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Abstract: Large-scale multivariate regression is a fundamental statistical tool with

a wide range of applications. This study considers the problem of simultaneously

testing a large number of general linear hypotheses, encompassing covariate-effect

analysis, analysis of variance, and model comparisons. The challenge that accom-

panies a large number of tests is the ubiquitous presence of heavy-tailed and/or

highly skewed measurement noise, which is the main reason for the failure of con-

ventional least squares-based methods. For large-scale multivariate regression, we

develop a set of robust inference methods to explore data features such as heavy

tailedness and skewness, which are not visible to least squares methods. The new

testing procedure is based on the data-adaptive Huber regression and a new covari-

ance estimator of regression estimates. Under mild conditions, we show that our

methods produce consistent estimates of the false discovery proportion. Extensive

numerical experiments and an empirical study on quantitative linguistics demon-

strate the advantage of the proposed method over many state-of-the-art methods

when the data are generated from heavy-tailed and/or skewed distributions.
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1. Introduction

Multivariate regression is a fundamental statistical tool for data analysis with

applications in fields including biology, financial economics, linguistics, psychol-

ogy, and social science. By modeling thousands or tens of thousands of responses

and covariates or experimental factors, it provides statistical decisions on indi-

vidual levels by simultaneously testing many general linear hypotheses, including

the covariate-effect analysis, analysis of variance, and model comparisons, among

others. For example, multivariate regression has become a standard tool in dif-

Corresponding author: Wen Zhou, Department of Statistics, Colorado State University, Fort Collins, CO
80523, USA. E-mail: riczw@stat.colostate.edu.

https://doi.org/10.5705/ss.202021.0003
mailto:riczw@stat.colostate.edu


1832 SONG, ZHOU AND ZHOU

ferential expression analyses in genomics (Ritchie et al. (2015)), and is commonly

used in corpus linguistics for word usage comparisons (Khany and Tazik (2019)).

See Cai and Sun (2017) for a comprehensive review of relevant applications.

To simultaneously test many general linear hypotheses, the conventional

practice is to compute individual p-values based on F -tests or likelihood ratio

tests, and then to employ multiple testing procedures to control the false discov-

ery rate (FDR, see Benjamini and Hochberg (1995); Storey (2002)). However,

this standard approach and its theoretical validity often rely on strong distribu-

tional assumptions, such as a normality/sub-Gaussianity or symmetry condition

on the error distribution. Its effectiveness in terms of FDR control and power

may be compromised when dealing with heavy-tailed and/or skewed data with

large scales, such as microarray data (Purdom and Holmes (2005)) and text data

(Zipf (1949)).

Overcoming this challenge requires a procedure that is robust against heavy-

tailed and/or skewed error distributions. Heavy tailedness increases the chance

of observing data that are more extreme than the majority. We refer to these

outlying data points as stochastic outliers. A procedure that is robust against

such outliers, as evidenced by its better finite-sample performance than that of

a non-robust method, is called a tail-robust procedure (Ke et al. (2019)). In

contrast to the conventional robustness under Huber’s ε-contamination model

(Huber (1964)) or the regularization-based robustness for detecting and removing

outliers (Kong, Bondell and Wu (2018)), the notion of tail-robustness focuses

on the challenge that methods that minimize the empirical risk perform poorly

because the empirical risk is not uniformly close to the population risk, given the

heavy-tailed and/or skewed errors (Prasad et al. (2020)). Although several new

methods and estimation theory under heavy-tailed models have been developed

(Catoni (2012); Minsker (2018); Sun, Zhou and Fan (2020)), fewer studies have

focused on inference, especially in a large-scale setting (Fan et al. (2019); Minsker

(2019)).

Building on the idea of the adaptive Huber regression, we develop a robust

multiple testing procedure to test many general linear hypotheses in the presence

of heavy-tailed and/or skewed errors. First, we employ the adaptive Huber re-

gression to estimate the multivariate regression coefficients, based on which, we

construct a robust test statistic and compute approximate p-values to estimate

the false discovery proportion (FDP). Next, we apply Storey’s FDR controlling

procedure (Storey (2002)) to determine a threshold, below which the p-values

lead to the corresponding hypotheses being rejected. By allowing the robustifi-

cation parameter to diverge with the sample size, the adaptive Huber regression
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estimator admits a tight non-asymptotic deviation bound and is asymptotically

efficient (Sun, Zhou and Fan (2020)). Theoretically, the non-asymptotic Bahadur

representation is a crucial step for establishing the limiting distribution of the es-

timator or its functionals. Practically, the proposed method is fully data-driven

(Wang et al. (2021)), and therefore computationally attractive and applicable to

large-scale problems.

The main contributions of this study are as follows. Methodologically, we de-

velop a tail-robust multiple testing procedure to simultaneously draw inferences

on large-scale multivariate regressions in the presence of heavy-tailed and/or

skewed errors. This general framework includes the large-scale simultaneous

mean testing problem as a special case. Compared with the traditional approach

in multivariate and high-dimensional statistics, our method imposes very mild

moment conditions on the data, and the number of hypotheses/responses is al-

lowed to grow exponentially fast with the sample size. These features make our

method particularly advantageous and appealing for conducting an inference on

large-scale multivariate regression models with heavy-tailed and/or asymmetric

errors, which is corroborated by our comprehensive simulation studies. Further-

more, motivated by Huber (1973), we propose a novel covariance estimator of the

adaptive Huber regression estimate, and derive an interesting new exponential-

type deviation bound that is of independent interest. The theoretical analysis

of the new procedure is nontrivial. For that, we explore and develop interesting

new technical results, by which we show that the proposed method controls the

FDP and FDR asymptotically under mild moment and correlation conditions on

the error vector. Computationally, our method is fast by taking advantage of

the computational efficiency of the data-adaptive Huber regression (Wang et al.

