ
2Σ0) , (5.2)

where (µ0,Σ0) are specified hyperparameters. Standard results from Box and
Tiao (1973) give the posterior distribution of β as

β|y ∼ Np(Λµ0 + (Ip − Λ)β̂, σ2(X ′X + Σ−1
0 )−1), (5.3)

where Λ = (X ′X + Σ−1
0 )−1Σ−1

0 , Ip denotes the p × p identity matrix, and β̂ =
(X ′X)−1X ′Y . In addition, the posterior predictive distribution of z|y is given
by

z|y ∼ Nn(X(Λµ0 + (Ip − Λ)β̂), σ2(In + X(Σ−1
0 + X ′X)−1X ′)) . (5.4)

For the linear model, it can be shown that the L measure has a closed form and
is given by

L(y, ν) = nσ2 + σ2tr(Ip − Λ) + ν(By − XΛµ0)′(By − XΛµ0), (5.5)

where tr(.) denotes the trace operator, B = In − M + XΛ(X ′X)−1X ′, and
M = X(X ′X)−1X ′ is the orthogonal projection operator onto the column space
of X, which we denote by C(X). Details of the derivation of (5.5) are given in
the Appendix. Moreover, it can be shown that B is a positive definite matrix
and B−1 = In + XΣ0X

′.
To derive the calibration distribution pLc , we first need the prior predictive

distribution of y. After straightforward algebra,

y ∼ Nn(Xµ0, σ
2B−1). (5.6)

We are now led to the following theorem which characterizes the exact distribu-
tion of the L measure.

Theorem 1. Under (5.1), the marginal prior predictive distribution of L(y, ν)
in (5.5) has the same distribution as the random variable V = nσ2 + σ2tr(Ip −
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Λ) + νU , where U = 1
σ2

∑n
i=1 diiUi, the Ui are independent central chi-square

random variables each with 1 degree of freedom, and the dii are the eigenvalues
of the positive definite matrix B.

The proof of Theorem 1 is given in the Appendix. Now consider a candidate
model c and the true model t. Under model j, the prior for βj is given by

βj |σ2 ∼ N(µ0j , σ
2Σ0j) , (5.7)

where (µ0j ,Σ0j) are specified hyperparameters, j = c, t. Under these priors,
using the derivation from (5.5), we are led to

Lj(y, ν) = nσ2 + σ2tr(Ij − Λj) + ν(Bjy − XjΛjµ0j)′(Bjy − XjΛjµ0j)′ , (5.8)

where Λj = (X ′
jXj + Σ−1

0j )−1Σ−1
0j , Bj = In − Mj + XjΛj(X ′

jXj)−1X ′
j, and Mj =

Xj(X ′
jXj)−1X ′

j , j = c, t. In addition, using (5.6), the prior predictive distribution
of y under the true model t is given by

y ∼ Nn(Xtµ0t, σ
2B−1

t ) , (5.9)

where B−1
t = In + XtΣ0tX

′
t.

Theorem 2. The distribution of Lc(y, ν) with respect to the prior predictive
distribution of the true model t has the same distribution as the random variable
V = nσ2 + σ2tr(Ic − Λc) + νU , where U = 1

σ2

∑n
i=1 diiUi, the Ui are inde-

pendent non-central chi-square random variables with 1 degree of freedom and
non-centrality parameter λi, i = 1, . . . , n. Here the dii are the eigenvalues of
the positive definite matrix BcB

−1
t Bc, and the λi are derived explicitly in the

Appendix.

This result is attractive since it gives us an exact closed form expression for
the calibration distribution of Lc(y, ν).

Theorem 3. The mean µc(ν) of the calibration distribution pLc is given by

µc(ν) = νb′ctbct + σ2(1 − ν)(pc − pt) + σ2(1 − ν)(tr(Λt) − tr(Λc))

+νσ2tr(XcΛ2
c(X

′
cXc)−1X ′

cXtΣ0tX
′
t) + νσ2tr((Ic − Mc)XtΣ0tX

′
t)

−νσ2tr(Λc(Ic − Λc)), (5.10)

where bct = (BcXtΛtµ0t − XcΛcµ0c).

