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Abstract: Statistical modeling for massive spatial data sets has generated a

substantial body of literature on scalable spatial processes based on Vecchia’s

approximation. Vecchia’s approximation for Gaussian process models enables

fast evaluation of the likelihood by restricting dependencies at a location to its

neighbors. We establish inferential properties of microergodic spatial covariance

parameters within the paradigm of fixed-domain asymptotics when the parameters

are estimated using Vecchia’s approximation. We explore the conditions required

to formally establish these properties, theoretically and empirically. Our results

further corroborate the effectiveness of Vecchia’s approximation from the standpoint

of fixed-domain asymptotics.
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1. Introduction

Geostatististical data are often modeled by treating observations as partial

realizations of a spatial random field. We customarily model the random

field {Y (s) : s ∈ D} over a bounded region D ∈ Rd as a Gaussian process

(GP), denoted as Y (s) ∼ GP (µβ(s),Kθ(·, ·)), with mean µβ(s) and covariance

function Kθ(s, s
′) = cov(y(si), y(sj)). The probability law for a finite set

χ = {s1, s2, . . . , sn} is given by y ∼ N(µβ,Kθ), where y = (y(si)) and

µβ = (µβ(si)) are n × 1 vectors with elements y(si) and µβ(si), respectively,

and Kθ = (Kθ(si, sj)) is an n× n spatial covariance matrix in which the (i, j)th

element is the value of the covariance function Kθ(si, sj). We consider the widely

employed stationary Matérn covariance function (Matérn (1986); Stein (1999b))

given by

Kθ(s, s
′) :=

σ2(ϕ∥h∥)ν

Γ(ν)2ν−1
Kν(ϕ∥h∥), ∥h∥ ≥ 0 , (1.1)

where h = s− s′, σ2 > 0 is called the partial sill or spatial variance, ϕ > 0 is the

scale or decay parameter, ν > 0 is a smoothness parameter, Γ(·) is the gamma

function, Kν(·) is the modified Bessel function of order ν Abramowitz and Stegun

(1965, Sec. 10), and θ = {σ2, ϕ, ν}. The spectral density corresponding to (1.1),
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which we use later, is

f(u) = C
σ2ϕ2ν

(ϕ2 + u2)ν+d/2
, for some C > 0. (1.2)

Likelihood-based inference for θ requires matrix computations in the order

of ∼ n3 floating point operations (flops), which can become impractical when

the number of spatial locations, n, is very large. Writing Yn = (y1, y2, . . . , yn)
⊤,

where yi := y(si), for i = 1, 2, . . . , n, are the n sampled measurements, we write

p(Yn | θ) := N(Yn; µβ,Kθ) as

p(Yn | θ) = p(y1; θ)
n∏

i=2

p(yi | y(i−1); θ) , (1.3)

where y(i) = (y1, . . . yi). Vecchia (1988) suggested a simple approximation to (1.3)

based on the notion that it may not be critical to use all components of y(i−1) in

p(yi | y(i−1); θ). Instead, the joint density p(Yn | θ) in (1.3) is approximated by

p̃(Yn | θ) = p(y1 | θ)
n∏

i=2

p(yi |S(i−1); θ) , (1.4)

where S(i) is a subvector of y(i), for i = 1, . . . , n. The density p̃(Yn | θ) in (1.4)

is called Vecchia’s approximation and can be regarded as a quasi-likelihood or

composite likelihood (Zhang (2012); Eidsvik et al. (2014); Bachoc and Lagnoux

(2020)). Vecchia’s approximation has now appeared in a large body of literature

(see, e.g., Stein, Chi and Welty (2004); Datta et al. (2016a,b); Guinness (2018);

Katzfuss et al. (2020); Katzfuss and Guinness (2021); Peruzzi, Banerjee and

Finley (2022)). Algorithmic developments in Bayesian and frequentist settings

(Finley et al. (2019); Zhang, Datta and Banerjee (2019); Katzfuss et al. (2020))

have enabled scalability to massive data sets (with n ∼ 107 locations), and

(1.4) lies at the core of several methods that tackle such “big data” problems

in geospatial analysis (Sun, Li and Genton (2012); Banerjee (2017); Heaton et al.

(2019)).

Vecchia’s approximation has recently garnered substantial attention in the

spatial statistics literature for building massively scalable GP models. However,

although substantial methodological innovations have been generated using this

approach, theoretical understanding of inference and identifiability of the spatial

process parameters remains largely unaddressed. This is because Vecchia’s

approximation distorts the stationarity of the parent process and, hence, loses

the theoretical tractability of spatial processes. Our current approach is a first

attempt based upon Zhang (2012) to formally introduce methods that can be used

to study the asymptotic properties of inference from Vecchia’s approximation.

Although we provide a rigorous development only in the one-dimensional setting,
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our proposed approach is novel, and should generate subsequent theoretical

research in two dimensions. Therefore, we limit the formal theory to one

dimension, but present some numerical experiments in two dimensions to show

that the inferential behavior secured over the real line carries over to spatial

domains.

