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Abstract: Let correlated regressors and a dependent variable have a Joint distributiow,
and assume that a suitable regression model has been found. A decomposition of R?
into components corresponding to the regressors is proposed. The components are
to serve as descriptive intuitive statistics indicating the relative importance of each
regressor with respect to its overall effect on the dependent variable. When it is
possible to partition the set of regressors into mutually orthogonal subsets, the sum
of components of this decomposition in any subset is equal to the multiple R? due to
that subset. Each component consists of a subcomponent “specific” to that regressor,
and of “common” subcomponents with each of the other regressors. A measure of
deviation of the set of regressors from orthogonality is given to help in assessing the
amount of approximation used in the decomposition.
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1. Introduction

The question of the “percentage of variance of the dependent variable ‘ex-
plained’ by each of the explanatory variables” is frequently raised and discussed
in scientific papers of various disciplines. This is a relevant and Important issue
for many cases in which a model is investigated after its construction has been
completed successfully. However, no satisfactory solution has been found to this
problem for the most common case, in which the explanatory variables are not
orthogonal to each other. Moreover, it is well known (see e.g. Williams (1978)),
that in such cases no decomposition of R? exists with a meaningful allocation
of the overall regression effect to the individual regressors. Kruskal (1984), and
Kruskal and Majors (1989) discussed the philosophical problems involved in an
attempt to decompose a joint effect of two or more interdependent factors into
its components, and reviewed several measures given in the literature for the
“relative importance” of variables in various contexts. In the present work we
outline the type of problems for which it may be justified to decompose R? into
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components associated with the regressors; then, a decomposition will be pre-
sented with some desirable properties. Due to these properties we advocate the
components to serve as approximate measures of the relative importance of the
regressors in a given regression.

The regression problems for which a decomposition may be relevant are those
in which the uncontrolled regressors and the dependent variable have a joint
distribution, because the ‘contribution’ of a regressor that is controlled depends
on the range over which it is varied. This restriction may be somewhat relaxed
to include regressors which may be controlled, in cases where it may be expected
that the ranges of the regressors, and in fact the whole covariance matrix of
the regressors, will remain unchanged in the future. Actually, this may be the
justification for presenting R? itself in many cases. Also, if the effect of a regressor
on the dependent variable is through a second regressor, then interest would
usually be on the marginal effect of the second regressor after accounting for
the first. In general, no cause-effect interrelationships between regressors are
assumed, because our aim is a simultaneous rather then sequential decomposition.

We are looking for decompositions after a satisfactory model has been found
and only within the framework of this model. The component of R? associated
with a regressor may change as a result of any change in the set of regressors. .
Thus, no comparisons of components will be valid across different models, and
components will be inappropriate for variable selection purposes. Also, the inter-
pretation of the components will be narrower than in the orthogonal case, e.g. the
component of variable z; will not necessarily be the deduction from R? obtained
by holding z; fixed. The components will satisfy some reasonable criteria and
will be accompanied by a measure of deviation of the regressor set from orthogo-
nality. They should be considered as descriptive intuitive statistics indicating the
relative importance of each of the regressors with respect to their overall effect
on the dependent variable.

2. The Model and a Criterion for Decomposition

Let ;,s,...,2, and y be p + 1 linearly independent vectors of n obser-
vations on p explanatory variables z1,3,...,Z, and the dependent variable y,
which have a joint distribution. Since we are interested only in correlations, we
assume, without loss of generality, that all p + 1 vectors are standardized with
0 means. The vector of least squares solution, b, to the model E(y) = Xf is
b= (X'X)'X'y, where X = (z1,%2,...,%p). The vector fitted to the ob-
served x;’s, § = Xb = L;z;b;, is well known to be the projection of y onto
the subspace V(X)) of R" spanned by z,s,...,x,. The multiple correlation
coefficient estimate R is the cosine of angle between y and ¥, and its square

R? = Ri(x) = glg/y,y-
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Naturally, the components of any decomposition in the case of uncorrelated
(orthogonal) regressors should be proportional to the squared (simple) correlation
coefficients between y and the corresponding regressors. Moreover it will required
to satisfy the following

Criterion for orthogonal compatibility (OC): for a set of regressors partitioned
into mutually uncorrelated subsets, the sum of components in any subset should
be equal to the multiple R? between y and that subset of regressors.