A proof of Theorem 3 is given in the Appendix. We note that the term bct

in (5.10) can be viewed as a bias component, which equals 0 when c = t. We
consider several theoretical properties of µc(ν) for various values of ν and various
structures for the models (c, t).
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Theorem 4. Assume Σ0j = σ2
0Ij , µ0j = 0, and orthogonal covariates, so that

X ′
jXj = Ij , j = c, t. Let pj = rank(Xj), and let C(Xj) denote the column space

of Xj , j = c, t. Then if

(i) C(Xt) ⊂ C(Xc) and ν <
1+σ2

0

2+σ2
0
, then µc(ν) > 0;

(ii) C(Xc) ⊂ C(Xt) and ν > 1
2+σ2

0
, then µc(ν) > 0.

Theorem 5. Assume Σ0j = σ2
0Ij , µ0j = 0, and orthogonal covariates, so that

X ′
jXj = Ij , j = c, t. Let pj = rank(Xj), and let C(Xj) denote the column space

of Xj , j = c, t. For any pair of models (c, t), if 1
2+σ2

0
< ν <

1+σ2
0

2+σ2
0

, then µc(ν) > 0.

Proofs of Theorems 4 and 5 are given in the Appendix. Theorem 5 is a
generalization of Theorem 4, and states that for any pair of models, when ν is in
the open interval ( 1

2+σ2
0
,

1+σ2
0

2+σ2
0
), the true model t always has a smaller L measure

value, on average, compared to any other candidate model c. This is a very
strong result for linear models since it guarantees that for certain values of ν, the
true model always obtains the smaller L measure value regardless of its relation
to the candidate model. Theorems 4 and 5 remain valid when µ0j �= 0 and Σ0j

is allowed to be more general. From Theorem 5, when σ2
0 → ∞, the interval

converges to (0, 1). Then, under noninformative priors, the true model always
has the smallest L measure value on average for all possible values of ν.

An interesting special case has ν = 1, which corresponds to the criterion
of Ibrahim and Laud (1994) and Laud and Ibrahim (1995). Under this case,
interesting properties of the L measure are obtained.

Theorem 6. Suppose ν = 1 in (5.5), Xj is an arbitrary covariate matrix and
Σ0j is diagonal, j = c, t. If

(i) C(Xc) ⊂ C(Xt) then µc(1) > 0;
(ii) C(Xt) ⊂ C(Xc) and µ0j = 0, j = c, t, then µc(1) < 0;
(iii) C(Xt) ⊂ C(Xc) and µ0j �= 0, for either j = c, t, then µc(1) may be positive

or negative.

A proof of Theorem 6 is given in the Appendix. Parts (i) and (ii) state that,
when ν = 1 and µ0j = 0, j = c, t, then the larger model always has smaller
L measure value on average, regardless of whether it is the true model or not.
This result is valid for any covariate matrices Xc and Xt. Part (iii) states that
when the true model is contained in the candidate model, then the sign of µc(1)
is determined by the prior hyperparameters, specifically by µ0j, j = c, t. Thus
in this case, for certain choices of µ0j , µc(1) can either be positive or negative,
implying that the L measure for the candidate model can be smaller or larger than
the L measure for the true model. The results in (i), (ii), and (iii) of Theorem
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6 imply that ν = 1 may not be the most suitable choice for the L measure for
situations involving nested models.

6. Examples

Example 1. Simulation Study

We consider a simulation study to compare several models using the proposed
L measure and calibration distribution for parametric survival models with right
censoring. We generate the current data yi from the Weibull model

p(yi|α, λi) = αyi−1 exp {λi − yα
i exp(λi)} , (6.1)

where λi = β0 + β1xi, i = 1, . . . , n, n = 200, α = 2, β = (β0, β1) = (1,−1), and
10% of the observations are randomly right censored with censoring times ti =
0.75∗yi. The covariates xi are i.i.d. N(0, 1) variates. We generate historical data
D0 = (n0, y0,X0) using the Weibull model with n0 = 100, α = 2, β = (0.9,−0.9),
x0i ∼ N(0, 1), and 10% censoring with ti0 = 0.75 ∗ y0i. Also, we take the initial
prior to be π0(β, α|c0) = π0(β|c0)π0(α), where π0(β|c0) is N2(0, c0I), c0 = 4, and
π0(α) is a gamma density with shape and scale parameters (1, 0.5), respectively.
Here, Np(µ,Σ) denotes the p dimensional multivariate normal distribution with
mean µ and covariance matrix Σ.

