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Abstract: Informative terminal events often occur in long-term recurrent event

follow-up studies. To explicitly reflect the effects of such events on recurrent event

processes, we propose a reverse nonparametric mean model for panel count data,

with a terminal event subject to right censoring. This model enjoys meaningful

interpretation for applications and robustness for statistical inference. Treating

the distribution of the right-censored terminal event time as a nuisance functional

parameter, we develop a two-stage estimation procedure by combining the Kaplan–

Meier estimator and nonparametric sieve estimation techniques. We establish the

consistency, convergence rate, and asymptotic normality of the proposed nonpara-

metric estimator, and construct a class of new statistics for a two-sample test. We

also establish the asymptotic properties of the new tests and evaluate their per-

formance using extensive simulation studies. Lastly, we demonstrate the proposed

method by applying it to panel count data from a Chinese longitudinal healthy

longevity study.

Key words and phrases: Monotone polynomial spline, nonparametric test, panel

count data, terminal event, two-stage estimation.

1. Introduction

In longitudinal follow-up studies, individuals may experience the same re-

current events repeatedly. However, the exact recurrent event times may not

be observed in practice. Instead, we can examine individuals at distinct time

points, and collect the number of recurrent events between two observation time

points. Such data are so-called panel count data, and occur frequently in medi-

cal follow-up studies and clinical trials. Many methods have been developed for

analyzing panel count data. For example, Sun and Kalbfeisch (1995), Wellner

and Zhang (2000), Hu, Lagakos and Lockhart (2009), and Lu, Zhang and Huang

(2007) studied the nonparametric estimation of the mean function of an under-
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lying counting process with panel count data, and Thall and Lachin (1988), Sun

and Fang (2003), Zhang (2006), Balakrishnan and Zhao (2009), and Zhao and

Zhang (2017) developed nonparametric tests for comparing the mean functions

of counting processes based on panel count data. In addition, Cheng and Wei

(2000), Sun and Wei (2000), Hu, Sun and Wei (2003), Sun, Tong and He (2007),

Wellner and Zhang (2007), Lu, Zhang and Huang (2009), He et al. (2017), and

Jiang, Su and Zhao (2020) studied semiparametric regression models with panel

count data, and Zhao et al. (2019) investigated a nonparametric regression model

for analyzing panel count data.

Recurrent events are often truncated by a terminal event, such as death. In

such cases, it is common to use a joint modeling approach and a shared frailty

variable to deal with the correlation between the terminal event and the recur-

rent event processes; see, for example, Liu, Wolfe and Huang (2004), Zhao, Zhou

and Sun (2011), Sun et al. (2012), Zhao, Li and Sun (2013a,b), and Zhou et al.

(2017). However, these approaches do not reflect the explicit effect of the termi-

nal event on recurrent events, which is often of interest in scientific investigations.

For example, Chan et al. (1995) found that AIDS-defending events accumulate

sharply before the death of an HIV-infected individual, and Lunney et al. (2003)

claim that the functional decline changes tremendously in the last year of the

lives of HIV-infected individuals. Directly modeling the effect of terminal event

on recurrent events is a challenging task. Recently, Chan and Wang (2010) de-

veloped a backward model for studying the behavior of recurrent events prior to

a terminal event, and Chan and Wang (2017) considered the effects of covariates

and extended the backward model to a semiparametric model. Kong et al. (2018)

proposed a conditional model for longitudinal data by treating the terminal event

time as a covariate. Here, we propose a reverse mean model for panel count data

with an informative terminal event, and then develop nonparametric inference

procedures for comparing the mean functions of recurrent event processes that

are likely truncated by a terminal event.

The main contributions of this work are fourfold. First, we propose a reverse

nonparametric mean model for panel count data with a right-censored terminal

event, where the nonparametric mean function is increasingly dependent on the

terminal event time. Thus, the proposed model provides an intuitive interpreta-

tion of the effect of a terminal event on recurrent event processes. Second, we

develop a two-stage sieve-based nonparametric estimation procedure by treat-

ing the distribution function of the terminal event time as a nuisance functional

parameter. Third, we establish the asymptotic properties of the proposed esti-

mator by overcoming the challenges posed by a nuisance functional parameter
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and a nonparametric estimator with a convergence rate slower than the standard

rate n−1/2. Fourth, we develop a class of nonparametric tests for comparing the

mean functions of recurrent event processes with panel count data in the presence

of an informative terminal event.

The remainder of this paper is organized as follows. In Section 2, we present a

reverse mean model with a terminal event, and propose a two-stage nonparamet-

ric sieve-based estimation procedure. In Section 3, we establish the asymptotic

properties of the proposed estimator. In Section 4, we propose a new class of test

statistics for two-sample comparisons, and establish their asymptotic normality.

In Section 5, we conduct simulation studies to demonstrate the finite-sample

performance of the proposed method, and in Section 6, we apply the proposed

method to panel count data from a Chinese longitudinal healthy longevity study.

We conclude the paper in Section 7. All technical proofs are provided in the

Supplementary Material.

2. Model Setting and Estimation Procedure

Suppose that a counting process {N(t) : 0 ≤ t ≤ τ} denotes the num-

ber of recurrent events occurring up to time t, where τ is a fixed time point.