The term ‘component of a subset’ will be used for the sum of components
of the regressors in that subset of regressors. For a decomposition satisfying
Criterion OC it also follows in the situation of mutually uncorrelated subsets,
that a nonsingular linear transformation on any subset will change neither the
component of that subset nor those of the regressors in any other subset.

Three simple statistics satisfy Criterion OC if all &;’s are orthogonal but not
in general. They are
(i) the squared (simple) correlation coefficient r2, = (y'z;)?/(y'y - zlx;);

(ii) the marginal reduction of y'y due to x; following reductions due to all other
x;’s (7 # 1), szi_x_i = R? - RfJ(X-i)’ where X _; is the matrix X with column
x; deleted; and

(iii) the squared length of the vector component (¢;) of y in the direction of
x; divided by y'y, that is, §;9,;/y'y = b?z.z;/y'y which is proportional to the
squared standardized partial regression coefficient.

Indeed, if the subspace of the regressors #; and x5 is orthogonal to the other
regressors, but x; is not orthogonal to x5, it can be seen easily that the sum of
the two components for any of these three statistics in the subspace V(z1, z3), is
either larger or smaller than R? between y and this subspace, which is Y12912/Y'y,
where ¢, is the projection of y into this subspace.

Another simple statistic is presented sometimes as the decomposition of R?.
It is proportional to
(iv) 9'9; = bizly, or equivalently to the (signed) length of the projection of
y; on y. Although it satisfies Criterion OC, it is not suitable to serve as a
decomposition of R?, because some of its components in specific situations may
turn out to be negative. This can be illustrated in two dimensions, in some of the
cases when the projection g;, of y on V(x;,z;) falls outside the acute angles,
between x; and x;. Thus, although both ry;, and r,,, may be positive, the
regression coefficient of the smaller r, say of z and consequently §5%;,, will be
negative. They are said to serve as “corrections” to the too high values given to
the corresponding coeflicients of z;. Pratt (1987) proposed §'¥; as a measure of
relative importance of the regressors. In his opinion, the possibility of negative
values is “not a defect in definition”, but it “signifies a situation too complex
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for a single measure”. He derived this measure by an axiomatic approach and
gave to it several interpretations. (See the Discussion for comparisons with the
measure proposed here.)

There is another way to define a decomposition of R?, which satisfies Crite-
rion OC (see also Kruskal (1984), Pratt (1987)). Its component for x; is

_2 1p—1 p-1 - 2 .
(V) T, = —Z k ZRyIBi-Xk’ = 1727"'3pa (1)

P =0 X,
where the second summation goes over all possible groups of k variables, X, out
of z1,x,. .., x, excluding z;, szi.Xk = R’z(zixk) - R;(Xk) and Rfjmi'xo =rl,.

This is derived easily if we take all possible ‘hierarchical’ or stepwise decom-
positions of R? into elements of type Rlzlmi-xk' (For example, for p = 3, six
decompositions of the type R? = R, . ..+ R2, . + RZ, are obtained by per-
mutation of the indices 1, 2 and 3.) Each decomposition contains p components,
with exactly one component of the type szi.xk for each 7 (1 < i < p). Aver-
aging these hierarchical decompositions separately for elements of type RZ:B,--X;:
for each i (i = 1,2,...,p) gives the above decomposition. This averaging pro-
cess over all permutations is carried out in the absence of a “natural” ordering
of the regressors which would yield the Rf/ 2;.X, Of that ordering as measures of
their relative importance (Kruskal (1987)). This decomposition involves a large
amount of calculations even for moderately large p's.

