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QUANTILE MARTINGALE DIFFERENCE DIVERGENCE

FOR DIMENSION REDUCTION

Chung Eun Lee and Haileab Hilafu

Baruch College and University of Tennessee

Abstract: In this study, we aim to reduce the dimension of predictors by considering

the central quantile subspace or central subspace. To do so, we use two metrics,

the quantile martingale difference divergence and the quantile martingale difference

divergence matrix, which measure the quantile dependence of a scalar response

variable and a vector of predictors. The proposed dimension-reduction methods do

not involve user-chosen parameters and do not assume a parametric model, mak-

ing them simple to implement. Extensive simulations and a real-data illustration

are provided to demonstrate the usefulness of the proposed methods, which are

shown to yield competitive finite-sample performance. Theoretical properties are

also provided.

Key words and phrases: Central subspace, dimension reduction, quantile depen-

dence.

1. Introduction

Sufficient dimension reduction (SDR) (Li (1991); Cook (1998)) combines di-

mension reduction and the concept of sufficiency to attain low-dimensional pre-

dictors without loss of information on the regression of Y ∈ R on X ∈ Rp. A

subspace spanned by the columns of a matrix β ∈ Rp×d
′

, for d
′ ≤ p, is said to be

a SDR subspace if Y X | β>X, where denotes independence. Furthermore,

the minimal SDR subspace is called the central subspace, and is formally defined

as

SY |X = ∩{span(β) : Y X | β>X} := span(B), (1.1)

where B ∈ Rp×d. The body of literature on SDR is growing; see the excel-

lent reviews by Cook (1998), Li (2018), and Ma and Zhu (2013). Most meth-

ods have targeted the central subspace. These include, the sliced inverse re-

gression (Li (1991)), sliced average variance estimation (Cook and Weisberg

(1991)), parametric inverse regression (Bura and Cook (2001)), contour regression
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(Li, Zha and Chiaromonte (2005)), directional regression (Li and Wang (2007)),

cumulative slicing estimation (Zhu, Zhu and Feng (2010)), Fourier method (Zhu

and Zeng (2006)), ensemble of minimum average variance estimators method (Yin

and Li (2011)), and SDR method via distance covariance (Sheng and Yin (2016)),

among others.

In many applications, the focus of a regression analysis is a particular charac-

teristic of Y given X, rather than the entire conditional distribution of Y given X.

Such methods include the central mean subspace (Cook and Li (2002)), central

kth moment subspace (Yin and Cook (2002)), central variance subspace (Zhu and

Zhu (2009)), and T -central subspace (Luo, Li and Yin (2014)). Kong and Xia

(2012) and Kong and Xia (2014) proposed the quantile outer-product of gradients

(QOPG) method, which can be used to estimate the central quantile subspace

(Luo, Li and Yin (2014)); see (3.1) for the definition of the central quantile sub-

space. Recently, Christou (2020) proposed an efficient algorithm for finding the

central quantile subspace, and generalized the approach by considering any sta-

tistical functional of interest. However, the approach implicitly assumes a linear

model for the conditional quantile of Y given X, when the structural dimension

of the central quantile subspace dτ is one. In addition, both procedures in Kong

and Xia (2014) and Christou (2020) rely on a nonparametric regression, and thus

require several user-chosen quantities.

In this study, we consider the following semi-parametric model, and propose

a new approach to estimating the central quantile subspace:

Qτ (Y | X) = g(B>τ X), (1.2)

where Qτ (Y | X) is the conditional τth quantile of Y given X, g is an arbitrary

link function, Bτ ∈ Rp×dτ is a matrix that spans the central quantile subspace.

Throughout this paper, we assume that the central quantile subspace and the

central subspace exist. We refer to Luo, Li and Yin (2014), Christou (2020),

Cook (1998), and Yin, Li and Cook (2008) for discussions on the central quantile

subspace and the central subspace. We first introduce a variant of the martin-

gale difference divergence (MDD) (Shao and Zhang (2014)), the so-called quantile

martingale difference divergence (QMDD). The QMDD measures the quantile de-

pendence, and we apply it to estimate the central quantile subspace. An appealing

feature of our approach is that it does not impose a parametric structure between

the conditional quantile of Y given X and B>τ X, nor does it involve any tuning

parameters, making it simple and easy to implement. Moreover, we introduce a

new bootstrap test to determine the dimension of the central quantile subspace.
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We also propose an inverse regression method for estimating the central subspace

called the quantile martingale difference divergence matrix (QMDDM) approach,

which is as computationally efficient as other inverse regression methods, with

numerically stable estimates.