We consider three models: 1) the Weibull model from which the data were
generated, 2) the Weibull model with a random α parameter, and 3) the ex-
ponential model (α = 1). We specify a vague gamma prior for α in model 2).
All L measure and pLc computations are based on survival times transformed to
logarithms. Table 1 below gives posterior summaries for the three models using
a beta(50, 50) prior for a0.

Table 1. Posterior summaries for simulated data.

True model Weibull (random α) exponential
E(a0|D, D0) 0.46 0.45 0.39
sd(a0|D, D0) 0.05 0.05 0.05
E(β0|D, D0) 0.964 0.929 0.559
sd(β0|D, D0) 0.067 0.075 0.068

95% HPD for β0 (0.831, 1.096) (0.783, 1.075) (0.424, 0.691)
E(β1|D, D0) −1.093 −1.036 −0.549
sd(β1|D, D0) 0.077 0.092 0.075

95% HPD for β1 (−1.246,−0.943) (−1.213,−0.853) (−0.695,−0.403)
E(α|D, D0) − 1.894 −
sd(α|D, D0) − 0.094 −

95% HPD for α − (1.710, 2.083) −
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Table 2. L measure and calibration summaries for simulated data.

model L measure µc(1/2) 50% HPD 95% HPD
1∗ 131.28 - - -
2 145.81 14.50 (-6.90, 14.21) (-18.15, 68.92)
3 394.58 262.37 (264.82, 268.96) (237.56, 274.13)

* True model

Table 2 shows results of the L measure and the calibration distributions
pLc for Models 2 and 3 using ν = 1/2. The first row of Table 2 represents
the true model in which the L measure value is given. The remaining entries
in the first row of Table 2 are blank due to the definition of the calibration
distribution. Figure 1 shows a superimposed plot of the calibration distributions
for Models 2 and 3. The horizontal axis in Figure 1 are values of D̂(yobs, 1/2)
and the vertical axis are values of the density p̂Lc . From Table 1, we see that
the posterior estimates for Models 1 and 2 are close, but are quite different from
those of Model 3. From Table 2, we see that the criterion minimizing model is
in fact the true model with an observed L measure value of 131.3. The observed
L measure values for the other models are larger than for the true model, and
for the exponential model it is substantially larger. A formal comparison of the
observed L measure values for the candidate models and the true model can be
assessed by an examination of pLc. From Table 2, we see that Model 2 is much
closer to the true model than Model 3, as µ2(1/2) = 14.50 and µ3(1/2) = 262.37.
From Table 2, we observe that the HPD intervals for pL2 contain 0 whereas the
HPD intervals for pL3 do not. The HPD intervals for pL3 are much narrower than
those for pL2, since pL3 has smaller dispersion than pL2. By taking α random
and specifying a prior distribution for it, we introduce more variability in the L
measure, and hence the resulting calibration distribution. This results in wider
HPD intervals. We note that all HPD intervals presented in Tables 1 and 2 as well
as the subsequent tables were computed using a Monte Carlo method developed
by Chen and Shao (1999). Figure 1 shows the calibration distributions for Models
2 and 3. Figure 1 presents a useful summary of the properties of the L measure
for Models 2 and 3 compared to the true model, and clearly shows that Model
3 is quite different from the true model, and Models 2 and 3 are quite different
from each other.

An analysis of these data was also conducted with a beta(10, 10) prior for
a0, as well as with a point mass prior at a0 = 0. Similar patterns to those of
Table 2 were observed for the L measure and the calibration distribution pLc.
For example, for a0 ∼ beta(10, 10), the observed L measure values for Models
i), ii), and iii) were 131.39, 142.84, and 396.05, respectively, and pLc was nearly
identical to that of Figure 1. A similar phenomenon was observed for the case
a0 = 0 with probability 1.
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Figure 1. Calibration distributions for simulated data: the solid curve is
Model 2), the dashed curve is Model 3).

Example 2. AIDS Data
We revisit the AIDS study ACTG036 discussed in Section 1. We use the

data from a similar AIDS study, ACTG019, as historical data. Chen, Ibrahim and
Yiannoutsos (1999) discuss these data in detail, and demonstrate prior elicitation
with historical data and Bayesian variable selection in logistic regression.