In the next Section our proposal for decomposition in the parameter space
using a statistical approach will be presented and in Section 4 a description of
the sample R? decomposition will be given from a geometrical point of view, fol-
lowed by discussion and a simulation study comparing some measures of relative
importance of regressors.

3. The Proposed Decomposition

Let us assume temporarily, that z;,z2, ..., z, all have zero expectation, unit
variance and known correlation matrix X, cor(zi,z;) = cov(zi, z;) = ;5. As-
sume also that E(y) = 0, var(y) = 1 and the correlations cor(y,z;) = pya,,
i=1,2,...,p, are also known. It should be noted that the problem of decompos-
ing R? = pQ,XE“l Pyx> Where px = (pyz1;-- -, Pyz,) , into components associated
with the regressors, exists even in the present set up of known p,y and .

We are given the regression equation Ey = ;8;z;. Let z1,22,...,2, be the
(unique) linear transformation of x1,zs,...,Tp which minimizes VU = EY;(z; —
;)% subject to the condition that the z; be uncorrelated with expectation 0 and
variance 1. This is a transformation to a new uncorrelated set of regressors
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z;, which are nearest to the corresponding z; in the sense that the expected
sum of squared deviations ¥ between the pairs (z;, z;) is minimized. Let the
transformation be written in the form z; = Zj aijzj, 1 = 1,2,...,p, and the
regression in the new variables as

Ey =%Xjcjz;, with c¢; = X;fa45, (2)
then by the definition of 21, 22, ..., 2, it follows that
Qij = Pz;z; and ¢ = Pyz;- (3)
Our proposal assigns to z;, in the decomposition of R? the component

=2 afjcg (4)
v; is preferred over taking c? itself as the component assigned to z;, because al-
though each z; is closest to the corresponding z; in the above sense, it is still
correlated in general to the other z;’s with the coefficients a;;; therefore a compo-
nent of a reasonable decomposition should be composed of a linear combination
of all the c?s with coefficients which reflect the magnitude of these correlations.
Further aspects of this proposal will be discussed in later sections.

It remains to obtain the transformation matrix A = [a;;]. Since z = Az,

where = (z1,22,...,%,) and z = (21, 22,..., %), we have Ezz' = AA' = X,
the correlation matrix of the z’s. (Note that « is a random p X 1 vector, whereas
the xls are n x 1 vectors of observations on the variable z;, i = 1,... ,p.) We

have to choose A among the matrix square roots of ¥ in a way that it should
minimize ¥. It will now be shown that A must be the symmetrical square root
of 3, i.e.

A =Q'D.Q, (5)

where ¥ = Q' D?Q is the principal decomposition of X, Q is an orthogonal ma-
trix whose rows are the eigenvectors of £ and D? is diagonal with the eigenvalues
a?,a}, ..., 02 of T along its diagonal.

The general form of a matrix square root of £ is A = Q'D,G, with an
arbitrary orthogonal matrix G. We may express ¥ as

U = E(z—m)'(z—a:)=I+2—2Ez'w=I+E——2Ez'Az
= I+X-2trEzz’A=1+ % - 2trA.

Thus, to minimize ¥ we have to maximize trA = trQ'D,G = trD,GQ'. To
prove that G = Q maximizes ¥ we state the following lemma.
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Lemma. If D is a diagonal matriz with positive diagonal elements, the trace of
(DH) is mazimized over the set of all orthogonal matrices {H} when H = I
the identity matriz.

This follows easily from tr(DH) = X;d;;hi; and hy; < 1 for orthogonal H, with
equality signs occurring for all 7 iff H = I.
The lemma implies that trD,GQ’ with all a; > 0, is maximized when the or-
thogonal matrix GQ' = I, i.e., when G = Q. It will be required without loss of
generality that a; > 0 (1 <4 < p), because otherwise, to maximize trA, all rows
of G and Q corresponding to negative o; must satisfy g:9; = —1,0r g; = —q;,
resulting in the same A as given by (5).