Following the fixed-domain (infill) asymptotic paradigm for spatial inference

(Stein (1999a); Zhang and Zimmerman (2005)), we discuss inferential properties

for the parameters in (1.1). In this setting, Zhang (2004) shows that not all

parameters in θ admit consistent maximum likelihood estimators from the full

Gaussian likelihood in (1.3) constructed using a stationary Matérn covariance

function, but that certain microergodic parameters are estimated consistently.

Du, Zhang and Mandrekar (2009, Thm. 5) formally establish the asymptotic

distributions of these microergodic parameters. Kaufman and Shaby (2013)

jointly estimate the decay and the variance parameters in the Matérn family,

and the effect of a prefixed decay on inference based on relatively small sample

sizes. The aforementioned works all use (1.3). Here, we formally establish

inferential properties for the estimates of microergodic parameters obtained from

Vecchia’s approximate likelihood in (1.4). Our work is motivated by a discussion

in Section 10.5.3 of Zhang (2012) regarding the inferential behavior arising from

(1.4). To the best of our knowledge, this is the first work to formally examine

this topic. Following the aforementioned works in spatial asymptotics, we restrict

our attention to the infill or fixed-domain setting, and focus on the inferential

properties of the microergodic parameters for any given value of the smoothness

parameter. Specifically, we examine the criteria for the asymptotic normality of

the maximum likelihood estimates of the microergodic parameters obtained using

Vecchia’s approximation. In this regard, our work follows the paradigm laid out

in Zhang (2012) in that we do not assume that the conditioning set is bounded.

We provide conditions under which inferences under Vecchia’s approximation

of the Matérn process are asymptotically equivalent to the full model. This

distinguishes our contribution from that of Bachoc and Lagnoux (2020), where

bounded conditional sets are exploited to establish consistency results for some

selected values of the smoothness parameter. In contrast, we show that a different

set of conditions can yield a closed-form asymptotic distribution for any given

value of the smoothness parameter. For the subsequent development, it suffices

to assume that µβ(s) = 0, that is, the data have been detrended. Hence, we work

with a zero-centered stationary GP with the Matérn covariance function in (1.1),

a fixed smoothness parameter ν, and with the sampling locations χn restricted

to a bounded region.

The remainder of this paper proceeds as follows. One of our key results,

Theorem 1, is presented in Section 2, providing general criteria for the asymptotic

normality of maximum likelihood estimates of microergodic parameters obtained

using Vecchia’s approximation. In Section 3, we demonstrate that these general
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criteria are implied by a condition on the conditioning size, which grows

much slower than the sample size. We numerically check the conclusions for

one-dimensional cases, and extend the discussion to two-dimensional cases in

Section 4.

2. Infill Asymptotics for Vecchia’s Approximation

2.1. Microergodic parameters

Identifiability and consistent estimation of θ in (1.1) rely on the equivalence

and orthogonality of Gaussian measures. Two probability measures P1 and P2

on a measurable space (Ω,F) are said to be equivalent, denoted as P1 ≡ P2,

if they are absolutely continuous with respect to each other. Thus, P1 ≡ P2

implies that for all A ∈ F , P1(A) = 0 if and only if P2(A) = 0. On the other

hand, P1 and P2 are orthogonal, denoted as P1 ⊥ P2, if there exists A ∈ F for

which P1(A) = 1 and P2(A) = 0. Although measures might not be equivalent or

orthogonal, Gaussian measures are, in general, one or the other. For a Gaussian

probability measure Pθ indexed by a set of parameters θ and κ, a function of θ,

we say that κ(θ) is microergodic if κ(θ1) ̸= κ(θ2) implies Pθ1 ⊥ Pθ2 (see, e.g., Stein

(1999b); Zhang (2012)). Two Gaussian probability measures defined by Matérn

covariance functions Kθ1(h) and Kθ2(h), respectively, where θ1 = {σ2
1, ϕ1, ν}

and θ2 = {σ2
2, ϕ2, ν} are equivalent if and only if σ2

1ϕ
2ν
1 = σ2

2ϕ
2ν
2 (Theorem 2

in Zhang (2004)). Consequently, although one cannot consistently estimate σ2

or ϕ (Corollary 1 in Zhang (2004)) from full GP likelihood functions, σ2ϕ2ν is a

microergodic parameter that can be estimated consistently.

If the oracle (data-generating) values of ϕ and σ2 are ϕ0 and σ2
0, respectively,

then for any fixed value of the decay ϕ = ϕ1, we know from Du, Zhang and

Mandrekar (2009, Thm. 5) that

√
n(σ̂2

nϕ
2ν
1 − σ2

0ϕ
2ν
0 )

L−→ N(0, 2(σ2
0ϕ

2ν
0 )2) , (2.1)

where σ̂2
n is the maximum likelihood estimator from the full likelihood (1.3).