The ACTG019 study was a double blind placebo-controlled clinical trial
comparing zidovudine (AZT) to placebo in persons with CD4 counts less than
500. The results of this study were published in Volberding et al. (1990). The
sample size for this study, excluding cases with missing data, was n0 = 823. The
response variable (y0) for these data is binary with 1 indicating death, develop-
ment of AIDS, or AIDS related complex (ARC), and 0 indicating other. Several
covariates were also measured. The ones we use here are CD4 count (x01) (cell
count per mm3 of serum), age (x02), treatment, (x03), and race (x04). The co-
variates CD4 count and age are continuous, whereas the other covariates are
binary. The same covariates as those of ACTG036 were measured for ACTG019,
and thus the full model consists of these 4 covariates. We consider a logistic
regression for the response y as a function of the covariates (see Chen, Ibrahim
and Yiannoutsos (1999)).

We compute the L measure and calibration distribution for three competing
logistic regression models:

Model 1): (x1, x2, x3),
Model 2): (x1, x2, x3, x4) (the full model)
Model 3): (x1).
For each model, we use a joint prior for (β, a0) as in (4.2), where a0 ∼

beta(20, 20), and π0(β|c0) is a multivariate normal density with mean 0 and
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covariance matrix c0W0. We use c0 = 100 and take W0 to be a diagonal matrix
consisting of the asymptotic standard errors of the maximum likelihood estimates
of β based on the historical data D0. We have suppressed the dependence of each
prior on the model for ease of exposition. We note that π(β, a0|D0) and π0(β|c0)
change dimension for each model under consideration, and we have suppressed
this label here as well. Table 3 shows summaries of the L measure and pLc for
the models using ν = 1/2. The posterior mean and standard deviation of a0

for each model is also given in Table 3. Figure 2 shows a superimposed plot of
the calibration distribution pLc for the candidate models. The horizontal axis in
Figure 2 are values of D̂(yobs, 1/2) and the vertical axis are values of p̂Lc .
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Figure 2. Calibration distributions for AIDS data: the solid curve is Model
1), the dashed curve is Model 3).

Table 3. L measure and calibration summaries for AIDS data.

model L measure µc(1/2) 50% HPD 95% HPD E(a0|D, D0) sd(a0|D.D0)
1 16.37 0.151 (0.045, 0.217) (-0.133, 0.451) 0.42 0.05
2∗ 16.30 - - - 0.43 0.05
3 16.82 1.729 (0.782, 1.863) (0.246, 3.673) 0.41 0.05

* Criterion minimizing model

From Table 3, we see that the criterion minimizing model is Model 2), which
is the full model, with an observed L measure value of 16.30. We also see that
all models are nearly identical in their criterion values. Based on the criterion
value alone, it is impossible to distinguish between Models 1 and 3 in relation
to the criterion minimizing Model 2. Thus, we must turn to the calibration
distribution pLc for a better assessment of the two models. From Table 3, we see
that µ1(1/2) = 0.151, µ3(1/2) = 1.729, and the 95% HPD intervals for Model
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1 contain 0 whereas the HPD intervals for Model 3 do not. This implies that,
although the L measure values for Models 1 and 3 are close, Model 1 is much
closer to the criterion minimizing model than Model 3. In addition, Model 1
has µ1(1/2) close to 0, and thus perhaps could serve as a suitable parsimonious
model for these data. In Figure 2, we see that the calibration distribution for
Model 1 is nearly symmetric about 0.15, and has much smaller dispersion than
the calibration distribution for Model 3. Based on parsimony, it appears that
the (x1, x2, x3) model is a suitable one.