Thus, A is symmetric and A% = 22, hence Eka?k = Ekaij =1for1<i<p
and 1 < j < p, because these sums are equal to the diagonal elements of the
correlation matrix 3. It follows that the sum of components

Eivi = ZiEkafkci = Ek (Eiafk)ci = Ekci = 2kp32/zk = RZ, (6)

because the presentation of the regression as a regression on the uncorrelated set
z1,22,...,2p gives an exact decomposition of RZ.

To prove that decomposition (4) satisfies the OC criterion, suppose the x
consists of, say, m uncorrelated subsets of variables. By rearranging =, ¥ will
become a block diagonal matrix, and A and £~! will be also block diagonal with
blocks at the same positions. Let the subsets be given by V4, Vs, ..., Vi, where
i € Vi if z; belongs to the kth subset. Thus, R?> = pQXZ‘lpyx, will decompose
into these subsets, say, R* = R? + R2 + ... + R?, where R2 is constructed only
by pyz;’s with j € V. Also from (2) and (4) it can be seen, that the z; and the
components v; with j € Vi, will also be formed only from aj; with both indices
belonging to Vi. Hence, by the same reasoning as used above for R? itself, it

follows that
Z v; = R;zc (7)
i€V
It should be noted that (6) and (7) were proved using the special form (5)
of A, and they will not hold in general for any square root of . The principal
decomposition of X is essentially unique when all eigenvalues are different. How-
ever, even when not all o; are different, A as given by (5) and A™! are always

unique.
The decomposition (4) can be written using the relation z = A7z as

-\ 2
v, = 2_7' (Ekpyzkakj) a?j, (8)

where a*/ is the kjth element of A™!. This form involves only the correlations

Pyz;, and aij = Pziz;-
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In the following, the general case will be considered when the expectation and
variance of the variables are unknown. In this setup, the component assigned to
z; in the decomposition of R? will be estimated by (8) or (4), where the matrix
A = [a;;] now stands for the symmetric square root of the matrix of sample
correlations Tzix; and ryz, replaces pyz, .

4. The Sample R? Decomposition and its Geometrical Representation

Given a sample of X = (x1,x,...,®p), and y, we assume, without loss of
generality, that they are standardized with zero means and unit lengths. In ana-
logue to the previous procedure, we construct an orthonormal basis z1, z3,..., 2,
for the p dimensional subspace V(X)) in R" spanned by i, 3, ...,&p, with the
following properties: (a) X;z;z; is maximized; (b) z{z; = x}z; for all 4,j =
1,2,...,p; and (c) § = || X'X — Z'X|| is minimized, where Z = (z1, 22, ..., 2p).
Property (a) states that z;’s are closest to their corresponding x;’s in the sense
that the sum of cos(x;, z;) is maximized. Property (b) shows that the z;’s are
positioned around the «;’s in a symmetrical configuration so that for any pair i, j
the angle between x; and z; is equal to that between z; and z;. Finally, property
(c) states that zjx; is closest to @ x; in the sense that their sum of squares of
deviation over all 7,7 = 1,2, ..., p is minimized.

Let X be presented by the basis in the form X = ZA; then, analogous to
the previous derivation and using the lemma, it turns out from any of the require-
ments (a) or (c), that A is the symmetric matrix square root of X'X = Rxx,
the matrix of sample correlations between the z’s. Requirement (b) is clearly sat-
isfied by using this matrix A. In the sample all eigenvalues of X'X are different
with probability 1.