2.2. Parameter estimation

Let σ̂2
n,vecch be the maximum likelihood estimate of the variance σ2,

σ̂2
n,vecch = argmax

σ2

{p̃(Yn |ϕ1, σ
2), σ2 ∈ R+} , (2.2)

where p̃(·) is the density (1.4). We develop the asymptotic equivalence of σ̂2
n,vecch

using σ̂2
n. Before proceeding further, we introduce some notation. Assume that

the target process y(s) ∼ GP (0,Kθ(·)), where Kθ(h) is defined in (1.1), has a

fixed ν. Let Pj, for j = 0, 1, denote probability measures for y(s) ∼ GP (0,Kθi)

with θj = {σ2
j , ϕj, ν}. Assume that σ2

1 = σ2
0ϕ

2ν
0 /ϕ2ν

1 and let Ej(·) denote the
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expectation with respect to probability measure Pj, for j = 0, 1. We define

e0,j := y1, µi,j := Ej(yi | y(i−1)), ei,j := yi − µi,j, i = 2, . . . , n

ẽ0,j := y1, µ̃i,j := Ej(yi |S(i−1)), ẽi,j := yi − µ̃i,j, i = 2, . . . , n .
(2.3)

In Lemma 1, we derive a useful expression for σ̂2
n,vecch using the quantities in

(2.3).

Lemma 1. The estimate of σ2 from Vecchia’s likelihood approximation with fixed

ν and ϕ = ϕ1 can be expressed as

σ̂2
n,vecch =

σ2
1

n

n∑
i=1

ẽ2i,1
E1ẽ2i,1

. (2.4)

Proof. In Vecchia’s approximation (1.4) with fixed ν, ϕ = ϕ1, and unknown

σ2 in Kθ(·), p(yi |S(i−1)) is Gaussian with mean µ̃i,1 = Σ̃12
i,1(Σ̃

22
i,1)

−1S(i−1) and

variance Σ̃i,1 := Σ̃11
i,1−Σ̃12

i,1(Σ̃
22
i,1)

−1Σ̃21
i,1, where

(
Σ̃11

i,1 Σ̃
12
i,1

Σ̃21
i,1 Σ̃

22
i,1

)
is the covariance matrix

of

(
yi

S(i−1)

)
under p̃(·;ϕ1, σ

2). Because µ̃i,1 does not depend on σ2, and Σ̃i,1

can be expressed as σ2Σ̃†
i,1, where Σ̃†

i,1 does not depend on σ2, the conditional

distribution p(yi |S(i−1)) under Vecchia’s approximation is

p(yi |S(i−1)) =
1√

2πσ2Σ̃†
i,1

exp

(
−

ẽ2i,1

2σ2Σ̃†
i,1

)
.

A direct computation of (2.2) with any fixed ϕ1 yields (2.4), where we use the

fact E1ẽ
2
i,1 = σ2

1Σ̃
†
i,1 on the right-hand side of (2.4).

Our main result builds on the discussion in Section 10.5.3 of Zhang (2012),

yielding the following theorem that explores the asymptotic distribution of

σ̂2
n,vecch.

Theorem 1. Assume that one of the following conditions holds:

n∑
i=1

E0(ẽi,1 − ei,0)
2

E1ẽ2i,1
= O(1) and

n∑
i=1

(
E0e

2
i,0

E1ẽ2i,1
− 1

)2

= O(1) (2.5)

or
n∑

i=1

E1(ẽi,1 − ei,0)
2

E0e2i,0
= O(1) and

n∑
i=1

(
E1ẽ

2
i,1

E0e2i,0
− 1

)2

= O(1). (2.6)

Then, √
n(σ̂2

n,vecchϕ
2ν
1 − σ2

0ϕ
2ν
0 )

L−→ N(0, 2(σ2
0ϕ

2ν
0 )2) . (2.7)

Before presenting the proof of Theorem 1, we state and prove the following
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lemma.

Lemma 2. The assumptions in (2.5) imply that

E0

[
n∑

i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

]
= o(

√
n). (2.8)

Proof. We first prove that (2.5) implies (2.8). Note that∣∣∣∣∣E0

[
n∑

i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

] ∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

(
E0(ẽi,1 − ei,0 + ei,0)

2

E1ẽ2i,1
− 1

) ∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

E0(ẽi,1 − ei,0)
2

E1ẽ2i,1
+

n∑
i=1

(
E0e

2
i,0

E1ẽ2i,1
− 1

) ∣∣∣∣∣
≤

n∑
i=1

E0(ẽi,1 − ei,0)
2

E1ẽ2i,1
+

n∑
i=1

∣∣∣∣∣E0e
2
i,0

E1ẽ2i,1
− 1

∣∣∣∣∣,
where the second equality follows because ẽi,1−ei,0 and ei,0 are independent under

P0. By the first condition in (2.5), we get
∑n

i=1 E0(ẽi,1 − ei,0)
2/E1ẽ

2
i,1 = O(1) =

o(
√
n). Fix ε > 0. By the second condition in (2.5), there is M > 0 such that∑

i>M(E0e
2
i,0/E1ẽ

2
i,1−1)2 < ε. Thus, for n > M , we can use the Cauchy–Schwarz

inequality to obtain

n∑
i=1

∣∣∣∣∣E0e
2
i,0

E1ẽ2i,1
− 1

∣∣∣∣∣ =
M∑
i=1

∣∣∣∣∣E0e
2
i,0

E1ẽ2i,1
− 1

∣∣∣∣∣+
n∑

i=M+1

∣∣∣∣∣E0e
2
i,0

E1ẽ2i,1
− 1

∣∣∣∣∣
≤

M∑
i=1

∣∣∣∣∣E0e
2
i,0

E1ẽ2i,1
− 1

∣∣∣∣∣+√(n−M)ε .