The remainder of the paper is organized as follows. In Section 2, we give a

brief review of the MDD (Shao and Zhang (2014)) and the MDDM (Lee and Shao

(2018)). We introduce the QMDD and its properties, and apply it to estimate the

central quantile subspace in Section 3. In Section 4, we introduce the QMDDM-

based approach to seek the central subspace. Section 5 presents numerical studies

on synthetic data, and Section 6 presents an application of the proposed method

to a real data set. Section 7 concludes the paper. All proofs are relegated to the

Supplementary Material.

A word on notation. Let i =
√
−1 be the imaginary unit. The scalar product

of vectors x and y is 〈x, y〉. For a complex-valued function f(·), |f |2 = ff̄ , where f̄

is the complex conjugate of f . Denote the Euclidean norm of X = (x1, . . . , xp) ∈
Rp as ‖X‖, where ‖X‖2 =

∑p
i=1 x

2
i . For a square matrix A = (Ai,j)

p
i,j=1 ∈ Rp×p,

the spectral norm of A is denoted as ‖A‖2 =
√
λmax(A>A), where λmax(A>A)

is the largest eigenvalue of A>A, the Frobenius norm is denoted as ‖A‖F =√
tr(A>A), and tr(A) =

∑p
i=1 Ai,i. For X ∈ Rp, X ∈ L2 if E‖X‖2 < ∞. The

orthogonal complement of S is S⊥.

2. Review of the MDD and MDDM

Before introducing the new dimension-reduction approaches, we briefly re-

view the MDD and the MDDM. For U ∈ Rr and V ∈ R, where r is a fixed

positive integer, Shao and Zhang (2014) proposed using the MDD to measure the

mean dependence of V on U; that is,

E(V | U) = E(V ), almost surely. (2.1)

Specifically, if E(|V |2 + ‖U‖2) <∞, MDD2(V | U) is defined as the nonnegative

number

MDD2(V | U) = −E
[
{V − E(V )}{V ′ − E(V

′
)}‖U−U

′‖
]
, (2.2)

where (V
′
,U

′
) is an independent copy of (V,U). The key property is that

MDD2(V | U) = 0 if and only if (2.1) holds, so it fully characterizes the mean

independence of V on U.

Recently, Lee and Shao (2018) introduced the MDDM, which can be viewed
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as an extension of the MDD from a scalar to a matrix, and applied it to reduce

the dimensions for the conditional mean of a multivariate time series. For two

random vectors V ∈ Ru and U ∈ Rr, with E(‖V‖2+‖U‖2) <∞, MDDM(V | U)

is defined as

MDDM(V | U) = −E
[
{V − E(V)}{V′ − E(V′)}>‖U−U′‖

]
, (2.3)

where (V′,U′) is an independent copy of (V,U). From (2.3), it is easy to see that

MDDM(V | U) ∈ Ru×u is a real, symmetric, and positive semi-definite matrix.

3. Central Quantile Subspace

Oftentimes, the interest of a regression analysis may be the conditional τth

quantile of Y given X, where τ ∈ (0, 1). To this end, we seek the central quantile

subspace, as introduced by Luo, Li and Yin (2014); its definition is provided

below.

Definition 1. The central quantile subspace for a given τ ∈ (0, 1) is defined as

SQ(Y |X)(τ) = ∩{span(β) : Qτ (Y | X) = Qτ (Y | β>X) almosty surely}
:= span(Bτ ). (3.1)

Note that the space SQ(Y |X)(τ) = span(Bτ ) is identifiable, but Bτ is not.

Thus, we seek the identifiable parameter, SQ(Y |X)(τ); see Luo, Li and Yin (2014),

Sheng and Yin (2016), and Li (2018) for more background on the identifiability

of the spaces spanning the central quantile subspace and the central subspace.