The decomposition of each x; along the directions of the z;'sis ¢; = £;z;z5x;.
Similarly, each correlation coefficient 7y, = y'; can be written in the form

!/ !
rye = »Y'zjz;® = Tjciaji, (9)
J

where ¢; = y'zj = 1y

In view of properties (a), (b) and (c) of the set of vectors z;, we may consider
: ! /

y'z;zl@; = c;a; as the “specific” component of =;, and vy Z;Z;T; = C;jaj as
the “common” component of x; and z; (§ # ¢ = 1,2,...,p) in the correlation

coefficient between y and x;.
Likewise, we define the component assigned to x; in the decomposition of

R? . as
y(X) \
r2 (X) =Y (¥'zizj:)* = Tj(cja;). (10)
j
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Here we changed the component’s notation to indicate its dependence on the
whole set of regressors. It contains, as above, a specific component due to x; and
common components with all other @s j # d.

Using Z = XA™!, we can express ¢ = (c1,-..,¢p), too, as functions of
correlations only, in the form ¢ = Z'y = A71 X'y = A“lrxy; hence rflzi(X) can
be expressed in the form

r2 (X) =% (zkryzkakﬂ')zaﬁi, (11)
where a*7 is the kjth element of A~ 1.

Proofs that this is a decomposition, i.e., Z;rZ, (X) = R?, and that it satisfies
Criterion OC when component sets of the sample vectors are mutually orthogonal
are completely analogous to those given above for the population, and will not
be repeated here.

5. Discussion

(a) Let Rxx — I in the form cRxx + (1 — ¢)I, where ¢ — 0. This is equivalent
to having D% — I in the form ¢D? + (1 — ¢)I while using the same matrix Q,
since Q'{cD? +(1 - ¢)I}Q = cRxx + (1 — ¢)I. Therefore, if we also leave P
unchanged, the coordinate system zi, z»,...,2, may remain, by this method,
preserved, while each vector x; will tend to its corresponding coordinate vector,
and r2, (X) will converge to (y'z;)® = ¢ = (Sprys,a*)?. Thus, the special
coordinate system has a further property, that it is the set to which the vectors
x; can smoothly tend when uncorrelatedness is approached in the simple way
of reducing simultaneously all correlation coefficients towards zero by the same
proportion.

(b) A few special cases will now be considered to illustrate the proposed decom-
position.

1. p = 2. In this case, to construct orthogonal 2z; and z; satisfying zjx; =
zhxy, the angle between x; and @, has to be enlarged (or constricted) symmet-
rically with respect to their bisector (Fig.1) to an orthogonal one. Figure 1 also
shows the changes occurring in the components of two measures when the posi-
tion of ¥ is changed in relation to a specific configuration of &; and x,. The cases
¥ = x1 and ¥ = x2 are unrealistic because in such cases the model will consist of
one regressor only. They can be viewed as limiting cases ¥ — x; or § — x5 when
R? also tends to 1 and therefore even a small contribution of the other regressor
is important. The case when one of the simple correlations is zero, say rfm =0
(¢ in position 9 in Figure 1), is instructive. Usually one will have, even in this
case, R? > r2_ . Therefore, it is justified to state that =; has also contributed to

yz2-
R? and thus to have a positive component for ;. Indeed, z; is entitled to one
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half of the difference R* — re.,. In a similar way the rationale behind the mode
of changes in r2

4z (X)) can be seen to be reasonable.

positionof § | 72, r2 | r2 (X) 2 (X)| ¥4 ¥V
1 .90 .10 .90 .10 1.125 -.125
2 1.00 .36 .82 18 1.00 .00
3 .80 .80 .50 .50 .50 .50
4 .50 .98 .26 .74 125 .875
5 36 1.00 .18 .82 .00 1.00
6 .26 .99 .14 .86 -.07 1.07
7 .10 .90 .10 .90 =125 1.125
8 .01 .73 .14 .86 -.07 1.07
9 .00 .64 .18 .82 .00 1.00

Figure 1. Squared correlation coefficients and components of R? (in units of R?) according
to two definitions, 73, (X) = 7} and §'y;, for different directions of ¢ in a specific case
with p = 2 and cos(z;,z2) = 0.6 (deviation measure from orthogonality A = 0.7).