(2021)). In addition to numerical experiments, we apply our method to ana-

lyze text data from the Standardized Gutenberg Project Corpus (Gerlach and

Font-Clos (2020)). We identify genre-representative words in works of William

Shakespeare, and investigate the differences between the works of Lewis Carroll,

Charles Dickens, and Arthur Conan Doyle. This empirical study demonstrates

that our method is a useful addition to the existing toolkit for modeling and

analyzing text data in quantitative linguistics.

The rest of the paper proceeds as follows. In Section 2, we revisit testing

general linear hypotheses based on multivariate regressions, and introduce our

procedure based on the adaptive Huber regression. In particular, we introduce a

novel Huber-type estimator of the covariance of the regression coefficients in Sec-

tion 2.2. We establish the statistical guarantees in Section 3. Section 4 presents

our simulations. In Section 5, we apply our method to a well-known quantitative
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linguistics data set, namely the Gutenberg Project. Extensions of our method are

discussed in Section 6. All proofs and additional numerical results are provided

in the Supplemental Material.

2. Model and Methodology

Throughout the paper, we write ‖u‖ = (
∑d

i=1 u
2
i )

1/2 as the `2-norm of the

vector u = (u1, ud)
T ∈ Rd. Let 〈u,w〉 be the inner product of vectors u and

w and ‖u‖2 = 〈u,u〉. Denote Sd−1 = {u ∈ Rd : ‖u‖ = 1} as the unit sphere

in Rd. For the matrix A ∈ Rd×d, denote ‖A‖ = supu∈Sd−1 ‖Au‖, λmax(A), and

λmin(A) as the spectral norm, maximum eigenvalue, and minimum eigenvalue,

respectively. Let Φ(z) := P(U < z), with U ∼ N(0, 1), be the cumulative distri-

bution function of the standard normal distribution. Denote I(·) as the indicator

function.

Consider independent data {(Yi,Xi)}ni=1, where Yi = (Yi1, . . . , Yip)
T, Xi =

(Xi1, . . . , Xid)
T, with d ≥ 1 and d/n → 0 as n → ∞. For each 1 ≤ j ≤ p, the

conditional expectation of Yij given Xi is modeled by E(Yij |Xi) = µj + XT
i βj .

Define the data matrices Y = (Y1, . . . ,Yn)T ∈ Rn×p and X = (X1, . . . ,Xn)T ∈
Rn×d. The multivariate regression of interest is

Y = 1nµ
T + XB + Ξ, (2.1)

where µ = (µ1, . . . , µp)
T is the intercept vector, 1n = (1, . . . , 1)T ∈ Rn, B =

(β1, . . . ,βp) ∈ Rd×p consists of the slope coefficients, and Ξ = (εT
1 , . . . , ε

T
n )T ∈

Rn×p, with εi = (εi1, . . . , εip)
T. Independent of Xi, the p-dimensional residual

errors εi are independent and identically distributed (i.i.d.), with mean zero and

covariance matrix Σε = (σε,jk)1≤j,k≤p. For ease of notation, let θj = (µj ,β
T
j )T ∈

Rd+1 and Zi = (1,XT
i )T ∈ Rd+1, and define the parameter and design matrix

as Θ = (θ1, . . . ,θp) ∈ R(d+1)×p and Z = (Z1, . . . ,Zn)T, respectively, so that

(2.1) reduces to Y = ZΘ + Ξ. Based on (2.1), we are interested in performing a

simultaneous inference on the p hypotheses

H0j : Cθj = c0j versus H1j : Cθj 6= c0j for j = 1, . . . , p, (2.2)

where the matrix C ∈ Rq×(d+1), the vectors c0j ∈ Rq are prescribed, and

rank(C) = q ≤ d+ 1. The hypotheses in (2.2) encompass a variety of important

applications, including inferences on contrasts in an analysis of variance and test-

ing for treatment effects. Likelihood-based or least squares-based methods have

been employed under the assumption that the covariates and/or errors follow ei-
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ther normal or light-tailed symmetric distributions (Friguet, Kloareg and Causeur

(2009)). With a large p, the underlying distributions, by chance alone, may have

quite different scales, and can be highly skewed and heavy tailed. Therefore, out-

liers occur more frequently, challenging the efficacy of the standard methods. We

make no parametric distributional assumptions, such as normality or elliptical

symmetry. Instead, we define moment parameters vj,δ = {E(|ε1j |2+δ)}1/(2+δ), for

δ > 0. Specifically, set vj = vj,2.

To test the linear hypotheses in (2.2), we first estimate the model parameters

robustly in the presence of heavy-tailed and/or skewed errors. For j = 1, . . . , p,

define the Huber-type M -estimators θ̂j as

θ̂j := (µ̂j , β̂
T
j )T = argmin

µ∈R,β∈Rd

n∑
i=1

`τj (Yij − µ−XT
i β), (2.3)

where `τ (x) = (x2/2)I(|x| ≤ τ) + (τ |x|− τ2/2)I(|x| > τ) is the Huber loss (Huber

(1964)), parameterized by τ > 0. Our theoretical analysis suggests that with

τj � n1/(2+δ){log(np) + d}−1/(2+δ), for some δ > 0, the estimators θ̂j are close to

θj uniformly over j = 1, . . . , p with high probability, even when p grows exponen-

tially fast with n. Here, the divergence of τj guarantees θ̂j to be sub-Gaussian,

even if the error admits only a (2 + δ)th finite moment. More importantly, the

order of τj grants the desired approximation error of the Bahadur representation

to θ̂j (Proposition 1), as well as the uniform non-asymptotic bounds of the esti-

mated covariance of θ̂j (Theorem 2). As noted in the literature (Catoni (2012);

Fan et al. (2019); Sun, Zhou and Fan (2020); Wang et al. (2021)), the divergent

τj is necessary to balance the bias and robustness in the presence of heavy-tailed

and/or skewed errors. On the other hand, the order of τj in our setting differs

from those of earlier studies on adaptive Huber regressions. For example, with a

finite (1 + ε)th moment of the error, Sun, Zhou and Fan (2020) focused on esti-

mating the adaptive Huber regression that corresponds to p = 1 in our setting,

and considered τj = O(nmax{1/(1+ε),1/2}(d + log n)−max{1/(1+ε),1/2}). Fan et al.