Let T = (T1, T2, . . . , TK) be the observation times of N(t), where K represents

the total number of observation times. Then, the observed counting process is

N = (N1, N2, . . . , NK) = (N(T1), N(T2), . . . , N(TK)). Let U and C be the ter-

minal event time and the censoring time, respectively. The time for the last

observation is denoted by Y = U ∧ C, and whether the time is a terminal event

time is denoted by ∆ = 1{U≤C}. The observed data for subject i consist of

Xi = (Yi,∆i,Ki, Ti, Ni), for i = 1, . . . , n, where Ti = (Ti1, Ti2, . . . , TiKi
) and

Ni = (N(Ti1), N(Ti2), . . . , N(TiKi
)). Let X = {Xi, i = 1, . . . , n} denote a sample

of such panel count data from n subjects.

To investigate the effect of a terminal event on the recurrent event process,

motivated by Chan and Wang (2010, 2017) and Kong et al. (2018), we consider

a counting process Ñ(t;U) denoting the event counts from time t to the termi-

nal event U , and propose a reverse nonparametric mean model anchored at the

terminal event:

E(Ñ(t;U)|U = u) = Λ(u− t), (2.1)

where Λ(·) is an unknown nondecreasing function, with Λ(0) = 0 to ensure the

identifiability of the model. We propose modeling the recurrent events anchored

at the terminal event time using (2.1). The advantage of this approach is that we

can describe the behavior of the stochastic process from the terminal event in a
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straightforward manner, and can still use all the event counts to learn the model of

the entire process. This model implies that E(Ñ(t1;U)|U = u)−E(Ñ(t2;U)|U =

u) = Λ(u− t1)−Λ(u− t2), where 0 ≤ t1 ≤ t2 ≤ u. Noting that N(t2)−N(t1) =

Ñ(t1;U)− Ñ(t2;U) and N(0) = 0, we obtain E(N(t)|U = u) = Λ(u)−Λ(u− t).
Let F (u) denote the underlying distribution function of U . To make a valid

inference for our proposed model, we consider the following data scenarios: (i) U

and C are independent; (ii) the censoring event time C is noninformative for Λ;

and (iii) given (Y,∆), the distribution of (K,T ) is noninformative for Λ. Define

4Nj = N(Tj)−N(Tj−1) and 4Λj(u) = Λ(u−Tj−1)−Λ(u−Tj), for j = 1, . . . ,K

with T0 = 0. A straightforward calculation yields

E

 K∑
j=1

{4Nj −4Λj(U)}2|Y,∆,K, T ,N


=

K∑
j=1

∆{4Nj −4Λj(Y )}2 +

K∑
j=1

(1−∆)

∫∞
Y {4Nj −4Λj(u)}2dF (u)

1− F (Y )
.

Hence, we propose the following least-squares-based loss function:

`n(Λ, F ;X ) =
1

n

n∑
i=1

Ki∑
j=1

[
∆i{4Ni,j −4Λi,j(Yi)}2

+(1−∆i)

∫∞
Yi
{4Ni,j −4Λi,j(u)}2dF (u)

1− F (Yi)

]
, (2.2)

where 4Ni,j = Ni(Tij)−Ni(Ti(j−1)) and 4Λi,j(u) = Λ(u− Ti(j−1))−Λ(u− Tij).
A natural idea is to take the minimizer of ln(Λ, F ;X ), defined in (2.2) as the esti-

mator of the parameter. However, because the loss function involves an unknown

distribution function F , it is difficult to estimate Λ and F simultaneously. To

tackle this problem, we propose a two-stage approach. In Stage 1, we estimate

F using the Kaplan–Meier (KM) estimator F̂n(u) (Kaplan and Meier (1958)). In

Stage 2, we obtain Λ̂n by minimizing the loss function `n(Λ, F̂n;X ) with respect

to Λ. Because the observed data of (Y,∆) are used in both stages, to distinguish

them, we use the notation (Ỹ , ∆̃) to represent the data when we obtain the KM

estimator in Stage 1, without any ambiguity.

We adopt the spline-based sieve estimation method to estimate the non-

decreasing function Λ because of its numerical advantage and good statistical

properties (Lu, Zhang and Huang (2007, 2009)). Let {ti : i = 1, . . . ,mn + 2d} be

a sequence of knots that partition [0, τ ] into mn + 1 subintervals, where
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0 = t1 = · · · = td < td+1 < · · · < tmn+d < tmn+d+1 = · · · = tmn+2d = τ.

Let qn = mn + d and {Il(s), l = 1, . . . , qn} be I-spline basis functions of order d

(Ramsay (1988)). We then define the functional space of the estimator for Λ as

Φn =

{
qn∑
l=1

αlIl(s) : αl ≥ 0, l = 1, . . . , qn

}
.

Because F̂n is a monotone step function, as shown in Section S1 of the online

Supplementary Material, minimizing the loss function ln(Λ, F̂n;X ) is a quadratic

programming problem with the constraint that αl ≥ 0, for l = 1, . . . , qn. Let

I(s) = (I1(s), . . . , Iqn(s))T , α = (α1, . . . , αqn)T , and the solution of the quadratic

programming problem be α̂ = (α̂1, . . . , α̂qn)T . Then, the spline estimator of Λ(s)

is Λ̂n(s) = I(s)T α̂.

3. Asymptotic Properties

Before presenting the asymptotic results, we introduce some notation. Let

g(r) be the rth derivative of the function g. For r ≥ 1, define

Hr = {g : |g(r−1)(s)− g(r−1)(t)| ≤ c0|s− t| for all 0 ≤ s, t ≤ τ},
Φ = {Λ ∈ Hr : Λ is a nondecreasing continuous function

on [0, τ ] with Λ(0) = 0},
F = {F : F is a distribution function on [0,∞)}.