In this case rzm (X) (i = 1,2) can be expressed by simpler terms in the form

2 (X) = (r2;, + R, 2,)/2, i # j = 1,2. Tt can be derived in the following
way. Due to a;2 = ag; and the positive definiteness of A, we also have a;; =
ass because a?, + a?, = a?, + a3, = 1. Also by (2) and (3) the differences

between the components of R? and the simple squared correlations are equal
P P q

. 9 "

ie. 7';,1_1(X) - 7'12,3:1 = 2c¢jc0a11Q12 = r;xg(X) - rfmg = 2cjcaag1a99. Therefore,
2 2 _ .2 2,2 _ .2 2 2 9.2

Towy + By oy = Ty, + R —1p, =1, (X)+ R =1y (X) = 2ry, (X)) and the

result follows.
2. y forms equal angles with all z;’s, or ¢; = ¢2 = --- = ¢, (= cp,5ay). In
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this case ¢ is in the center of the set {z;} (ie., § = R/{/pZ1) and all 72, (X)

are equal because rgmi(X) = chgafj = c%Zjagj = ¢z = R?/p. Such equality does

not necessarily hold for the 7”3213:,»’&
3. All rz,5,’s are equal to (say) r so that the x;’s form a symmetric pen-
cil of vectors with axis of symmetry X1,. In this case z; (j = 1,2,...,p)

will form equal angles with all #;, i # 7, and have the same axis of symme-
try. Also, it is easily shown that A = /(1 —r){I, + p~!(g — 1)J,}, where
g=+(@Q+pr—r)/\/(1=r),and J, is a p x p matrix of 1’s. Therefore, in this
case, rﬁxi(X) can also be explicitly expressed in the form rfm(X) =(1-r)q-
1R /p* +{1+2(¢ - 1)/pHy'z: — (1 - ¢ Zsy'z;/p}?, i = 1,2,...,p.

(c) Pratt (1987) discussed a symmetrical situation, which is equivalent to assum-
ing both 2. and 3. above. The components of two subsets consisting of m and
n regressors, respectively, are in the ratio of m : n, as follows from 2., but in a
regression on two variables which are the sums of the m and n regressors, respec-
tively, our measure yields components in a ratio which is a monotonic increasing
function of m/n, whereas Pratt’s measure §'{; maintains the ratio m : n. Four
out of Pratt’s six criteria are also satisfied by our measure. The exceptions are his
postulate (A3), which requires the above mentioned ratio m : n, and (A6), which
requires invariance of subsets’ components under nonsingular linear transforma-
tion of any one of the other subsets. Neither are these postulates satisfied by 72
of (1). It can be argued from the geometrical point of view, that this assumption
is not so “natural” if the subsets are not mutually orthogonal, because change in
position of the individual vectors of the transformed subset in relation to other
subsets, changes the overall configuration, which is expressed in the coordinate
set Z and hence, in our opinion, in the whole decomposition it implies.

(d) Maximum likelihood estimates of py;; (¢ = 1,2,...,p) under a multivariate
normal model in which the z;’s are assumed to be uncorrelated, can also be
proposed as candidates (after squaring) for components in the decomposition of
R?. They can be derived in the form py,, = £;¢(X'X)¥y'z; = £;9A7¢c;, where
g is a factor of proportionality and (X’ X )% is the ijth element of (X’X)~!. Since
the ith row of A™! is orthogonal to all columns of A except for the ith, these
estimates, after squaring, are proportional to Rlzlxi-x—i’ which were discussed in
Section 2 and rejected from serving as components in the decomposition of R2.
In fact, our aim is to find a decomposition which would assign to each variable its
‘fair’ portion of R? in the presence of nonzero correlations, instead of assuming
that they are zero.

(e) The matrices Q and D, occur also in principal components regression (e.g.
Massy (1965) and Mansfield et al. (1977)), which is done to facilitate and simplify
calculations in cases of collinearity, and to base upon it considerations about
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reducing the number of regressors.