(2019) used τj = O(n1/2{log(np)}−1/2) to test p-dimensional mean vectors under

the assumption of a finite fourth moment of the errors, which corresponds to

d = 1 in our setting. In practice, τj can be chosen using either cross-validation

or the recent data-driven method of Wang et al. (2021). The latter avoids a grid

search for each j, and hence is computationally appealing, especially for large

p. Using these robust estimates θ̂j , we then construct test statistics with ap-

proximated p-values for (2.2) that are obtained under the null. Together with

the Benjamini−Hochberg (BH) method (Benjamini and Hochberg (1995)) or its
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variants, for example, Storey (2002), we develop a robust procedure to simulta-

neously test the p hypotheses in (2.2).

2.1. Test procedure for general linear hypotheses

We now describe our test procedure for (2.2). Given the estimators θ̂j ob-

tained from (2.3), with τj = τ0jn
1/(2+δ){log(np) + d}−1/(2+δ) for τ0j ≥ vj,δ and

δ ∈ (0, 2], we consider the following test statistic:

Vj = n(Cθ̂j − c0j)
T(CΣ̂jC

T)−1(Cθ̂j − c0j), (2.4)

for each j, where Σ̂j is an estimate of Σj := cov(n1/2θ̂j); see Sections 2.2 and 3.2.

In (2.2), H0j is rejected for large Vj . As we will show, the Vj are asymptotically

χ2
q-distributed under H0j uniformly in j. Leveraging this, we can estimate the

FDP to determine the rejection threshold that bounds the estimated FDP by a

prespecified level α ∈ (0, 1).

Let H0 = {j : 1 ≤ j ≤ p,H0j is true} and p0 := |H0|. Denote the num-

ber of discoveries and false discoveries by R(z) =
∑p

j=1 I(Vj ≥ z) and V (z) =∑
j∈H0

I(Vj ≥ z), respectively, for the threshold z > 0. The FDP is defined as

FDP(z) = V (z)/max{R(z), 1}. According to the law of large numbers, V (z)

should be close to p0P(χ2
q > z), whereas the number of nulls p0 is not acces-

sible, in general. When both p and p0 are large and p1 = p − p0 = o(p) is

small, which is known as a sparse setting in the high-dimensional regime, the

approximated FDP AFDP(z) = V̂ (z)/max{R(z), 1}, with V̂ (z) = pP(χ2
q > z),

is a reasonable and slightly conservative surrogate for the asymptotic approxi-

mation p0P(χ2
q > z)/max{R(z), 1} and FDP(z). Using AFDP(z), we can deter-

mine the threshold ẑα = inf {z ≥ 0 : AFDP(z) ≤ α} for the nominal level α. For

j = 1, . . . , p, H0j is rejected whenever Vj ≥ ẑα. Essentially, our procedure is based

on the BH method, with the input p-values obtained from robustified/Huberized

test statistics. Similar ideas are also adopted in Cai and Liu (2016) and Cai et

al. (2019). The main difference is that the latter test statistics have closed-form

expressions, whereas our statistics are based on M -estimators.

Note that if π0 = p0/p is bounded away from one as p → ∞, AFDP(z)

may overestimate FDP(z). To improve the power, we may combine existing es-

timations of π0 in the literature with our procedure to calibrate the threshold

of rejection in a more adaptive fashion. For example, Storey (2002) estimates

V (z) by pπ̂0(η)P(χ2
q > z) for a predetermined η ∈ [0, 1), where π̂0(η) = {(1 −

η)p}−1
∑p

j=1 I(Pj > η) and Pj is the p-value associated with the jth test statis-

tic. Storey and Tibshirani (2003) suggest η = 0.5, and Blanchard and Roquain
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(2009) recommend η = α for dependent hypotheses. Using this estimate of

V (z), our threshold of rejection can be refined accordingly as ẑηα = inf{z ≥ 0 :

pπ̂0(η)P(χ2
q > z)/R(z) ≤ α}.

2.2. A refined Huber-type estimator of Σj

A naive estimator of Σj = cov(n1/2θ̂j) for conducting our test is σ̃ε,jjΣ̂
−1
Z ,

where σ̃ε,jj is an estimate of σε,jj , and Σ̂Z = n−1
∑n

i=1 ZiZ
T
i . When only µ is

present, that is, d = 0, Fan et al. (2019) proposed a U -statistic-based variance

estimator and an adaptive Huber-type estimator of the second moment, which,

combined with the mean estimator, is used to estimate the variance. The compu-

tational complexity of their estimator is O(n2(d+ 1)), and hence grows fast with

d. For the latter estimator, because the squared data is severely right skewed, the

Huber-type truncation inevitably leads to an underestimation of the second mo-

ment, and therefore the variance. Motivated by the classical theory of the Huber

regression (Section 7.6 in Huber and Ronchetti (2009)), we propose an estima-

tor Σ̂j based on the asymptotic covariance of the conventional Huber regression

estimator.