Denote the true value of (Λ, F ) as (Λ0, F0) ∈ Φ×F . For

B1, B2 ∈ B[0,τ ] =: {B ∩ [0, τ ] : B ∈ B},

where B denotes the collection of Borel sets, set

µ1(B1 ×B2) =

∫ ∞∑
k=1

P (K = k|U = u)

×
k∑
j=1

P
(
(u− Tj) ∈ B1, (u− Tj−1) ∈ B2|K = k, U = u

)
dF0(u),

µ2(B1 ×B2) =

∫ ∞∑
k=1

P (K = k|U = u)

×P
(
(u− TK) ∈ B1, u ∈ B2|K = k, U = u

)
dF0(u). (3.1)
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Then, µ1 and µ2 are measures on ([0, τ ]2,B2
[0,τ ]). For any functions Λ1,Λ2 ∈ Φ,

we define the metric as

d1(Λ1,Λ2)2 = ||4Λ1(s1, s2)−4Λ2(s1, s2)||2L2(µ1)

= E

[
K∑
j=1

(
4Λ1,j(U)−4Λ2,j(U)

)2
]

= E

[
K∑
j=1

{
∆
(
4Λ1,j(Y )−4Λ2,j(Y )

)2

+ (1−∆)

∫∞
Y (4Λ1,j(u)−4Λ2,j(u))2dF0(u)

1− F0(Y )

}]
,

where 4Λ(s1, s2) = Λ(s2)− Λ(s1). For any F1, F2 ∈ F , we define the metric as

d2(F1, F2) = ||F1 − F2||∞,

where || · ||∞ represents the L∞ norm. Denote the δ-neighborhood of F0 by

Fδ = {F ∈ F : d2(F, F0) ≤ δ}, for any small δ > 0.

To establish the asymptotic properties of the proposed estimator, we assume

the following:

(C1) 0 < Λ0(τ) <∞.

(C2) 0 < F0(τ) < 1. F0 is absolutely continuous with respect to the Lebesgue

measure. Moreover, the density function f0(s) has a uniform positive lower

bound, for all s ∈ [M1, τ ], where M1 is a constant representing the minimum

value of the support of F0.

(C3) E
[∑K

j=1{4Nj −4Λ0,j(U)}2
]
<∞.

(C4) The probability of censoring % = P (Y < U) satisfies that 0 < % < 1.

(C5) mn = O(nν), for 0 < ν < 1/2. Moreover, we suppose that

max
d+1≤i≤mn+d+1

|ti − ti−1| = O(n−ν),

and there is a constant M2 > 0 such that

maxd+1≤i≤mn+d+1 |ti − ti−1|
mind+1≤i≤mn+d+1 |ti − ti−1|

≤M2

uniformly for n.



PANEL COUNT DATA WITH TERMINAL EVENT 2769

(C6) There is a constant M3 > 0 such that P (K ≤M3) = 1.

(C7) P (Tj − Tj−1 ≥M4, for all j = 1, . . . ,K) = 1, with some constant M4 > 0.

Remark 1. Condition (C1) is standard in the literature on nonparametric esti-

mation. Condition (C2) holds, in general, for the cumulative distribution function

of a continuous random variable. Condition (C3) requires that
∑K

j=14Nj has

finite second-order central moment. Condition (C4) ensures that the censoring

rate lies between zero and one, which is commonly assumed in survival data anal-

yses. Condition (C5) is a regularity condition for the monotone spline estimation;

see Lu, Zhang and Huang (2007, 2009). Condition (C6) is similar to Condition

(C2) in Wellner and Zhang (2007), and indicates that the number of observa-

tions is bounded. Condition (C7) requires that the adjacent observation times

are separable (Wellner and Zhang (2007)), which is generally the case in practice.

Theorem 1. (Consistency for the two-stage estimator). Suppose that

Conditions (C1)–(C7) hold. Then, for every 0 ≤ b1 ≤ b2 ≤ τ satisfying µ2([0, b1]×
[b2, τ ]) > 0, we have

‖4Λ̂n(s1, s2)1{(s1,s2)∈[b1,b2]×[b1,b2]} −4Λ0(s1, s2)1{(s1,s2)∈[b1,b2]×[b1,b2]}‖2L2(µ1)

= op(1).

In particular, if µ2({0} × {τ}) > 0, then d1(Λ̂n,Λ0) = op(1).

To establish the rate of convergence and the asymptotic normality, we further

assume the following:

(C8) µ1 is absolutely continuous with respect to the Lebesgue measure with a

derivative µ̇1, and µ̇1 has a uniform positive lower bound.

(C9) There is a constant 0 < λa < ∞ such that 1/λa < Λ′0(s) < λa, for all

s ∈ [τ ′, τ ], with 0 < τ ′ ≤ τ such that Λ0(τ ′) > 0.

(C10) P (U ≥ τ) = ω1 > 0 and P (C ≥ τ) = ω2 > 0.

(C11) E(ecN(t)) is uniformly bounded for t ∈ [0, τ ] and some constant c.

Remark 2. Condition (C8) implies that the metric µ1 defined in (3.1) has a

strictly positive intensity. Condition (C9) requires that the true conditional mean

function be absolutely continuous with a bounded intensity function, which is

reasonable, as explained in Wellner and Zhang (2007). Condition (C10) is used

as a technical condition in the proof of the uniform weak convergence rate of the

KM estimator, following Kong et al. (2018). Condition (C11) holds when N(t) is
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from a Poisson-type process or is uniformly bounded, conditional on the terminal

event time, which is also true in practice, in general.

Theorem 2. (Rate of Convergence). Suppose that Conditions (C1)–(C11)

hold and µ2({0} × {τ}) > 0. Taking ν = 1/(1 + 2r), we have d1(Λ̂n,Λ0) =

Op(n
−r/(1+2r)).