Example 3. Breast Cancer Data
We consider the breast cancer data from Finkelstein and Wolf (1985), which

consists of a data set of (case-2) interval censored data. In this data set, 46 early
breast cancer patients receiving only radiotherapy (covariate value x = 0) and
48 patients receiving radio-chemotherapy (x = 1) were monitored for cosmetic
change through weekly clinic visits. Some weekly visits were missed. The data
on survival time are typically recorded as, for example, [7,18] (at the 7th week
clinic-visit patient had shown no change, and in the next clinic visit at the 18th
week the patient’s tissue showed that the change had already occurred). We
are interested in the effect of the covariate x on the survival time y. Sinha
et al. (1999) consider a semi-parametric Bayesian analysis of these data using
three models based on a discretized version of the Cox model (Cox (1972)).
Specifically, the hazard, λ(y|x), is taken to be a piecewise constant function with
λ(y|x) = λjθ

x
j for y ∈ Ij, where θj = eβj , Ik = (aj−1, aj ] for j = 1, 2, . . . , g,

0 = a0 < a1 < · · · < ag = ∞, and g is the total number of grid intervals. The
grid can be taken sufficiently fine to approximate any hazard function for all
practical purposes. The three models are defined by

Model 1): (i) λj
i.i.d.∼ Gamma(ηj , γj) for j = 1, . . . , g; (ii) βj ≡ β, j = 1, . . . , g,

and β ∼ N(β0, w
2
0);

Model 2): (i) λj ’s has same prior as in model 1); (ii) βj+1 | β1, . . . , βg−1 ∼
N(βj , w

2
j ) for j = 0, . . . , g − 1;

Model 3): (i) αj+1 | α1, . . . , αj ∼ N(αj , υ
2
j ), for j = 0, 1, . . . , g−1; (ii) Same

as in Model 2), αj = log(λj).

Our purpose here is to compute the L measure and the calibration distribution
for the three models, using noninformative priors. We use the same values of the
prior parameters as Sinha et al. (1999) as follows.

ηk γk β0 wk w0 υk α0 υ0

Model 1) 0.2 0.4 0 – 2.0 – – –
Model 2) 0.2 0.4 0 1.0 2.0 – – –
Model 3) – – 0 – 2.0 1.0 -0.1 2.0
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Table 4 shows the results using ν = 1/2. Model 1) is the criterion minimizing
model with L measure value of 80.45. Since µ2(1/2) = 5.36 and µ3(1/2) = 28.91,
Model 2 is much closer to the criterion minimizing model than Model 3. From
Figure 3, we see that there is a wide separation between pL2 and pL3, and that pL2

has smaller dispersion than pL3. The HPD intervals for Models 2 and 3 do not
contain 0. We conclude that both Models 2 and 3 are different from one another
and different from the criterion minimizing model. We note that other choices of
prior parameters yielded similar L measure values and calibration distributions.

Table 4. L measure and calibration summaries for breast cancer data.

model L measure µc(1/2) 50% HPD 95% HPD
1∗ 80.45 - - -
2 87.24 5.36 (5.23, 5.83) (4.24, 6.34)
3 113.54 28.91 (28.71, 29.61) (27.23, 30.23)

* Criterion minimizing model
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Figure 3. Calibration distributions for breast cancer data: The solid curve is
Model 2), the dashed curve is Model 3).
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Apendix. Proofs of Theorems

By the definition of L(y, ν) in (2.7), and using the posterior predictive dis-
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tribuion p(z|y) in (5.4), it can be shown that

L(y, ν) = nσ2 + tr(I − Λ) + ν(By − XΛµ0)′(By − XΛµ0),

where B and M are defined below (5.5).

Proof of Theorem 1. Let ỹ = By − XΛµ0. We first need to obtain the
prior predictive distribution of ỹ. Using (5.6), we have E(By − XΛµ0) = 0
and Cov(By − XΛµ0) = σ2B. Thus the prior predictive distribution of ỹ is
ỹ ∼ Nn(0, σ2B). Now we can write

ỹ′ỹ = ỹ′
(
B−1/2B1/2B1/2B−1/2

)
ỹ = Z ′BZ = Z ′(PDP ′)Z = W ′DW , (A.1)

where Z = (B−1/2ỹ) ∼ Nn(0, σ2In) and B = PDP ′ is the spectral decomposition
of B. Thus, since W ∼ Nn(0, σ2I), letting Wi denote the ith component of the
vector W , we can write (A.1) as W ′DW =

∑n
i=1 diiW

2
i ∼ 1

σ2

∑n
i=1 diiUi, where

the Ui are i.i.d. central chi-square random variables each with one degree of
freedom. This completes the proof.