Given τ > 0, the classical Huber regression estimator θ̂ of θ admits that

n1/2(θ̂ − θ) converges to N(0,Στ ) in distribution, where Στ = {P(|ε| < τ)}−2

E{`′τ (ε)2}Σ−1
Z and ΣZ = E(ZZT) ∈ R(d+1)×(d+1) (Huber (1973)). Resembling

Στ , our estimator Σ̂j consists of three Huber-type estimates and uses the tapering

function (Cai, Zhang and Zhou (2010))

I∗τ (x) = I(|x| ≤ τ) + h−1
n (τ + hn − |x|)I(τ < |x| ≤ τ + hn), (2.5)

which is h−1
n -Lipschitz continuous. Given a robustification parameter τj > 0 and

the corresponding estimate θ̂j from (2.3), define Wj = n−1
∑n

i=1 I∗τj (eij)ZiZ
T
i

and mj = n−1
∑n

i=1 I∗τj (eij), where eij = Yij − ZT
i θ̂j . Here Wj and mj are

estimates of P(|ε1j | ≤ τj)ΣZ and P(|ε1j | ≤ τj), respectively. Recall that Σ̂Z =

n−1
∑n

i=1 ZiZ
T
i . Inspired by (7.83) in Huber and Ronchetti (2009), we define the

covariance estimator Σ̂j in (2.4) as

Σ̂j =

[
n∑
i=1

{`′τj (eij)}
2

]
{(n− d− 1)Kj}−1W−1

j Σ̂ZW−1
j , (2.6)

where Kj = 1 + (nmj)
−1(d + 1)(1 −mj) is a correction factor that benefits the

finite-sample performance.

For the conventional Huber regression with fixed τ > 0, it can be shown that,
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with I∗τ (x) replaced by I(|x| ≤ τ), Σ̂j converges in probability to Στ as n → ∞.

To legitimize using Vj to test (2.2), we show in Section 3.2 that with the adaptive

τj , the covariance estimator Σ̂j in (2.6) is close to Σj uniformly over j, with high

probability. In addition, because hn is aligned with τ = τ0a(n, p, d) for some

function a in n, p, d, to make it scale invariant, a more adaptive approach is to

consider chn, where c can be set as τ0, which is determined similarly to τ (Wang

et al. (2021)), or as a minimum absolute deviation estimator of the variance

using the fitted residuals. Refer to Section S5.3 in the Supplement Material for

a numerical experiment that examines the stability of our method on the choice

of hn.

2.3. Related works

Our method generalizes the robust large-scale simultaneous mean testing

procedure considered by Fan et al. (2019). In addition to the robust multiple

inference, Fan et al. (2019) focused on modeling Ξ in (2.1) using a latent factor

model to improve the power, without which their problem can be viewed as a

special case of (2.1). Methodologically, to draw multiple inferences on B in (2.1)

with p � n, an easily computable and accurate estimate of the covariance of

the adaptive Huber regression coefficient is needed for all p regressions. Such

an estimator dictates a careful exploitation of the design Z, whereas Fan et al.

(2019) considered only Z = 1 ∈ Rn×1, which is not trivially extendable to the

problem we consider here.

Our estimator in (2.6) bridges the gap, and consists of two parts: the first

part (n − d − 1)−1
∑n

i=1{`′τj (eij)}
2 provides a robust estimate of σε,jj , and the

second part K−1
j W−1

j Σ̂ZW−1
j offers a robustification of the inverse Gram ma-

trix
(
n−1ZTZ

)−1
. This can be naturally considered as a robustification of the

covariance of the least squares estimator. In addition, by using the tapering

function I∗τ (x) as a smoothed version of the second-order derivative of Huber’s

loss to specify Wj and Kj , our estimator is continuous, which is crucial for the

uniform consistency of Σ̂j across j. The uniform consistency of Σ̂j leads to the

FDP control of our robust multiple test for large-scale multivariate regressions.

In contrast, in addition to the fact that the procedure of Fan et al. (2019) is not

able to exploit Z when d ≥ 1, their variance estimator of σε,jj , which is the dif-

ference between a (restricted) robust second-order moment and a squared robust

first-order moment of the error, may suffer from bias when d is large, as discussed

in Section 2.2. Moreover, it requires extra tuning parameters to robustly estimate

the second-order moment. A numerical experiment is reported in Section S5.5 of



LARGE-SCALE INFERENCE OF MULTIVARIATE REGRESSION 1839

the Supplementary Material to verify the above discussion.

3. Statistical Guarantees

In this section, we establish theoretical guarantees of our method by first

assuming a known Σj , and then exploring the closeness between Σj and Σ̂j in

(2.6). Hereafter, we focus on Zi being random (except for the first coordinate),

and report the results under fixed designs in the Supplementary Material.

3.1. Approximation of FDP with known Σj

Assume the covariance matrix Σj is known for each j. Consider the or-

acle test statistic V ◦j = n(Cθ̂j − c0j)
T(CΣjC

T)−1(Cθ̂j − c0j). Given z ≥ 0,

write R◦(z) =
∑p

j=1 I(V ◦j > z), V ◦(z) =
∑

j∈H0
I(V ◦j > z), and FDP◦(z) =

V ◦(z)/R◦(z). Heuristically, V ◦j is approximately χ2
q-distributed under H0j , so

that we can approximate FDP◦(z) by

AFDP◦(z) = {p0 P(χ2
q > z)}{R◦(z)}−1. (3.1)

To show that AFDP◦(z) provides a valid asymptotic (pointwise) approxima-

tion of FDP◦(z), we impose the following technical conditions. Denote Rε =

(rε,jk)1≤j,k≤p as the correlation matrix of ε1 = (ε11, . . . , ε1p)
T, that is, Rε =

D−1
ε ΣεD

−1
ε , with D2

ε = diag(σε,11, . . . , σε,pp).