Before presenting the asymptotic normality, we introduce some additional

notation. Let P and Pn denote the probability measure and empirical measure,

respectively, with Pf =
∫
fdP and Pnf = n−1

∑n
i=1 f(Xi). Write `n(Λ, F ;X ) =

Pnm(Λ, F ;X). Let l∞(Hr) be the space of bounded functionals on Hr under

the L∞ norm. For h ∈ Hr, define a sequence of maps Qn of a neighborhood

of (Λ0, F0), denoted by U , in the parameter space for (Λ, F ) into l∞(Hr) as the

derivative of `n(Λ, F ;X ) with respect to Λ in the direction h:

Qn(Λ, F )[h] = lim
ε→0

`n(Λ + εh, F ;X )− ln(Λ, F ;X )

ε

= Pn lim
ε→0

m(Λ + εh, F ;X)−m(Λ, F ;X)

ε
= Pnψ(Λ, F ;X)[h],

and define Q(Λ, F )[h] = Pψ(Λ, F ;X)[h], where

ψ(Λ, F ;X)[h] =

K∑
j=1

[
∆
{
4Nj −4Λj(Y )

}
4hj(Y )

+(1−∆)

∫∞
Y {4Nj −4Λj(u)}4hj(u)dF (u)

1− F (Y )

]
,

with 4hj(u) = h(u− Tj−1)− h(u− Tj), for j = 1, . . . ,K. Furthermore, define

Q̇
(1)

Λ0,F̂n

(Λ̂n − Λ0)[h] = lim
ε→0

Q(Λ0 + ε(Λ̂n − Λ0), F̂n)[h]−Q(Λ0, F̂n)[h]

ε

= −Pς(Λ̂n, F̂n;X)[h],

with

ς(Λ, F ;X)[h] =

K∑
j=1

[
∆{4Λj(Y )−4Λ0,j(Y )}4hj(Y )

+(1−∆)

∫∞
Y {4Λj(u)−4Λ0,j(u)}4hj(u)dF (u)

1− F (Y )

]
,

and
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Q̇
(2)
Λ0,F0

(F̂n − F0)[h] = lim
ε→0

Q(Λ0, F0 + ε(F̂n − F0))[h]−Q(Λ0, F0)[h]

ε

= P
[∫ ∞

Y
ϕ̄Λ0,F0

(u;X)[h]d(F̂n − F0)(u)

]
,

with

ϕ̄Λ,F (u;X)[h] =
1−∆

1− F (Y )

K∑
j=1

{(
4Nj −4Λj(u)

)
· 4hj(u)

−
∫∞
Y

(
4Nj −4Λj(s)

)
· 4hj(s)dF (s)

1− F (Y )

}
.

Theorem 3. (Asymptotic Normality). Suppose that Conditions (C1)–(C11)

hold and µ2({0} × {τ}) > 0.

(i) Then, for any bounded function h ∈ Hr, we have

−
√
nQ̇

(1)

Λ0,F̂n

(Λ̂n−Λ0)[h] =
√
nQ̇

(2)
Λ0,F0

(F̂n−F0)[h]+
√
nQn(Λ0, F0)[h]+op(1).

(ii) Moreover,
√
nPς(Λ̂n, F̂n;X)[h]

d−→ N(0, σ2
0), where

σ2
0 = E

[
{Pϕ(Λ0, F0;X; Ỹ , ∆̃)[h] + ψ(Λ0, F0;X)[h]}2

]
,

and ϕ(Λ, F ;X; Ỹ , ∆̃)[h] is defined in the online Supplementary Material.

4. Two-Sample Test

Suppose that n subjects are drawn from two groups with corresponding sam-

ple sizes n1 and n2, where n1 + n2 = n. Denote the observed data of the lth

group as {X(l)
i : i = 1, . . . , nl} = {(Y (l)

i ,∆
(l)
i ,K

(l)
i , Ti

(l), Ni
(l)) : i = 1, . . . , nl}, for

l = 1, 2. Given the terminal event time U (l) = u, the conditional mean function

of Ñ (l)(t) is Λl(u− t).

4.1. Terminal events with an identical distribution

In this subsection, we assume that the terminal event times share the same

distribution function F0 for all the subjects, so that we can obtain its estimator F̂n
from the pooled data. We investigate a two-sample test with the null hypothesis

H0 : Λ1 = Λ2 = Λ0. Denote Λ̂l and Λ̂n as the estimates of Λl and Λ0, respectively,

based on the data set of group l and the pooled data, respectively.
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Theorem 4. (Two-sample test with an identical distribution of terminal

events). In addition to the conditions in Theorem 3, we suppose that hn(·) is a

bounded weight process, and there is a bounded function h ∈ Hr such that

d2
1(hn, h) = E

 K∑
j=1

{
4hn,j(U)−4hj(U)}2

 = op(n
−1/(1+2r)).

Assume that n1/n → p as n → ∞, where 0 < p < 1. Then, under H0 : Λ1 =

Λ2, Un =
√
nPn(ς(Λ̂1, F̂n;X)[hn]− ς(Λ̂2, F̂n;X)[hn]) converges in distribution to

N(0, (1/p+ 1/(1− p))σ2
0), where σ2

0 = E[ψ2(Λ0, F0;X)[h]]. Moreover, σ2
0 can be

estimated consistently using σ̂2
n = Pn[ψ2(Λ̂n, F̂n;X)[hn]].