Dividing both sides by
√
n reveals that lim supn→∞(1/

√
n)
∑n

i=1 |E0e
2
i,0/E1ẽ

2
i,1 −

1| ≤
√
ε. Since ε > 0 is arbitrary, it follows that

∑n
i=1 |E0e

2
i,0/E1ẽ

2
i,1−1| = o(

√
n),

and we obtain (2.8).

We now present a proof of Theorem 1.

Proof of Theorem 1. Recall that
∑n

i=1 e
2
i,0/(E0e

2
i,0) = Y ⊤

n V −1
n,0Yn, where Vn,0 is

the covariance matrix of Yn under P0. Using (2.4) derived in Lemma 1, we obtain

√
n

(
σ̂2
n,vecch

σ2
1

− 1

)
=

1√
n

[
n∑

i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

]
+
√
n

(
1

n
Y ⊤
n V −1

n,0Yn − 1

)
.

(2.9)

By the central limit theorem, we have
√
n((1/n)Y ⊤

n V −1
n,0Yn − 1)

L−→ N(0, 2).
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We next show that condition (2.5) implies that

n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

= o(
√
n). (2.10)

To prove this, it is sufficient to show that

n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

− E0

[
n∑

i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

]
= O(1). (2.11)

The result in (2.10) then follows from Lemma 2. Next we prove (2.11). Our

argument relies on the equivalence of Gaussian sequences. Let P̃1,n be the prob-

ability distribution corresponding to p̃(Yn;ϕ1, σ
2
1), and let ρn := p̃(Yn;ϕ1, σ

2
1)/

p(Yn;ϕ0, σ
2
0) be the Radon–Nikodym derivative of P̃1,n with respect to P0 on the

realization Yn for a given n. Write P̃1,∞ (respectively, P0,∞) for the probability

distribution corresponding to p̃(·;ϕ1, σ
2
1) (respectively, p(·;ϕ0, σ

2
0)) on the infinite

sequence (Y1, Y2, . . .). By Kakutani’s dichotomy, P̃1,∞ and P0,∞ are either

equivalent or mutually singular to each other. If P̃1,∞ is equivalent to P0,∞, then

limn→∞ρn = ρ∞ =: dP̃1,∞/dP0,∞ with P0-probability one (see, e.g., Ibragimov

and Rozanov (1978, Sec. III.2.1)). In addition, P0(0 < ρ∞ < ∞) = 1 and

−∞ < E0(log ρ∞) < ∞. As a result,

log ρn = −1

2
log

det Ṽn,1

detVn,0

− 1

2

(
n∑

i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

)
= O(1),

E0(log ρn) = −1

2
log

det Ṽn,1

detVn,0

− 1

2
E0

[
n∑

i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

]
= O(1),

where Ṽn,1 (respectively, Vn,0) is the covariance matrix of Yn under P̃1,∞

(respectively, P0). By taking the difference of the above two equations, we get

(2.11) under the condition that P̃1,∞ is equivalent to P0,∞. Using Theorem 5,

Section VII.6 of Shiryaev (1996), we conclude that

P̃1,∞ is equivalent to P0,∞ ⇐⇒
∞∑
i=1

E0(ẽi,1 − ei,0)
2

E1ẽ2i,1
+

(
E0e

2
i,0

E1ẽ2i,1
− 1

)2
 < ∞

⇐⇒
∞∑
i=1

E1(ẽi,1 − ei,0)
2

E0e2i,0
+

(
E1ẽ

2
i,1

E0e2i,0
− 1

)2
 < ∞.

(2.12)

Because the first equivalence in (2.12) is simply a reformulation of (2.5), we have

established that (2.5) implies (2.11), and hence the result in (2.10).

The proof from condition (2.6) to (2.10) is established following the proof

from condition (2.5) to (2.10). We now break the quantity
∑n

i=1 ẽ
2
i,1/E1ẽ

2
i,1 −
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i=1 e

2
i,0/E0e

2
i,0 in (2.10) into

n∑
i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

− E1

[
n∑

i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

]

+E1

[
n∑

i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

]
,

and replace the left-hand sides of (2.11) and (2.8) with the two quantities,

respectively. Then, the equivalence of P1 and P0, along with Lemma 2, shows

that the replaced (2.8) holds. The proof that (2.6) implies the replaced (2.11)

remains the same, except that we now use the second equivalence in (2.12). Thus,

we complete the proof of Theorem 1.

Turning to the connection between Theorem 1 and the predictive consistency

of Vecchia’s approximation in the sense of Kaufman and Shaby (2013, p.478),

note that ei,0 and ẽi,1 are the predictive errors for yi under the full model

with correct parameters and under (1.4) with possibly incorrectly specified

parameters (ϕ, σ) = (ϕ1, σ1), respectively. A consequence of (2.5) or (2.6) is

that E1ẽ
2
i,1/E0e

2
i,0 → 1 as i (and hence n) increases. Hence, (2.5) or (2.6) implies

the asymptotic normality of the estimates and the predictive consistency.

3. Infill Asymptotics for Vecchia’s Approximation on the Line

We can obtain further insights into Theorem 1 by considering the asymptotic

normality of σ̂n,vecch for Matérn models with observations on the real line.