Condition 1. (i) p = p(n)→∞ and log(p) = o(n1/2) as n→∞; (ii) the error

vectors ε1, . . . , εn are independent, and satisfy E(εij |Zi) = 0, E(ε2ij |Zi) = σε,jj;

(iii) there exist δ ∈ (0, 2], cε > 0, and Cε > 0, such that cε ≤ min1≤j≤p σ
1/2
ε,jj ≤

max1≤j≤p vj,δ ≤ Cε; and (iv) there exist κ0 ∈ (0, 1) and κ1 > 0 such that

max1≤j 6=k≤p |rε,jk| ≤ κ0 and p−2
∑

1≤j 6=k≤p |rε,jk| = O(p−κ1).

In Condition 1, (i) is a commonly assumed asymptotic regime for (n, p) in

high-dimensional statistical inference; (ii) is standard for linear regression models;

compared with traditional settings that presume a finite fourth or higher-order

moments of errors, (iii) assumes only the uniform boundedness of the (2 + δ)th

moments; and (iv) allows weak dependence among ε11, . . . , ε1p. In addition, we

impose the following conditions on Zi. Denote Z̃i = Σ
−1/2
Z Zi, where ΣZ =

E(ZZT) is assumed to be positive definite.

Condition 2. The predictors {Zi}ni=1 are sub-Gaussian, that is, for some A0 > 0,

P(|〈u, Z̃i〉| ≥ A0‖u‖t) ≤ 2 exp(−t2), for any u ∈ Rd+1 and t ≥ 0.

Refer to Vershynin (2018) for an overview of sub-Gaussian vectors. Under
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Conditions 1 and 2, Proposition 1 shows that AFDP◦ in (3.1) consistently esti-

mates FDP◦. It also provides a guideline to establish the FDP control and serves

as the cornerstone of the guarantees of our method.

Proposition 1. Assume Conditions 1 and 2 hold, and p0 ≥ ap, for some a ∈
(0, 1). Let τj = τ0jn

1/(2+δ){log(np) + d}−1/(2+δ), with τ0j ≥ vj,δ and δ ∈ (0, 2].

Then, for any z ≥ 0, |FDP◦(z)−AFDP◦(z)| = oP(1) as n, p→∞.

We conclude this subsection with two remarks. If we strengthen Condition 1

(iii) to uniformly bounded kth moments for k ≥ 4, Proposition 1 remains valid,

with τj = τ0jn
1/(2+δ){log(np)+d}−1/(2+δ) and δ ∈ (0, k−2]. In addition, to prove

Proposition 1, we show that |FDP◦(z)−AFDP◦(z)| = OP{p−κ1q1/2 +q7/4n−1/2 +

q{log(np) + d}δ/(2+δ)n−δ/(2+δ)}. This explicit rate is nontrivial and reveals how

the parameter q, which corresponds to the dimension of the hypothesis, affects

the difficulty of testing (2.2). We revisit this in our numerical studies in Section 4.

3.2. Statistical guarantees with estimated covariance input Σ̂j

Next, we establish the statistical guarantee of our method using the esti-

mated covariance matrices Σ̂j in (2.6). To this end, Theorem 1 provides a mild

condition on the accuracy of the estimated covariances that lead to the consis-

tency of the approximated FDP. Let Σ̃j be a generic estimator of Σj for each

j. The corresponding FDP and its approximation are F̃DP(z) = Ṽ (z)/R̃(z) and

ÃFDP(z) = p0 P(χ2
q > z)/R̃(z), for z ≥ 0, where Ṽ (z) =

∑
j∈H0

I(Ṽj > z),

R̃(z) =
∑p

j=1 I(Ṽj > z), and Ṽj = n(Cθ̂j − c0j)
T(CΣ̃jC

T)−1(Cθ̂j − c0j).

Theorem 1. Suppose that the conditions of Proposition 1 hold. As long as the es-

timated covariances {Σ̃j}pj=1 satisfy max1≤j≤p ‖Σ̃j−Σj‖ = oP{(log(np) + d)−1},
we have |F̃DP(z)− ÃFDP(z)| = oP(1), for any z > 0, as n, p→∞.

By verifying that Σ̂j in (2.6) satisfy the required accuracy in Theorem 1,

together with Proposition 1, Theorem 2 acquires the convergence in probability

of the approximated FDP to the true FDP, for any z > 0, as n, p→∞.

Theorem 2. Suppose that the conditions of Proposition 1 hold. For each Σj =

cov(n1/2θ̂j), for j = 1, . . . , p, let Σ̂j be the corresponding estimators given in

(2.6), with τj = τ0jn
1/(2+δ){log(np) + d}−1/(2+δ) and τ0j ≥ vj,δ, for δ ∈ (0, 2].

Then, with probability at least 1− 16n−1,

max
1≤j≤p

∥∥Σ̂j −Σj

∥∥ ≤ C1 max

[{
log(np) + d

n

}δ/(2+δ)

,
∆

hn

]
, (3.2)



LARGE-SCALE INFERENCE OF MULTIVARIATE REGRESSION 1841

where ∆ = {d1/2 + (2 log n)1/2}[n−1{log(np) + d}]1/2, and C1 > 0 depends only

on λmax(ΣZ), A0, and vj,δ.

Theorem 2 implies that the required accuracy in Theorem 1, that is, max1≤j≤p
‖Σ̂j − Σj‖ = oP{(log(np) + d)−1}, is met if log(p) + d = o(nδ/(2+2δ)) and

∆/hn = o{(log(np) + d)−1}, such as hn = n−1/4. So far, we have focused on

Σ̂j in (2.6). In fact, the conclusion in Theorem 2 remains valid for some variants

of Σ̂j , such as Σ̂
(1)
j =

∑n
i=1{`′τj (eij)}

2{(n− d− 1)mj}−1KjW
−1
j .