6. Decomposition in ANOVA Problems

If we relax the requirement of linear independence between xy,zy,...,x,
then definition (11) of rzzi(X) can still hold, with a*/ being the kjth element
of the generalized inverse of A obtained by inverting the positive elements of
D, and leaving the zero elements unchanged (a Moore Penrose type generalized
inverse). This may be advantageous when there is, a priori, a “natural” set of
regressors into which the variance of y is to be decomposed despite their linear
interdependence.

It is well known (cf. Rodgers and Nicewander (1988)) that, in a one-way
ANOVA setting, the squared multiple correlation coefficient between y and the
columns of the design matrix X is a monotone function of the F' statistic testing
the hypothesis of equality of the population means. This is an example of the
case where the standardized x;’s are linearly dependent. It is interesting to check
the meaning of the individual components of R? in terms of contrasts between
the populations’ means. Let the number of populations be k£ and the sample size
in each population be n. We have Rzm,-.x_i =0,7=1,2,...,k, due to the linear
dependence, but the three measures (i), (iii) and (iv) from Section 2, namely
szn 9.9, and 9’9, are proportional to the same squared standardized contrast:
b?/Syy = n(yi. — ¥.)2/8(yi; — y..)?, with £b?/S,, = R?, using the customary
dot notation. This happens because of the special form of X'X = I — %J k. For
7”32,;,;,-(X) we get TS:::,—(X) = [R?/k + (k — 2)b2/S,,]/(k — 1), which is a weighted
average of R?/k and b?/S,,. Note that for k = 2 the four measures coincide.

In the situation when y; coincides with the mean of the other samples,
y;. = y., the three measures associating component zero to x;, give the intu-
itively correct value, because x; does not contribute to R? at all. On the other
hand, when y;. is merely close to the mean of the other samples, then the contri-
bution of population i to R? should also reflect the increase in R? obtained from
2 b?/Syy due to its effect on y_. Thus, in general T'f/:c,-(X) is more justified
than the other measures in the ANOVA context.

7. A Measure of Deviation from Orthogonality

Given X, we found Z that minimizes § = || X'X — Z'X||, over all choices
of orthonormal matrices Z, which is : § = [|[D? — D,|| = /Zi(a? — a;)? =
\/Z,-af(ai —1)2. When the columns of X are orthogonal, X'X = I and all
a; (= +\/ch2) are 1, hence Z = X and 6§ = 0. Since To? = tr(X'X) = p,

the supremum of § over different X matrices occurs when max; &’ — p and all
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other a;'s — 0. Thus, we can normalize § by putting A = §/(p — \/P), yielding
0 < A < 1. The deviation of A from zero towards 1 can be used as a measure
of deviation of the columns of X from orthogonality. A is a function of the
characteristic roots o of the matrix of correlations; therefore it is a meaningful
measure in both the sample and the parameter space. Since the decompositions
mentioned in Section 2 all agree when X is orthogonal it is interesting to find
out in a quantitative way their trend to disagree as A approaches 1. This is done
in the next Section.

8. Comparisons of Measures: Simulations

Numerical calculations of the various measures on real data sets are of limited
value, for the decision as to which of the measures assesses, fairly to the regressors,
relative importances in a sense which is relevant to the data, is a matter of
subjective judgment.

A small Monte Carlo simulation was carried out to calculate correlation co-
efficients between components of six measures of relative importance for p = 2,
3 and 4, to investigate their closeness under different conditions. 2000 random
X (p+1) x p matrices and random p X 1 ¢ = z'y vectors were generated, all i.i.d.
U[0,1]. In each case the measure of deviation from orthogonality, A, and the
components for six measures were calculated.