Proof of Theorem 2. We follow a proof similar to that of Theorem 1. Let
Ỹ = Bcy − XcΛcµ0c. Then under the true model t, using (5.9), we have
Et(ỹ) = BcXtµ0t − XcΛcµ0c and Covt(ỹ) = BcB

−1
t Bc, so ỹ ∼ Nn(BcXtµ0t −

XcΛcµ0c, σ
2BcB

−1
t Bc) = Nn(µct, σ

2Σct), say. We can write

ỹ′ỹ = ỹ′
(
Σ−1/2

ct Σ1/2
ct Σ1/2

ct Σ−1/2
ct

)
ỹ = Z ′ΣctZ = Z ′(PDP ′)Z = W ′DW , (A.2)

where Z = Σ−1/2
ct ỹ, W = P ′Z, P is the orthogonal matrix consisting of the

eigenvectors of Σct, and D = (dii) is the diagonal matrix of eigenvalues of
Σct, denoted by dii. Since W ∼ N(P ′Σ−1/2

ct µct, σ
2I), it follows from (A.2) that

W ′DW =
∑n

i=1 diiW
2
i ∼ 1

σ2

∑n
i=1 diiUi, the Ui are independent non-central chi-

square random variables each with one degree of freedom and non-centrality
parameter λi = µ2

i
2σ2 , µi the ith component of the vector P ′Σ−1/2

ct µct.

Proof of Theorem 3. Using (5.8) along with (5.9), we have

µc(ν) = Et(Lc(y, ν) − Lt(y, ν)) = nσ2 − nσ2 + σ2 (tr(Ic − Λc) − tr(It − Λt))

+νEt
[
(Bcy − XcΛcµ0c)′(Bcy − XcΛcµ0c)

]
−νEt

[
(Bty − XtΛtµ0t)′(Bty − XtΛtµ0t)

]
.

Following along the same lines as before, under the true model, we have Et(Bty−
XtΛtµ0t) = 0, Covt(BtY − XtΛtµ0t) = Bt, so Bty − XtΛtµ0t ∼ Nn(0, σ2Bt).
Similarly, under (5.9), we have Bcy − XcΛcµ0c ∼ Nn(BcXtΛtµ0t − XcΛcµ0c, σ

2

(BcB
−1
t Bc)). We find

Et

[
(Bcy − XcΛcµ0c)′(Bcy − XcΛcµ0c)

]
= σ2tr(BcB

−1
t Bc) + b′ctbct,
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where bct = BcXtΛtµ0t−XcΛcµ0c. Since tr(Bt) = n−pt+tr(Λt) and tr(BcB
−1
t Bc)

= n − pc + tr(Λ2
c) + tr((In − Mc)XtΣ0tX

′
t) + tr(XcΛ2

c(X ′
cXc)−1X ′

cXtΣ0tX
′
t), we

get

Et(Lc(y, ν) − Lt(y, ν))

= σ2(1 − ν)(pc − pt) + σ2(1 − ν)tr(Λt) − σ2(1 − ν)tr(Λc) − σ2νtr(Λc(Ic − Λc))

+σ2νtr((Ic−Mc)XtΣ0tX
′
t)+σ2νtr(XcΛ2

c(X
′
cXc)−1X ′

cXtΣ0tX
′
t)+νb′ctbct. (A.3)

This completes the proof.

Proof of Theorem 4. (i) We first consider C(Xt) ⊂ C(Xc) and write Xc =
(Xc∗,Xt), where rank(Xc∗) = pc − pt. Since Xc = (Xc∗,Xt), we can write
XtΣ0tX

′
t = XcΣ0cX

′
c − Xc∗Σ0c∗X

′
c∗ . To obtain µc(ν) defined in (5.10), we first

note that if µ0j = 0, for j = c, t, then bct = 0. Using this decomposition,

we have tr(Λc) = pc

1+σ2
0
, tr(Λt) = pt

1+σ2
0
, and tr(Λc(Ic − Λc)) = pcσ2

0

(1+σ2
0)2

. Since

C(Xt) ⊂ C(Xc), (Ic − Mc)XtΣ0tX
′
t = 0, and tr(XcΛ2

c(X ′
cXc)−1X ′

cXtΣ0tX
′
t) =

σ2
0pt

(1+σ2
0)2

. Substituting these expressions into the formula for µc(ν), we get µc(ν) =

σ2(1 − ν)(pc − pt) − σ2(1 − ν) (pc−pt)
(1+σ2

0)
− σ2ν

σ2
0(pc−pt)

(1+σ2
0)2

. Now µc(ν) > 0 if and only

if ν <
1+σ2

0

2+σ2
0
.