4. Simulation Studies

4.1. Model settings

To examine the finite-sample performance of our procedure, we consider the

following methods: (i) our method that employs the data-adaptive Huber re-

gression (Wang et al. (2021)); (ii) our method with τj selected using five-fold

cross-validation (Sun, Zhou and Fan (2020)); (iii) a least squares-based multiple

testing method; (iv) an empirical Bayes-based multiple testing method imple-

mented using limma (Ritchie et al. (2015)); (v) limma, with the traditional ro-

bust M -estimation instead of the least squares; and (vi) an empirical Bayes-based

multiple testing method for count data, implemented using edgeR (Robinson, Mc-

Carthy and Smyth (2010)). Both limma and edgeR are widely used to analyze a

large number of regression models, and serve as benchmarks in genomics studies.

limma employs empirical Bayes methods to shrink individual variances toward a

common value better control the FDR. edgeR models count data with large vari-

ations using the negative binomial model. To implement edgeR, we round the

response Yij to its nearest integer. For our method, we set δ = 2 in (2.3) (i.e., we

assume the errors have finite fourth moments) and hn = n−1/4 in (2.5). For (ii),

we set τj = cv̂jn
1/4{log(np)+d}−1/4, with v̂4

j = n−1
∑n

i=1(Yij− Ȳ·j)4, and choose

c from {0.25, 0.5, 0.75, 1, 1.25, 1.5} based on cross-validation that minimizes the

mean-squared prediction error. For (i)–(iii), we use the FDR controlling proce-

dure of Storey (2002) to determine the threshold.

We generate data from model (2.1) for n = 85, 120, 150, p = 1000, 2000,

p1 = 50, and d = 6, 8. Entries of X ∈ Rn×d are drawn independently from

N(0, 1), and each column is standardized to have a zero mean and unit vari-

ance. We consider three heavy-tailed and highly skewed error distributions: (a)

Pareto (scale = 1, shape = 4), (b) log-normal (µ = 0, σ = 1), and (c) a mix-

ture of the log-normal in (b) and a t2 distribution with proportions 0.7 and

0.3, respectively. Setting (c) reflects more challenging scenarios in practice, be-

cause t2 does not have a finite second moment. Under each setting, we first
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generate E = (εij)1≤i≤n,1≤j≤p with i.i.d. entries. To incorporate dependence,

set Ξ = 100R
1/2
ε E, where the correlation matrix Rε = (rε,jk)1≤j,k≤p admits

one of the following three structures: Model 1, the identity matrix; Model 2,

rε,ij = rε,ji drawn independently from 0.3 × Ber(0.1), for i 6= j; and Model 3,

rε,j,j+1 = rε,j+1,j = 0.3, rε,j,j+2 = rε,j+2,j = 0.1, and rε,j,j+k = rε,j+k,j = 0, for

k ≥ 3. Note that Model 2 does not satisfy Condition 3.2 (iv). Together with the

results in Section S5.4 of the Supplementary Material, the results for Model 2

show that our method is reliable even when Condition 3.2 (iv) is mildly violated.

For each j = 1, . . . , p, we set µj = 5000 and consider two hypotheses: Hy-

pothesis 1, H0j : 1Tβj = 0 versus Haj : 1Tβj 6= 0, where q = 1; and Hypothesis

2, H0j : βj = 0 ∈ Rd versus Haj : βj 6= 0, where q = d. For Hypothesis 1, let

βjk ∼ Unif(−150, 150), for 1 ≤ j ≤ p and 1 ≤ k ≤ d − 1, βjd = −
∑d−1

k=1 βjk,

for 1 ≤ j ≤ p − p1, so that 1Tβj = 0, and βjd = δd1/2Wj −
∑d−1

k=1 βjk, for

p − p1 + 1 ≤ j ≤ p, where Wj are Rademacher variables. For Hypothesis 2, let

βj = 0 for 1 ≤ j ≤ p − p1, and βjk = (2d−1)1/2δWjk for p − p1 + 1 ≤ j ≤ p and

1 ≤ k ≤ d, where Wjk are Rademacher variables. We take δ = 75η and η = 0.3,

which determine the signal strength.

4.2. Numerical performance

We use the nominal FDR level α ∈ {0.05, 0.1, 0.15, 0.2}, and carry out 250

Monte Carlo simulations at each α. Figures 1 and 2 report the empirical FDR

and power under Model 2 with p = 1000 and d = 6. The results under other

settings are documented in Section S5 of the Supplementary Material. Each

point corresponds to a nominal level (marked as a vertical gray dashed line), with

the x- and y-axes representing, the empirical FDR and the power, respectively.

Therefore, the closer the point is to the corresponding vertical line, the more the

empirical and nominal FDRs coincide.

From Figures 1 and 2, across different error settings and hypotheses, our

method, with either the data-driven Huber regression or cross-validation, con-

trols the FDR well, in general, and maintains high power. The competitors are

either too conservative, with a notable power loss, or too liberal to control the

FDR, especially for small n. The advantage of our method is more substantial

when q > 1 (Figure 2). The numerical evidence favors using the data-adaptive

Huber regression over cross-validation in terms of both statistical accuracy and

computational efficiency. Both limma and edgeR are fairly conservative, sug-

gesting that researchers should be careful when using them for heavy-tailed and

skewed data. Method (v) is comparable to our method when n is large, but com-

pletely fails to control the FDR for errors from the mixture of the log-normal and
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Figure 1. Empirical FDR and power for testing Hypothesis 1 under Model 2 with p = 1000
and d = 6 using six methods: the proposed method with the data-adaptive Huber
regression (D-AH, �); the proposed method with cross-validation (AH-cv, �); the least
squares method (OLS, •); limma (N); limma with a robust regression (limma-R, H); and
edgeR (+). Each point corresponds to a nominal FDR level (marked as a vertical dashed
line), with the x- and y- axes denoting the empirical FDR and the power, respectively.

t2. Overall, the power of all methods increases with n, and drops for larger p, see

Figures S1−S11 in the Supplementary Material. Because the intrinsic difficulty

of the testing problem elevates with q, the power of all methods shrinks when

q = d = 8 (Figures S3 and S4).