Remark 5. Theorem 4 states the asymptotic normality of the new statistic Un
and gives a consistent estimator of its asymptotic variance. Then, the hn-specific

standardized statistic, Tn(hn) = Un{σ̂n
√
n/n1 + n/n2}−1, can be applied to con-

duct the two-sample hypothesis test. A natural choice is to take hn = Λ̂n. Other

possible choices of weight processes are explored and evaluated in the simulation

studies. Note that the weight process is only required to be bounded, which is

more flexible than the monotone conditions in Zhang (2006) and Balakrishnan

and Zhao (2009).

4.2. Terminal events with different distributions

In this subsection, we assume the distribution and density functions of U (l),

for l = 1, 2, are Fl and fl, respectively, which may be different for the two

groups. Let F̂l and Λ̂l be estimators of Fl and Λl, respectively. Given a partition

0 = t
(l)
0 < t

(l)
1 < · · · < t

(l)
νnl

= τ , we define histogram-type estimators of fl as

f̂l(u) = (F̂l(t
(l)
il

) − F̂l(t
(l)
il−1))/(t

(l)
i − t

(l)
i−1) for t

(l)
il−1 ≤ u < t

(l)
il

, following Földes,

Rejtő and Winter (1981). Set fT (u) = p1f1(u) + p2f2(u),

wl(u− t1)− wl(u− t2) =(h(u− t1)− h(u− t2))
fT (u)

fl(u)
,

w(l)
n (u− t1)− w(l)

n (u− t2) =(hn(u− t1)− hn(u− t2))

(
nl
n

+
nr
n

f̂r(u)

f̂l(u)

)
,

where pl = limn→∞ nl/n, for l, r = 1, 2, l 6= r.

Theorem 5. (Two-sample test with different distributions of terminal

events). Suppose that the conditions in Theorem 4 hold for each group and that

fl are Lipschitz continuous. Then, for Λ0 ∈ Hr, r ≥ 2, under the null hypothesis

H0 : Λ1 = Λ2 = Λ0, we have the following:
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(i) Ũn = (1/
√
n)
∑2

l=1

∑nl

i=1(ς(Λ̂1, F̂l;X
(l)
i )[hn] − ς(Λ̂2, F̂l;X

(l)
i )[hn]) converges

in distribution to N(0, (σ2
1/p1 + σ2

2/p2)), where

σ2
l = E[{Pϕl(Λ0, Fl;X

(l); Ỹ (l), ∆̃(l))[wl] + ψ(Λ0, Fl;X
(l))[wl]}2],

with ϕl(Λ, F ;X; Ỹ , ∆̃)[w] defined in the online Supplementary Material.

(ii) In addition, suppose the knots of the partition satisfy

max
i=1,...,νnl

(l)
{|t(l)i − t

(l)
i−1|} → 0 and

(
n

log n

)1/4

min
i=1,...,νnl

(l)

{∣∣∣t(l)i − t(l)i−1

∣∣∣}→∞
as n→∞. Then, σ2

l can be estimated consistently by σ̂2
l , and the asymptotic

variance of Ũn can be estimated consistently by σ̃2
n = n(σ̂2

1/n1 + σ̂2
2/n2),

where

σ̂2
l = Pnl

[{
Pnl

ϕ(l)
n (Λ̂l, F̂l;X

(l); Ỹ (l), ∆̃(l))[w(l)
n ] + ψ(Λ̂l, F̂l;X

(l))[w(l)
n ]
}2
]
,

with ϕ
(l)
n (Λ, F ;X; Ỹ , ∆̃)[w] defined in the online Supplementary Material.

According to Theorem 5, we can apply the statistics T̃n(hn) = Ũn/σ̃n to test

the equality of the mean function of the counting processes under the scenario of

different terminal event time distributions between the two samples.

5. Simulation Studies

5.1. Two-stage estimation for the mean function

We use simulation studies to evaluate the finite-sample performance of the

two-stage estimator Λ̂n with sample sizes n = 100 and 200. For subject i, the

observation Xi = (Yi,∆i,Ki, Ti, Ni) is generated as follows. The latent terminal

event time Ui is from 6 + exp(1), and the censoring time Ci is from 6 + κ exp(3).

The study ending time is set at τ = 10. The values of κ are chosen as 1.375 and

0.500, such that the terminal events are censored by 20% and 40%, respectively.

Let Yi = Ui ∧Ci and ∆i = 1{Ui≤Ci}. The number of observations Ki is generated

from the discrete uniform distribution in {1, . . . , 6}. Given the censored terminal

event time Yi, observation time Ti = (Ti1, Ti2, . . . , TiKi
) is an ordered sample

from the uniform distribution Unif(0, Yi). Let Ni be a Poisson process with

E(Ni(t)|U = u) = Λ0(u)−Λ0(u−t) and Λ0(s) = s. Therefore, Ni(Ti1) is from the

Poisson distribution with mean Ti1, and Ni(Tij)−Ni(Ti(j−1)) is from the Poisson

distribution with mean Tij − Ti(j−1). For the knots of the spline, d = mn = 3,
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(a) n = 100 and censoring rate = 20%
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(b) n = 100 and censoring rate = 40%
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(c) n = 200 and censoring rate = 20%
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(d) n = 200 and censoring rate = 40%
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Figure 1. Estimates of the mean function.

and let td+1, td+2, td+3 be the quartiles of {Yi − Tij : j = 1, . . . ,Ki, i = 1, . . . , n}.
All of our simulation studies are based on 1,000 replications.