(ii) When C(Xc) ⊂ C(Xt), pt > pc. We partition Xt = (Xc,Xt∗), where
rank(Xt∗) = pt−pc. In this case, we can write XtΣ0tX

′
t = XcΣ0cX

′
c+Xt∗Σ0t∗X

′
t∗ .

In addition, since Xc and Xt∗ are orthogonal, we have X ′
cXt∗ = 0. Thus, we have

tr(XcΛ2
c(X

′
cXc)−1X ′

cXtΣ0tX
′
t) = pcσ2

0

(1+σ2
0)2

and tr((In−Mc)XtΣ0tX
′
t) = σ2

0(pt−pc).

Thus, µc(ν) = −σ2(1−ν)(pt−pc)+
(1−ν)
1+σ2

0
(pt−pc)+σ2νσ2

0(pt−pc), and µc(ν) > 0

if and only if ν > 1
2+σ2

0
.

Proof of Theorem 5. Let p∗ = dim(C(Xc)∩C(Xt)), and write Xc = (Xp∗ ,Xc∗),
Xt = (Xp∗ ,Xt∗), pc∗ = rank(Xc∗), pt∗ = rank(Xt∗), and p∗ = rank(Xp∗). Thus
pc∗ = pc−p∗ and pt∗ = pt−p∗. Now we can write XtΣ0tX

′
t = σ2

0 (XcX
′
c − Xc∗X

′
c∗).

After some algebra it can be shown that µc(ν) = σ2σ2
0

1+σ2
0

(
(2 + σ2

0)ν − 1
)
(pt −p∗)+

σ2σ2
0

1+σ2
0
(pc − p∗)

(
1 − ν

(
2+σ2

0

1+σ2
0

))
, and so µc(ν) > 0 if and only if 1

2+σ2
0

< ν <
1+σ2

0

2+σ2
0
.

Proof of Theorem 6. (i) Set ν = 1 in (A.3) and consider C(Xc) ⊂ C(Xt). We

can write Xt = (Xc,X
∗
t ) and Σ0t =

(
Σ0c 0
0 Σ0t∗

)
. Thus XtΣ0tX

′
t = XcΣ0cX

′
c +

Xt∗Σ0t∗X
′
t∗ . Also, we note that Ic − Λc = (X ′

cXc + Σ−1
0c )−1X ′

cXc. Therefore,
µc(1) = σ2tr((Ic−Mc)Xt∗Σ0tX

′
t∗)+σ2tr(XcΛ2

c(X ′
cXc)−1X ′

cXt∗Σ0t∗X
′
t∗)+b′ctbct >

0. The first two terms in µc(1) are positive since they are both of the form tr(AB)
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where A and B are positive definite matrices. Clearly, b′ctbct > 0 for bct �= 0. This
proves part (i).

(ii) If C(Xt) ⊂ C(Xc), write Xc = (X∗
c ,Xt) and Σ0c =

(
Σ0c∗ 0

0 Σ0t

)
. Then

(Ic − Mc)Xt = 0, and XtΣ0tX
′
t = XcΣ0cX

′
c − Xc∗Σ0c∗X

′
c∗ . Thus we have

µc(1) = −σ2tr(XcΛ2
c(X

′
cXc)−1X ′

cXc∗Σ0c∗X
′
c∗) + b′ctbct . (A.4)

The term tr(XcΛ2
c(X ′

cXc)−1X ′
cXt∗Σ0c∗X

′
c∗) in (A.7) is always positive since it is

of the form tr(AB) where A and B are positive definite matrices. We make use
of the fact that tr(XcΛ2

c(X ′
cXc)−1X ′

c(XcΣ0cX
′
c)) = tr(XcΛc(X ′

cXc + Σ−1
0c )−1X ′

c).
Thus (A.7) can take on positive or negative values depending on the value of
b′ctbct. Specifically, if µ0c = 0 and µ0t = 0, µc(1) < 0 in (A.7). However, if either
µ0c �= 0 or µ0t �= 0, then µc(1) > 0 is possible. This completes the proof.
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