We further examine the power with varying signal strengths, determined by

η. We exclude methods (iii) and (v), because they fail to control the FDR. In
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Figure 2. Empirical FDR and power for testing Hypothesis 2 under Model 2 with p = 1000
and d = 6 using six methods: the proposed method with the data-adaptive Huber
regression (D-AH, �); the proposed method with cross-validation (AH-cv, �); the least
squares method (OLS, •); limma (N); limma with a robust regression (limma-R, H); and
edgeR (+). Each point corresponds to a nominal FDR level (marked as a vertical dashed
line), with the x- and y- axes denoting the empirical FDR and the power, respectively.

the above settings, we take n = 100, p = 1000, d = 6, and choose equally spaced

η within [0.3, 0.7] for Hypothesis 1 and within [0.3, 0.5] for Hypothesis 2. From

Figure 3, we see that the proposed methods outperform the competitors across

all error settings. The gains in power are considerable when the error is both

heavy tailed and skewed. Again, for our method, the data-adaptive approach is

preferable to cross-validation. With heavier tails (mixture of log-normal and t2),
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(a) Model 1

0.30 0.35 0.40 0.45 0.50
0.0

0.2

0.4

0.6

0.8

1.0
lognormal t_2 mixture

η

Em
pi

ric
al

 P
ow

er

(b) Model 2

0.30 0.35 0.40 0.45 0.50
0.0

0.2

0.4

0.6

0.8

1.0
lognormal t_2 mixture

η

Em
pi

ric
al

 P
ow

er

D−AH
AH−cv
limma
edgeR

(c) Model 3

Figure 3. Plots of the empirical power for testing Hypothesis 2 with n = 100, p = 1000,
d = 6, and η ∈ {0.30, 0.34, . . . , 0.46, 0.5} using four methods: the proposed method
with the data-adaptive Huber regression (D-AH, �); the proposed method with cross-
validation (AH-cv, �); limma (N); and edgeR (+).

the power decreases slightly for all methods.

5. Real-Data Analysis: The Gutenberg Project

Inference on large-scale text data from literary publications has drawn in-

creased attention, and has provided novel and revealing discoveries in a variety

of fields, including sociology (O’Connor, Bamman and Smith (2011)), political

science (Wilkerson and Casas (2017); Baum, Cohen and Zhukov (2018)), crim-
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inology (Caines et al. (2018)), and linguistics. A major task in text analysis is

to identify word markers to distinguish or identify different authors, cultures,

resources, and so on. These word markers are usually identified by small p-

values from testing regression coefficients used to model subject effects on the

word frequency, or from model comparisons among multiple groups. In computa-

tional linguistics, for example, Marsden et al. (2013) compared 168 plays from the

Shakespearean era to identify word markers for authorship classification. Here,

we consider hypotheses that help identify the distinctive word markers, referred

to as “differentially represented” (DR) words, to identify authors or different

writing styles of a particular author.

As a well-known publicly accessible digital library of literary publications, the

Project Gutenberg was founded in 1971, offering 60,156 e-books, as of September

03, 2019. The Standardized Project Gutenberg Corpus (SPGC, Gerlach and

Font-Clos (2020)) is a text corpus of Project Gutenberg, and provides a static

version of the corpus (https://doi.org/10.5281/zenodo.2422560). It consists

of three data types: raw text, sequences of word-tokens, and word counts. It also

contains metadata about books, such as author information, subject categories,

and book types.

We apply our method to word counts from SPGC to identify idiosyncratic

word markers that represent an author or a category of works. Specifically, we

consider two problems: a comparison of the works of Lewis Carroll, Charles

Dickens, and Arthur Conan Doyle, and a study of the works of William Shake-

speare. See a snapshot of the raw data in the Supplementary Material. From

the histograms of the empirical kurtosis of the word counts (Figure S20), the

data are heavy tailed both book-wise and word-wise. For pre-processing, we first

merge the word counts across books, and then remove those words with a total

count of less than half the number of books or those that appear in less than

20% of the books under consideration. Finally, we normalize the filtered word

counts by the total counts (Bullard et al. (2010)). The details are deferred to the

Supplementary Material.

For the first problem, the three British authors are all from the mid-19th to

early 20th century, and share similar writing structures and backgrounds. On the

other hand, we also observe separations of their 167 works based on word usage in

Figure S20 in the Supplementary Material. To identify DR words in their works,

we use model (2.1) with Xi = (1, 1, 0)T if the ith book is written by Carroll,

Xi = (1, 0, 1)T if it is written by Dickens, and Xi = (1,−1,−1)T if it is written

by Conan Doyle, for 1 ≤ i ≤ 167 books, and βj = (µj , α1j , α2j)
T, for 1 ≤ j ≤ 6839

words. We consider the following linear hypotheses: (Hypothesis CDD1) H0j :

https://doi.org/10.5281/zenodo.2422560
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[(0 1 0)T (0 0 1)T]Tβj = 0 versus Haj : [(0 1 0)T (0 0 1)T]Tβj 6= 0; (Hy-

pothesis CDD2) H0j : α1j = 0 versus Haj : α1j 6= 0; (Hypothesis CDD3)

H0j : α2j = 0 versus Haj : α2j 6= 0; and (Hypothesis CDD4) H0j : (0, 1, 1)Tβj =

0 versus Haj : (0, 1, 1)Tβj 6= 0. Hypothesis CDD1 compares the three authors

together, whereas the other hypotheses compare one author with the remain-

ing two. Using a nominal level of 0.5%, our method detects 2595, 419, 1388,

and 1445 DR words, respectively for each hypothesis. The top 10 DR words

for the three authors, such as being and sprang are displayed in Figure 4(a).