Figure 1 shows the results of the two-stage estimators for the conditional

mean functions. The solid line represents the true mean function, the dashed line

represents the average of the estimated mean function, and the dotted-dash lines

represent the 2.5% and 97.5% pointwise percentiles of the functional estimator

based on 1,000 replications. From (a)–(d) in Figure 1, we conclude that the

sample mean of the estimated mean functions is very close to the true mean,

the degree of variability of the functional estimator decreases as the sample size

increases, indicating the asymptotic unbiasedness of the proposed method, and

the sampling distribution of the estimator does not appear to be affected by the

censoring rate.
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(b) Case 2
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Figure 2. Discrepancy of the mean functions.

5.2. Two-sample test with an identical distribution of terminal event

times

Here, we conduct the two-sample test for two groups that have the same

distribution of terminal event times. We generate two groups of independent and

identically distributed (i.i.d.) samples {X(l)
i : i = 1, . . . , nl} in the same way as

in Subsection 5.1, for l = 1, 2, with sample size n1 = n2 = 100, 150, or 200. Let

N (l) be a Poisson process with E(N (l)(t)|U (l) = u) = Λl(u) − Λl(u − t) for the

lth group. We considered the following two cases:

Case 1 : Λ1(s) = s, Λ2(s) = βs;

Case 2 : Λ1(s) = s, Λ2(s) =
10s

s+ β
.
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(b) Q−Q Plot for Tn(h

(2)
n )

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
am

p
le

 Q
u
an

ti
le

s

(c) Q−Q Plot for Tn(h
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Figure 3. Q–Q plots for n1=n2=200, β=1, and censoring rate = 20% when the distribu-
tion functions of the terminal event time are identical for the two groups.

We take β = 1, 1.1, 1.2, 1.3 in Case 1 and β = 1, 3, 5 in Case 2.

Figure 2 plots the true mean functions for the two cases with different values

of β. The conditional mean functions of the two groups do not overlap in Case

1, but do cross over in Case 2. The weight processes h
(j)
n (t), for j = 1, 2, 3, in

Theorem 4 are chosen to be

h(1)
n (t) = t, h(2)

n (t) =
1

n

n∑
i=1

1(t≥TiKi
), h

(3)
n (t) = Λ̂n(t).

The results of the simulation study are evaluated based on 1,000 replications.

Figure 3 presents quantile plots of the test statistics with the three weight

processes against the standard normal distribution for Case 1 with n1 = n2 = 200,
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Table 1. Simulation results of the two-sample tests with different weights for Case 1 when
the distribution functions of the terminal event time are identical for the two groups.

Censoring rate 20% Censoring rate 40%

β Tn(h
(1)
n ) Tn(h

(2)
n ) Tn(h

(3)
n ) Tn(h

(1)
n ) Tn(h

(2)
n ) Tn(h

(3)
n )

n1=n2=100

1 0.051 0.047 0.052 0.052 0.048 0.051

1.1 0.242 0.229 0.243 0.258 0.240 0.255

1.2 0.728 0.703 0.728 0.715 0.690 0.717

1.3 0.967 0.956 0.967 0.962 0.956 0.960

n1=n2=150

1 0.048 0.047 0.048 0.049 0.048 0.048

1.1 0.359 0.344 0.361 0.355 0.338 0.354

1.2 0.873 0.851 0.873 0.877 0.859 0.878

1.3 0.996 0.989 0.996 0.995 0.991 0.995

n1=n2=200

1 0.042 0.044 0.043 0.043 0.051 0.043

1.1 0.438 0.398 0.443 0.467 0.433 0.467

1.2 0.944 0.924 0.943 0.954 0.939 0.954

1.3 1.000 1.000 1.000 0.999 0.998 0.999

Table 2. Simulation results of the two-sample tests with different weights for Case 2 when
the distribution functions of the terminal event time are identical for the two groups.

Censoring rate 20% Censoring rate 40%

β Tn(h
(1)
n ) Tn(h

(2)
n ) Tn(h

(3)
n ) Tn(h

(1)
n ) Tn(h

(2)
n ) Tn(h

(3)
n )

n1=n2=100

1 0.999 1.000 0.752 1.000 1.000 0.868

3 0.982 0.971 0.859 0.987 1.000 0.892

5 0.998 1.000 0.991 0.999 1.000 0.991

n1=n2=150

1 1.000 1.000 0.900 1.000 1.000 0.960

3 0.998 1.000 0.949 0.998 1.000 0.970

5 1.000 1.000 0.998 1.000 1.000 0.999

n1=n2=200

1 1.000 1.000 0.941 1.000 1.000 0.977

3 1.000 1.000 0.986 1.000 1.000 0.989

5 1.000 1.000 1.000 1.000 1.000 1.000

β = 1, and censoring rate 20%. The figure shows that the normality of the test

statistics is satisfactory, in general, with a sample size of 200. Similar results are

obtained for other situations, and hence are not presented here.
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Table 3. Simulation results of the two-sample tests with different weights for Case 1 when
the distribution functions of the terminal event times are different for the two groups.