Table 1 shows the number (n) of cases that fall in each A range and the aver-
age of correlation coefficients calculated for each sample between the components
rzzi(X ) and each of the following measures: SIMPLE = Tqu MARGINAL =
Rz,zrrc,-.X-,-’ STANDARD = .4;, AVERAGE = #? from (1), PRATT = ¢y, and
NNPRATT, which is the same as PRATT, but includes only the cases when all
the components are non-negative. The standard deviations are also presented.
For p = 2, all correlation coefficients were 1, indicating a complete agreement
between all measures concerning the order of importance of the two regressors.
Therefore, it was omitted from the table. However, the average mean square of
deviations between rgmi(X ) and the other measures changed, for p = 2, with in-
creasing A from .0004 to .04, with small differences among the six measures. For
p > 2, even the same ordering with different relative components results in r < 1,
and the value of r reflects the magnitude of agreement among the measures.

It is evident that as A — 1 there is a sharp decrease in the correlation co-
efficients. They also decrease somewhat with increasing p, especially for small
A values. Among the measures, AVERAGE is closest to rf,zl.(X ) followed by
NNPRATT, PRATT, SIMPLE, MARGINAL and STANDARD in decreasing or-
der. Note that nyy, the number of cases for NNPRATT, decreased sharply with
increasing p and A, indicating that some negative components for PRATT oc-
cur quite frequently. The table shows that for small p and A, several measures
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Table 1. Average correlation coefficients (+standard deviations) between the components
of the proposed measure of relative importance and those of six other measures from a
Monte Carlo study with p = 3 and 4 and at different ranges of the nonorthogonality
measure A. The number of cases (n) at each A range is also presented.

A= .0-0.3 3-04 4-05 .5-06 .6-07 .7-08 .8-09 .9-1.0
measure”™ p=3
SIMPLE 94+.22 .70£.53 .67+.58 .67%.56 .70+.54 .62+.62 .74+.50 .18+.67
MARGINAL .97+.10 .80+.40 .64+.61 .63+.60 .61+.60 .52+.70 .49+.74 .66+.60
STANDARD .97+.07 .70+.48 .46+.70 .54+.62 .45+.64 .34+.73 .28+.73 .44+.63
AVERAGE 1.00+.01 .85%.41 .84+.44 .82+.44 .83+.43 .80+.49 .88+.32 .83+.31
PRATT 1.00£.01 .88+.28 .73+.41 .74+.34 .71+.32 .64+.41 .57+.43 .53+.46
NNPRATT 1.00£.01 .90+£.27 .81+.40 .77+.33 .794.33 .56+.57 .47+.64 .32+.55

n{nyn) 125(100) 456(174) 554(160) 345(85) 227(38) 146(32) 107(13)  40(8)
p=4
SIMPLE 77+.36 .71+.41 .67+.44 .65+.48 .65+.50 .63+.46 .70+.47

MARGINAL .73+.44 .62+.51 .58+.52 .58%.52 .54+.53 .45+.62 .16+.52
STANDARD .60+.49 .49+.54 .44+.54 .44+.51 .39+.49 41+.52 .06+.69
AVERAGE  .93+.19 .91+.22 .90+.24 .91+.20 .91+.15 .89+4.23 .96+.05

PRATT 82431 .73+.33 .70+.31 .65+.32 .60+.33 .66+.30 .45:.35
NNPRATT  .90+.25 .83+.29 .80+.30 .70+.37 .66+.45 87+.08 -
n(nyw) 316(92) 673(120) 607(77) 282(29) 97(9) 24(2)  7(0)
“SIMPLE = r2, , MARGINAL = R2_ y , STANDARD = §/§;, AVERAGE = 7?

PRATT = §'y;; NNPRATT is the same as PRATT, but discards all cases when any
component is negative; nyn is the number of cases for NNPRATT.

give essentially the same decomposition and any of them may be used to assess
the relative importance of the regressors. For larger p or A the measures vary
considerably, and one should use a measure only after its relevance has been
established.

In the example of Yule’s data, for which Pratt (1987) calculated the compo-
nents of his measure, there are p = 3 regressors and A = 0.34. Hence, we found
that, in accordance with Table 1, all the above measures are highly correlated
and gave similar estimates of relative importances.
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