Although the conditions (2.5) and (2.6) are, in general, analytically intractable,

owing to the presence of E0ẽ
2
i,1, we will show that (2.6) holds for Matérn models

on R.
To simplify the presentation, we consider the fixed domain D = [0, 1], and

the sampled locations χ = {i/n : 0 ≤ i ≤ n}. Denote δ = 1/n for the spacing

of χ, and yi = y(iδ), for 0 ≤ i ≤ n, for the observations. We define S(i) =

S(i)[k] := (yi, yi−1, . . . , yi−k+1) for a positive integer k, where S(i)[k] is a vector

of k consecutive observations backward from yi. The integer k is capped by i

because S(i)[k] is a subvector of y(i).

Assumption 1. Let D = [0, 1], and χ = {iδ : 0 ≤ i ≤ n} with δ = 1/n. Then,

n∑
i=1

E1(ei,1 − ei,0)
2

E1e2i,1
= O(1). (3.1)

Before stating the main result on R, we demonstrate why this assumption is

reasonable. We empirically investigate
∑n

i=1 E1(ei,1 − ei,0)
2/E1e

2
i,1 for increasing

values of n. Figure 1 plots the values of
∑n

i=1 E1(ei,1 − ei,0)
2/E1e

2
i,1, with χ =

{iδ : 0 ≤ i ≤ n}, for ν = 0.25, 0.5, 1.0, 1.5, 2.0, and n ranging from 100 to 1,200.
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Figure 1. Trend of
∑n

i=1 E1(ei,1−ei,0)
2/E1e

2
i,1 for the Matérn model when χ is a regular

grid χ = {iδ : 0 ≤ i ≤ n}. The parameter σ2 in the Matérn covariogram is equal to 1.0
and we set the decay ϕ for different ν to make the correlation of two points equal to 0.05
when their distance reaches 0.2.

As n increases, the plot tends to flatten, as suggested by the assumption.

Some additional explanation is also possible from a theoretical viewpoint.

Since P0 and P1 are equivalent, Corollary 3.1 of Stein (1990b) implies that

E1(ei,1 − ei,0)
2/E1e

2
i,1 → 0 as n, i → ∞. By the stationarity and the symmetry

of the Matérn model, ei,j is distributed as the error of the least square estimate

of y0 := y(0), given observations y(i) = (y1, . . . , yi)
⊤. Hence, ei,j can be realized

as y0 − Ej(y0 | y(i)). Similarly, ẽi,j can be realized as y0 − Ej(y0 |S(i−1)). Now,

consider the infinitely sampled locations {iδ : i ≥ 0}, and extend the finite

sample Yn := (y0, . . . , yn)
⊤ to Y := (y0, y1, . . .)

⊤, with yi := y(iδ). The sampled

locations of Y form an infinite grid on [0,∞), and δ = 1/n is determined based

on the sample size of Yn. Let e∞,j be the error y0 −Ej(y0 | y1, . . .) for the infinite

sequence Y . For f0 (resp., f1), the spectral density under P0 (resp., P1), it is easily

seen that f0, f1 ∼ Cσ2
0ϕ

ν
0u

−2ν−1 as u → ∞, and (f1 − f0)/f0 ≍ u−2. Therefore,

by Theorem 2 of Stein (1999b),

E1(e∞,1 − e∞,0)
2

E1e2∞,1

= O(δmin(2ν+1,4) log(δ−1)1(ν=3/2))) . (3.2)

Intuitively, ei,j ≈ e∞,j for large i. It is not unreasonable to speculate a stronger

result in which (3.2) still holds by replacing e∞,j with ei,j for large i, which

would imply (3.1). As indicated on p.138 of Stein (1999a), obtaining the rate of

E1(ei,1 − ei,0)
2/E1e

2
i,1 for any bounded domain D is a highly nontrivial task. The

only known results are obtained by Stein (1990a, 1999b) for ν = 1/2, 3/2, . . .,

which also imply (3.1). In fact, we need that E1e
2
i,1 = E1e

2
∞,1(1 + O(i−κ)), for

any κ > 0. Hence, the only missing piece in these heuristics is an estimate of

E1e
2
i,0/E1e

2
∞,0, which we do not explore further here. Our result is stated as

follows.
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Theorem 2. Let D = [0, 1], χ = {iδ : 0 ≤ i ≤ n}, and S(i) = S(i)[n
ϵ], for

ϵ ∈ (0, 1). If (3.1) holds, then (2.6) also holds. Consequently, (2.7) holds for the

Matérn model (ν > 0).

We make a few remarks before presenting a proof. Theorem 2 states that

the asymptotic normality of the microergodic parameter σ2ϕ2ν still holds under

Vecchia’s approximation in a neighborhood of size at most k = nϵ ≪ n (sample

size), where the computation of σ̂2
n,vecch is much cheaper. This justifies the validity

of Vecchia’s approximation for Matérn models from a fixed-domain perspective.

The range nϵ may not be optimal, and it might be possible to improve to

k = O(log n). However, we do not pursue this direction here from a theoretical

standpoint. A simulation study is provided for the case of k = O(log n) in

Section 4.