Censoring rate 20% Censoring rate 40%

β T̃n(h
(1)
n ) T̃n(h

(2)
n ) T̃n(h

(3)
n ) T̃n(h

(1)
n ) T̃n(h

(2)
n ) T̃n(h

(3)
n )

n1=n2=100
1 0.056 0.061 0.061 0.068 0.056 0.072
1.1 0.231 0.221 0.231 0.260 0.241 0.260
1.2 0.688 0.664 0.693 0.721 0.687 0.717
1.3 0.960 0.956 0.960 0.956 0.951 0.955

n1=n2=150
1 0.043 0.049 0.041 0.056 0.052 0.054
1.1 0.338 0.311 0.341 0.352 0.330 0.348
1.2 0.863 0.835 0.865 0.872 0.851 0.869
1.3 0.993 0.992 0.994 0.994 0.985 0.992

n1=n2=200
1 0.046 0.048 0.045 0.058 0.057 0.060
1.1 0.447 0.427 0.450 0.469 0.451 0.469
1.2 0.951 0.933 0.953 0.952 0.941 0.954
1.3 1.000 0.998 1.000 0.999 0.999 0.998

Tables 1 and 2 report the size and power of the proposed test statistics

Tn(h
(j)
n ) for the three weight processes at a significance level of 0.05 for different

values of β for Cases 1 and 2, respectively, where Tn(h
(j)
n ) represents the test

statistic with the jth weight process, for j = 1, 2, 3. The simulation results show

that the proposed test possesses good properties: (i) the estimated sizes are all

around the significance level of 0.05; (ii) for any fixed value of β in both cases, the

power increases when the sample size increases; (iii) the power increases to one

when the discrepancy of the mean functions becomes more evident, implying the

consistency of the proposed test; and (iv) the power of the test does not appear

to affected by the censoring rate.

5.3. Two-sample test with different distributions of terminal event

times

Here, we conduct a parallel simulation study to evaluate the proposed two-

sample test for two groups with different distributions of terminal event times.

The data sets are generated in a similar way to those in Subsection 5.2, except

that the terminal event times U
(1)
i and U

(2)
i are from 6 + exp(1) and 6 + exp(2),

respectively, and the censoring times C
(1)
i and C

(2)
i are from 6 + κ1 exp(3) and

6 + κ2 exp(3), respectively, where (κ1, κ2) = (1.375, 5.769) and (0.500, 1.010),

resulting in censoring rates of 20% and 40%, respectively. The three weight
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(c) Q−Q Plot for T̃n(h
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Figure 4. Q–Q plots for n1=n2=200, β=1, and censoring rate = 20% when the distribu-
tion functions of the terminal event times are different for the two groups.

processes h
(j)
n (t), for j = 1, . . . , 3, are chosen as

h(1)
n (t) = t, h(2)

n (t) =
1

n

n∑
i=1

1(t≥TiKi
), h

(3)
n (t) =

Λ̂1(t) + Λ̂2(t)

2
.

To calculate the histogram-type estimators of fl, we divide [6, τ ] into five equal

subintervals. The results of the simulation are again evaluated based on 1,000

replications.

Figure 4 presents quantile plots of the test statistics with the three weight

processes against the standard normal distribution with n1 = n2 = 200, β = 1,

and censoring rate 20% for Case 1. The normality of the test statistics appears

to be justified when the sample size is 200. The plots for other situations are
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Table 4. Simulation results of the two-sample tests with different weights for Case 2 when
the distribution functions of the terminal event times are different for the two groups.

Censoring rate 20% Censoring rate 40%

β T̃n(h
(1)
n ) T̃n(h

(2)
n ) T̃n(h

(3)
n ) T̃n(h

(1)
n ) T̃n(h

(2)
n ) T̃n(h

(3)
n )

n1=n2=100
1 1.000 1.000 0.834 1.000 1.000 0.926
3 0.986 1.000 0.884 0.999 1.000 0.947
5 0.997 1.000 0.987 1.000 1.000 0.996

n1=n2=150
1 1.000 1.000 0.940 1.000 1.000 0.985
3 0.998 1.000 0.976 0.999 1.000 1.000
5 1.000 1.000 0.999 1.000 1.000 0.999

n1=n2=200
1 1.000 1.000 0.972 1.000 1.000 0.990
3 1.000 1.000 0.994 1.000 1.000 0.995
5 1.000 1.000 1.000 1.000 1.000 1.000

similar, and so are not presented here. Tables 3 and 4 summarize the size and

power of the proposed statistics T̃n(h
(j)
n ), for j = 1, 2, 3, at a significance level of

0.05 for Cases 1 and 2, respectively. The results yield the same conclusions as

those in Subsection 5.2.

6. Real-Data Analysis

In this section, we apply the proposed method to a data set from the Chi-

nese Longitudinal Healthy Longevity Survey (CLHLS) for the period 1998 to 2014

(Zeng et al. (2017)). This survey was conducted by the Center for Healthy Aging

and Development Studies (CHADS) of the National School of Development at

Peking University and the Chinese Center for Disease Control and Prevention

(CDC) to study the determinants of healthy human longevity and later-life mor-

tality. The data consist of survey information in seven waves (1998, 2000, 2002,

2005, 2008, 2011, and 2014) from interviews with 9,093 respondents who were 77

years or older in the 1998 baseline survey. In each wave, the respondents were

asked to provide information about their health, socioeconomic status, family,

lifestyle, and demographic profile on a date randomly chosen in the interview

year.

For this data set, we analyze panel count data on serious illness before death,

where a serious illness is defined as one that results in a person being bedridden.

Then, we compare the incidences of serious illness among older adults living

in different areas during the overall study period. The incidences of serious
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Figure 5. The two-stage estimates of the mean function for the CLHLS data.

illness are counted repeatedly if the respondents were confined to bed again after

recovering from the previous serious illness. We analyze data for those subjects

who have at least one follow-up observation after 1998 to allow for a meaningful

analysis of the panel count data. Therefore, we include data on 4,362 older adults

after removing 3,368 individuals, of whom 2,005 died in 2000 or between 1998

and 2000, 894 were lost to follow-up in 2000, and 469 had missing or mistakenly

documented records. Of the 4,362 individuals, 1,489 and 1,561 lived only in urban

and rural areas, respectively, and 1,312 lived in both areas during this period. For

the ith individual, we define Tij as the time (in months) between survey j and

the baseline survey, Ni(t) as the accumulated number of serious illnesses suffered

by an individual up to time t, and Ki as the total number of follow-up surveys

in the study. Death is the terminal event, and loss to follow-up is treated as the

censoring event to death. The longest follow-up time is τ = 200 (months), and

the censoring rate is 25.72%.