The overall comparison is reported in Figure S21 in the Supplementary Material.

Note that Conan Doyle favored the word sprang, whereas Carroll and Dickens

rarely used it. In Figure 4(c), we further report the percentages of DR words and

non-differentially represented (NDR) words within each speech category (Nguyen

et al. (2016)). DR words among the three authors have higher percentages in ad-

jectives, adverbs, and pronouns than do NDRs. In contrast, DR words have lower

percentages of nouns, proper nouns, and verbs.

Next, we investigate the genre difference between the works of Shakespeare

based on three subject groups: poetry, non-historical drama, and historical drama.

We model the normalized word counts by (2.1), with Xi = (1, 0, 0)T if the ith

book is poetry, Xi = (1, 1, 0)T if it is non-historical drama, and Xi = (1, 1, 1)T

if it is historical drama, for i = 1, . . . , 176 books, and βj = (µj , αj , γj)
T, for

j = 1, . . . , 4122 words. We consider (Hypothesis WS1) H0j : (0, 0, 1)Tβj =

0 versus Haj : (0, 0, 1)Tβj 6= 0, which compares the non-historical and historical

dramas, and (Hypothesis WS2) H0j : (0, 2, 1)Tβj = 0 versus Haj : (0, 2, 1)Tβj 6=
0, which distinguishes poetry and dramas. With a nominal level of 0.5%, our

method identifies 724 and 225 DR words for each hypothesis. Because many

of Shakespeare’s historical dramas are about kings of the Kingdom of England,

the words princely, London, king, and crown appear more often in the histori-

cal dramas (Figure 4(b)). In addition, Shakespeare used words such as march,

forces, army, and battle more frequently in the historical dramas than in the non-

historical dramas. Interestingly, the love story-related lexicons, such as love and

marry, appear more often in his non-historical dramas. From Figure 4(d), the

DR words between Shakespeare’s historical and non-historical dramas have higher

percentages of nouns, pronouns, and proper nouns, whereas their percentages are

lower for adjectives, adverbs, and verbs.

In summary, our method provides a reliable addition to the existing toolkit

in corpus linguistics and text/literature analysis. It can be used to analyze a large

volume of individual words, extending current methods that focus on the overall

distribution of word counts. An interesting follow-up work is to investigate how
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Figure 4. Panels (a) and (b): The top 10 DR words placed in ascending order by their
p-values (from left to right) for hypotheses CDD1 and WS1, respectively, where the
vertical axis shows the counts under a log-scale. Panels (c) and (d): Percentages of DR
and NDR words within each speech category (https://universaldependencies.org/
u/pos/all.html) for hypotheses CDD1 and WS1, respectively. The nominal FDR level
is 0.5%.

stopping words, such as upon affect the results, and whether their removal alter

the discovery.

6. Conclusion

We conclude this article by discussing several open issues. First, our infer-

ence method is based on a normal approximation, which works well for a mod-

erate sample size. For a relatively smaller sample, the bootstrap may provide

https://universaldependencies.org/u/pos/all.html
https://universaldependencies.org/u/pos/all.html
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better performance (Cai and Liu (2016)). The pioneering work of Chernozhukov

Chetverikov and Kato (2013) on the Gaussian approximation to the functional

of high-dimensional empirical processes sheds light on applying the multiplier

bootstrap to the adaptive Huber regression. Although the validity of the mul-

tiplier bootstrap for the adaptive Huber regression can be established similarly,

the computational demand is more challenging.

In addition, our framework can be generalized for potentially heavy-tailed

designs. In practice, in the mediation analysis involving RNA-sequencing data,

for example, both the responses and the entries in the design are heavy tailed. To

address this challenge, we may replace the entries in the design by their trimmed

versions X ω̄
i = (ϕω̄(xi1) . . . , ϕω̄(xid))

T, where ϕω̄(u) = min{max(−ω̄, u), ω̄}, with

the tuning parameter ω̄ > 0. This is similar to the approach of filtering entries

in the design using some thresholds (Pensia, Jog and Loh (2021)). Here, the

data-driven selection on ω̄ is largely unknown, and cross-validation is therefore

unavoidable for the implementation. At the cost of an extra tuning parameter

ω̄ and an additional log(np) term in the orders of both τ and ω̄, results similar

to Proposition 1 can be established, although the theoretical guarantee on Σ̂j is

more involved.

Finally, it would be challenging, yet interesting to perform a power analysis

of our method to seek potential power improvement. Two approaches are possible

in addition to the adaptive calibration discussed in Section 2.1. The first relies on

recovering the latent common factors, in addition to the observed covariates (Fan

et al. (2019)). That is, we consider a mixed-effects model Yi = ΘZi + Afi + εi,

where A ∈ Rp×K is the loading matrix and fi ∈ RK are zero-mean latent com-

mon factors that are unobserved. Because the common factors contribute to the

common variance, the signal-to-noise ratio can therefore increase using a factor

adjustment, which, in turn, improves the power. The second approach employs

a more subtly designed multiple testing framework than the BH procedure. For

example, Cai, Sun and Wang (2019) proposed a new covariate-assisted ranking

and screening (CARS) approach that incorporates a carefully constructed auxil-

iary variable to improve the power. Proposition 6 in Cai, Sun and Wang (2019)

indicates the applicability of the CARS approach to non-normal data. The fi-

nite fourth-moment assumption is adequate for the asymptotic normality of their

statistics, but not enough for the uniform convergence of the sample means when

the number of hypotheses outnumbers the sample size. An interesting future

direction would be to determine whether the robustification/Huberization can

be incorporated into the CARS approach to handle heavy-tailed and/or skewed

data. We leave these topics for future work.
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Supplementary Material

The online Supplementary Material contains the proofs of all the theoretical

results in the main text, as well as additional numerical results.
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