An interesting situation arises with ν = 1/2, where the process reduces to

the Ornstein–Uhlenbeck process, and p(yi | y(i−1)) = p(yi | yi−1). Therefore, (2.7)

holds trivially for Vecc hia’s approximation with a neighborhood of size k = 1 =

O(1). Therefore, it is natural to enquire whether the asymptotic normality of

(2.7) holds under Vecchia’s approximation within a range k = O(1). If this is

true, computational efforts can be reduced further. Unfortunately, this need not

be the case. For ν < 1/4 and k = O(1), n2ν(σ̂2
n,vecchϕ

2ν
1 − σ2

0ϕ
2ν
0 ) converges to a

non-Gaussian distribution (Bachoc and Lagnoux (2020)). The cases for ν ≥ 1/4

remain unresolved.

Now, we turn to the proof of Theorem 2. The key to this analysis is the

following proposition, which relies on a result on the bound of e∞,j − ei,j, that

is, the difference between the errors of the finite and the infinite least square

estimates (Baxter (1962)). The study dates back to the work of Kolmogorov

(1941); see also Grenander and Szegö (1958); Ibragimov (1964); Dym andMcKean

(1970, 1976) and Ginovian (1999) for related discussions.

Proposition 1. Let κ > 0. There exist C0, Cκ > 0 such that for δ < 1 and

j = 0, 1,

Eje
2
∞,j ∼ C0δ

2ν , (3.3)

Ej(e∞,j − ei,j)
2 ≤ Cκδ

2νi−κ. (3.4)

Proof. From the discussion below (3.1) that ei,j and e∞,j can be realized as

ei,j = y0−Ej(y0 | y1, . . . , yi) and e∞,j = y0−Ej(y0 | y1, y2, . . .), respectively, where
yi := y(iδ) is indexed by nonnegative integers, we know from Stein (1999a, p.77)

that the spectral density of Y under Pj is

f
δ

j(u) =
1

δ

∞∑
ℓ=−∞

fj

(
u+ 2πℓ

δ

)
for u ∈ (−π, π], j = 0, 1 ,

where fj is the spectral density defined by (1.2) corresponding to Pj. For j = 0, 1,
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fj(u) ∼ Cσ2
0ϕ

2ν
0 u−2ν−1 as u → ∞. From Stein (1999a, p.80, (17)), we obtain

Eje
2
∞,j ∼ 2πCσ2

0ϕ
2ν
0 δ2ν exp

(
1

2π

∫ π

−π

log

(
∞∑

ℓ=−∞

|u+ 2πℓ|−2ν−1

)
du

)
,

which implies (3.3), with

C0 = 2πCσ2
0ϕ

2ν
0 exp

(
1

2π

∫ π

−π

log

(
∞∑

ℓ=−∞

|u+ 2πℓ|−2ν−1

)
du

)
.

Turning to (3.4), we know from Baxter (1962, p.142, (15)) that

Ej(ei,j − e∞,j)
2 = Eje

2
∞,j Eje

2
i,j

∞∑
m=i

|ϕm,j(0)|2, (3.5)

where ϕm,j(·) are the Szegö polynomials associated with the spectral f
δ

j (see

Section 2.1 of Grenander and Szegö (1958), for background). Note that Eje
2
∞,j ∼

C0δ
2ν and Eje

2
i,j ≤ Eje

2
1,j → 0 as δ → 0. It is sufficient to establish

∞∑
m=0

mκ|ϕm,j(0)| ≤ Dκ , for some Dκ > 0, (3.6)

in which case, the identity (3.5) implies (3.4). The key observation of Baxter

(1962) (Theorem 2.3) is that (3.6) holds if the κth moment of the Fourier

coefficients associated with f
δ

j is bounded from above by D′
κ, for some D′

κ > 0,

that is,
∞∑

m=0

mκ|cm,j| < D′
κ, where cm,j :=

1

2π

∫ π

−π

f
δ

j(u)e
−inudu.

A sufficient condition for the latter to hold is that the κth derivative of f
δ

j is

integrable, and
∫ π

−π
|dκf δ

j(u)/du
κ|du ≤ D′′

κ, for some D′′
κ > 0, which does not

depend on δ < 1. Breaking the sum of f
δ

j according to ℓ = 0 and ℓ ̸= 0 produces∫ π

−π

∣∣∣∣ dκduκ
f
δ

j(u)

∣∣∣∣ du ≤ A

∫ ∞

−∞
(1 + u2ν+1+κ)−1du+A′δ2ν

∑
ℓ ̸=0

l−2ν−1−κ , (3.7)

where A,A′ > 0 are numerical constants. Hence, the right-hand side of (3.7) is

bounded by D′′
κ = A

∫∞
−∞(1 + u2ν+1+κ)−1du + A′∑

ℓ ̸=0 l
−2ν−1−κ, which depends

only on κ.