We examine the mean function of the serious illness process using model (2.1).

We estimate the mean function using an I-spline with order d = 3 and mn = 3

to divide [0, τ ] into four subintervals with internal knots of splines selected at

td+1 = τ/4, td+2 = τ/2, td+3 = 3τ/4. Figure 5 plots the estimated mean functions

for the combined sample (solid line), urban sample (dash line), rural sample

(dotted-dash line), and dual-area sample (long-dash line). The figure shows that

urban-area residents tended to experience more serious illnesses than rural-area

and dual-area residents did, which may be because the latter two groups had

limited access to advanced medical care, compared with their counterparts in

urban areas.
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Figure 6. KM estimates of the survival function for the CLHLS data.

We use the same three weight functions h
(j)
n , for j = 1, 2, 3, as those in

Subsection 5.2 to conduct the two-sample test for each pair of two mean functions

for the urban sample, rural sample, and dual-area sample. That is, the null

hypotheses are H
(1)
0 : ΛU (s) = ΛR(s), H

(2)
0 : ΛU (s) = ΛD(s), and H

(3)
0 : ΛR(s) =

ΛD(s), where ΛU , ΛR, and ΛD are the mean functions for the urban sample,

rural sample, and dual-area sample, respectively. To conduct the test, we first

use the log-rank test to conclude that the survival function of death for urban-area

residents is significantly different from those of rural-area residents and dual-area

residents, with p-values 3 × 10−6 and 0.006, respectively. Furthermore, the log-

rank test shows that the survival functions of death for rural-area residents are

not significantly different from those of dual-area residents, with a p-value= 0.09.

Figure 6 shows KM estimates for the survival functions of death for older adults

in the three groups. We use the test statistic in Theorem 4 to compare the mean

functions of the rural-area and dual-area residents. For the tests H
(1)
0 : ΛU (s) =

ΛR(s) and H
(2)
0 : ΛU (s) = ΛD(s), we divide [0, τ ] evenly into eight subintervals

to obtain the histogram-type estimators, and then apply the test statistic in

Theorem 5. The test results, summarized in Table 5, suggest there is a significant

difference in later-life serious illness experience at a level of 0.01 between urban-

area and rural-area residents, and between urban-area and dual-area residents.

Although the mean functions of the dual-area and rural-area residents are not

statistically different (p-value>0.05), the dual-area residents seem to have fewer

incidences of severe illness compared with rural-area residents. This may be

because many rural-area residents in China have recently moved to urban areas,

or because older adults who have lived in both urban and rural areas tend to have
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Table 5. Two-sample test results for the three weights for the CLHLS data.

h
(1)
n h

(2)
n h

(3)
n

H
(1)
0 : ΛU (s) = ΛR(s)

Ũn 287.904 3.968 4.325

σ̃n 77.849 1.138 1.182

T̃n 3.698 3.488 3.659

p-value < 0.001∗∗∗ < 0.001∗∗∗ < 0.001∗∗∗

H
(2)
0 : ΛU (s) = ΛD(s)

Ũn 368.945 4.132 5.225

σ̃n 79.298 1.193 1.205

T̃n 4.653 3.465 4.335

p-value < 0.001∗∗∗ < 0.001∗∗∗ < 0.001∗∗∗

H
(3)
0 : ΛR(s) = ΛD(s)

Un 84.872 0.384 0.932

σn 66.322 0.957 0.833

Tn 1.280 0.401 1.119

p-value 0.201 0.688 0.263

Tn(h) (or T̃n(h)): the observed value of the test statistic with different weight functions; ∗∗∗

represents a significance level of 0.01.

a better family socioeconomic status and health status compared with rural-area

residents. Our conclusions were consistent, regardless of the choice of the weight

processes.

7. Discussion

Focusing on the potential associations between recurrent event and terminal

event processes that often occur in life sciences, we have developed a conditional

nonparametric mean functional model to study the explicit effects of terminal

events on a recurrent event process with panel count data. This approach is par-

ticularly useful for determining the recurrent event behavior prior to the terminal

event, but has challenges in terms of numerical computation and statistical infer-

ence because of the nature of panel count data subject to informative termination.

We have designed a two-stage spline-based estimation procedure to ease the com-

putational burden, and have examined the asymptotic behavior of the proposed

nonparametric estimator using modern empirical process theories. In particu-

lar, the asymptotic normality can be readily expanded to address multi-sample

hypothesis-testing problems. Our extensive simulation studies demonstrate the

good performance of the proposed method in finite-sample settings.
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The proposed method can be extended to consider a conditional semipara-

metric mean function model:

E(Ñ(t;U)|U = u, Z) = exp(βTZ)Λ(u− t), 0 ≤ t ≤ u,

where Ñ(t;u) = N(u)−N(u− t), N(t) is the number of recurrent events up to

time t, U is the terminal event time, Z is a covariate vector, β is an unknown

parameter, and Λ(·) is an unknown nondecreasing baseline function. This model

has a broader application that not only captures the effect of the terminal event,

but also allows us to assess external risk factors on a recurrent event process, and

is left to future research.

Supplementary Material

The online Supplementary Material provides the calculation of the loss func-

tion, some preliminary lemmas, proofs of Theorems 1–5, some additional simula-

tion studies, and a real-data analysis.
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