Proof of Theorem 2. We fix κ = 2/ϵ, and use C(1)
κ , C(2)

κ , . . . to denote constants

depending only on κ. Note that E0e
2
i,0 = E0e

2
∞,0 + E0(e∞,0 − ei,0)

2 because e∞,0

and e∞,0 − ei,0 are independent under P0. By Proposition 1, we get E0e
2
i,0 ∼
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C0δ
2ν(1 + C(1)

κ i−κ). Similarly, E1ẽ
2
i,1 = E1e

2
∞,1 + E1(ẽi,1 − e∞,1)

2 ∼ C0δ
2ν(1 +

C(2)
κ min(i, nϵ)−κ), because ẽi,1 is realized as y0 − E1

(
y0 |S(i−1)[k]

)
, with k =

min(i, nϵ). Therefore,

n∑
i=1

(
E1ẽ

2
i,1

E0e2i,0
− 1

)2

≤
∑
i≥nϵ

(
C(3)

κ n−ϵκ

1 + C
(1)
κ i−κ

)2

+
n∑

i=1

(
C(4)

κ i−κ

1 + C
(1)
κ i−κ

)2

≤ C(5)
κ

n3
+ C(6)

κ

n∑
i=1

i−2κ ≤ C(7)
κ .

Moreover, we have

E1(ẽi,1 − ei,0)
2

E0e2i,0
≤ 3

E1(ẽi,1 − e∞,1)
2

E0e2i,0
+ 3

E1(ei,1 − e∞,1)
2

E0e2i,0
+ 3

E1(ei,1 − ei,0)
2

E1e2i,1

E1e
2
i,1

E0e2i,0
.

By the same argument as above, for the first two terms,

n∑
i=1

E1(ẽi,1 − e∞,1)
2

E0e2i,0
< C(8)

κ and
n∑

i=1

E1(ei,1 − e∞,1)
2

E0e2i,0
< C(9)

κ .

For the last term,

n∑
i=1

E1(ei,1 − ei,0)
2

E1e2i,1

E1e
2
i,1

E0e2i,0
≤ C(10)

κ

n∑
i=1

E1(ei,1 − ei,0)
2

E1e2i,1
,

which converges because of (3.1). This establishes (2.6) and, hence, (2.7) follows.

4. Simulations

Based on (2.8) and (2.11) provided in Theorem 1, Theorem 2 proves that

cn(ϕ1, ϕ0, k) =
1√
n

[
n∑

i=1

ẽ2i,1
E1ẽ2i,1

−
n∑

i=1

e2i,0
E0e2i,0

]
= o(1) (4.1)

when k = nϵ, for ϵ ∈ (0, 1). The equation (4.1) induces the critical condition

(2.10), resulting in the convergence in law in (2.7). Considering the more

challenging case k = O(log(n)), we extend the discussion in Theorem 2 by

investigating the behavior of cn(ϕ1, ϕ0, k) in (4.1) for a sequence of data sets with

increasing sample sizes. Our experiments involve two data generation schemes.

The first scheme considers the study domains D1 = [0, 1] with n observations on

the grid χ1 = {i/(n−1) : 0 ≤ i ≤ n−1} and D2 = [0, 1]2 with n = n2
s observations

on the grid χ2 = {(i/(ns − 1), j/(ns − 1)) : 0 ≤ i,≤ ns − 1, 0 ≤ j ≤ ns − 1}.
With this scheme, we generate a sequence of data sets with increasing sample

size on increasingly finer grids on the study domains. The second scheme

generates data on a “disturbed grid”. On D1 = [0, 1] with n observations,
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χ1 comprises locations randomly sampled by N(i/(n + 2), 0.15/(n + 2)), for

i = 1, . . . , n. On D2 = [0, 1]2 with n = n2
s observations, locations in χ2 are

generated by {N(i/(ns + 2), 0.15/(ns + 2)), N(i/(ns + 2), 0.15/(ns + 2))}, for

i, j = 1, . . . , ns. With this scheme, we first generate simulations with the largest

sample size, and then randomly select successively larger subsets from the same

data set to examine the tendency of cn(ϕ1, ϕ0, k) with an increasing n. The

first scheme matches the setup of our proofs in the preceding sections, and the

second scheme serves as a more directly informative regime for simulation studies

about asymptotics. In practice, estimations using Vecchia’s approximation (1.4)

are complicated by the fixed ordering of locations. Guinness (2018) provides

excellent practical insights into this issue that can considerably improve finite-

sample behavior in certain settings. In this study, we test two orderings of

locations, namely, maximin ordering and sorted coordinate ordering. The sorted

coordinate ordering first orders locations on χ2 based on the second coordinate,

and then breaks ties based on the associated first coordinate. We take S(i)[k]

as the, at most, k nearest neighbors of yi+1. In both studies on D1 and D2, we

fix σ2 = 1.0 and consider five smoothness values ν ∈ {0.25, 0.5, 1.0, 1.5, 2}. We

choose different decay parameters ϕ0 for ν so that Kθ(h) = 0.05 when h = 0.2

and 0.5 for the study on D1 and D2, respectively.

For each fixed value of θ = {σ2, ϕ, ν}, we generate 100 data sets with Yn

being the realization from y(s) ∼ GP (0,Kθ(·)), and calculate cn(ϕ1, ϕ0, k), with

k being the closest integer to 3 log(n), and ϕ1 = 1.2ϕ0 and 1.1ϕ0 for D1 and D2,

respectively. Then, we record the mean and standard deviation of the 100 values

of cn(ϕ1, ϕ0, k). We repeat this process for different values of n ranging from 26 =

64 to 212 = 4096 in the study on D1. The study on D2 follows the study on D1,

with ns ranging from 9 to 81. The code for this simulation study is available from

https://github.com/LuZhangstat/vecchia_consistency. Figures 2a and 2b

summarize the study results on D1 under the two data generation schemes. Each

figure presents 10 graphs, one for each value of ν and each ordering, showing the

mean and standard deviation of cn(ϕ1, ϕ0, k) for different values of n.

The value of cn(ϕ1, ϕ0, k), as shown in Figure 2, decreases rapidly as the

sample size increases, supporting the main conclusion in Theorem 2. We do not

observe a strong effect of the ordering and the data generation scheme on the

results. The corresponding graphs for the study on D2 are presented in Figure 3.

These graphs also reveal decreasing trends, but with more gentle slopes than those

in Figure 2. The results under the second data-generation scheme are slightly

better than those under the first scheme. When the smoothness ν is small, the

standard deviation decreases faster with maximin ordering than it does with

sorted coordinate ordering. At the same time, the standard deviation does not

decrease significantly with an increase of n when ν is large. To explore further,

we reproduce the study on D2, with k being the closest integer to
√
n, and show

the results in Figure 4. We observe that, in all cases, the standard deviation

https://github.com/LuZhangstat/vecchia_consistency
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(a) Increasingly finer grids (Data generation scheme 1)
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Figure 2. The mean of cn(ϕ1, ϕ0, k) of 100 simulations on D1 = [0, 1]. The
error bars represent one standard deviation. The sample size n takes values in
64, 128, 256, 512, 1024, 2048, and 4096. The graph describing the results obtained using
maximin ordering is dodged to the right of the graph describing the results obtained
using sorted coordinate ordering. The error bars in both graphs are connected using
distinct line styles: solid lines for maximin ordering and dashed lines for sorted coordinate
ordering.

decreases rapidly as n increases.

Recall that, from the proof in Theorem 1, cn(k, ϕ1, ϕ0) =
√
n(σ̂2

n,vecch/σ
2
1 −

σ̂2
0,n/σ

2
0), where σ̂2

0,n = argmaxσ2{p(y;ϕ0, σ
2), σ2 ∈ R+} is the maximum

likelihood estimator from (1.3) when fixing ϕ1 = ϕ0. Hence, cn(k, ϕ1, ϕ0) also

measures the discrepancy between σ̂2
n,vecch/σ

2
1 and σ̂2

0,n/σ
2
0, and the decreasing

trend of cn(ϕ0, ϕ1, k) indicates that the inference based on Vecchia’s approxima-

tion approaches that based on the full likelihood as the sample size increases.

This phenomenon reveals that Vecchia’s approximation is still efficient when the

neighborhood size k is substantially smaller than the sample size.

5. Conclusion

We have developed insights into inferences based on GP likelihood approx-

imations by Vecchia (1988) under fixed-domain asymptotics for geostatistical
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Figure 3. The mean of cn(ϕ1, ϕ0, k) of 100 simulations on D2 = [0, 1]2. The error bars
represent one standard deviation. The sample size n takes values in 81, 256, 729, 2209, and
6561. The graph describing the results obtained using maximin ordering is situated to
the right of the graph describing the results obtained using sorted coordinate ordering.
The error bars in both graphs are connected using distinct line styles: solid lines for
maximin ordering and dashed lines for sorted coordinate ordering.

data analysis. We have formally established sufficient conditions for such

approximations to have the same asymptotic efficiency as that of a a full GP

likelihood when estimating parameters in a Matérn covariance function. The

insights obtained here enhance our understanding of the identifiability of the

process parameters, and can be used to develop priors for the microergodic

parameters in Bayesian modeling. The results derived here also offer insights into

formally establishing posterior consistency of process parameters for a number of

Bayesian models that have emerged from (1.4) (Datta et al. (2016a,b); Katzfuss

and Guinness (2021); Peruzzi, Banerjee and Finley (2022)).

We anticipate that our findings will motivate further research in variants

of geostatistical models, such as asymptotic investigations of covariance-tapered

models (see, e.g., Wang and Loh (2011)), and in adapting results, such as

Theorems 2 and 3 in Kaufman and Shaby (2013), where ϕ is estimated, to the

approximate likelihoods presented here. Another direction for future research can
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Figure 4. The mean of cn(ϕ1, ϕ0, k) of 100 simulations on D2 = [0, 1]2. The error bars
represent one standard deviation. The sample size n takes values in 81, 256, 729, 2209,
and 6561. The graph describing the results obtained using maximin ordering is dodged to
the right of the graph describing the results obtained using sorted coordinate ordering.
The error bars in both graphs are connected using distinct line styles: solid lines for
maximin ordering and dashed lines for sorted coordinate ordering.

lead to formal developments about the inferential consistency of the “nugget” or

the variance of the measurement error when the spatial process has a discontinuity

at the origin arising from white noise (Tang, Zhang and Banerjee (2021)).

Finally, there is scope to investigate fixed-domain inference for other likelihood

approximations that extend or generalize (1.4) (see, e.g., Katzfuss and Guinness

(2021); Peruzzi, Banerjee and Finley (2022)).
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