We first introduce a variant of the MDD that is central to our new approach. Its

definition and properties are introduced in the following section.

3.1. The QMDD

Using the MDD in (2.2), we state a formal definition of a natural analogue

of the MDD that quantifies the quantile dependence between a random variable

Y and a random vector X.

Definition 2. For a continuous random variable Y , a random vector X ∈ L2

and τ ∈ (0, 1), the τth QMDD is defined as

QMDDτ (Y | X) = −E
[
{1(Y ≤ yτ )− τ}{1(Y

′ ≤ yτ )− τ}‖X−X
′‖
]
,

where (X
′
, Y

′
) is an independent copy of (X, Y ), and yτ is the unconditional τth

quantile of Y .
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The QMDD is a special case of the MDD, and so inherits the latter’s key

property, stated in the following proposition. The proof is omitted because the

proposition is obtained as a direct consequence of Proposition 1 in Lee, Zhang

and Shao (2020).

Proposition 1. For a continuous random variable Y ∈ R, a random vector

X ∈ L2, and a given τ ∈ (0, 1), we have

1. QMDDτ (Y | X) ≥ 0.

2. QMDDτ (Y | X) = 0 if and only if P (Y ≤ yτ | X) = P (Y ≤ yτ ), almost

surely.

Inspired by the sample estimation of MDD2 in Shao and Zhang (2014), we con-

struct the QMDD estimator as below.

Definition 3. Given the independent and identically distributed (i.i.d.) obser-

vations (Xi, Yi)
n
i=1 from the joint distribution of (X, Y ), the sample τth QMDD

is a nonnegative number defined as Q̂MDDτ (Y | X) = (−1/n2)
∑n

i,j=1{1(Yi ≤
ŷτ )− τ}{1(Yj ≤ ŷτ )− τ}‖Xi −Xj‖, where ŷτ is the empirical unconditional τth

quantile of Y .

Using the arguments in Section 2 of Lee and Shao (2018), it can be shown

that Q̂MDDτ (Y | X) is nonnegative and is a biased estimator of QMDDτ (Y | X),

where the bias is asymptotically negligible when p is fixed. It is possible to define

an unbiased estimator of QMDDτ (Y | X) by adopting a U-centering approach

(Székely and Rizzo (2014), Park, Shao and Yao (2015), Zhang, Yao and Shao

(2018)). However, the nonnegativeness is preferred to the unbiasedness for the

optimization step in Section 3.2.

3.2. Estimation of the central quantile subspace

Our specific goal is to find linear combinations of X, say B>τ X, for Bτ ∈
Rp×dτ , that fully describe the conditional quantile of Y given X, for a prespecified

τ ∈ (0, 1). In other words, Qτ (Y | X) = Qτ (Y | B>τ X), almost surely, where

Bτ constructs the central quantile subspace. This implies that modeling the

τth conditional quantile of Y as a function of X can be simplified by replacing

X with a lower-dimensional B>τ X, without losing any regression information.

Interestingly, under Condition 1, and using the results in Cook (1998) and Li,

Li and Tsai (2015), we have that 1(Y ≤ yτ ) is independent of B>0,τX, where

(Bτ ,B0,τ ) ∈ Rp×p is an orthogonal matrix. This further implies that

P (Y ≤ yτ | B>0,τX) = P (Y ≤ yτ ), almost surely. (3.2)
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Condition 1. Suppose Bτ and B0,τ are bases that span SQ(Y |X)(τ) and S⊥Q(Y |X)(

τ), respectively. Assume that B>τ X is independent of B>0,τX.

Condition 1 is an analogue of the assumptions in Proposition 1 of Sheng and

Yin (2013) and Proposition 2 of Sheng and Yin (2016), and is made for the basis

associated with the central quantile subspace and its orthogonal complement. As

mentioned in Sheng and Yin (2013) and Sheng and Yin (2016), this assumption

is not as strong as it seems to be, and it could be satisfied asymptotically when p

is reasonably large; see section 3.5 in Sheng and Yin (2013) for further discussion.

Suppose Condition 1 holds and the structural dimension dτ is known. Then,

for a given τ , we have (3.2), which is equivalent to

QMDDτ (Y | B>0,τX) = 0.

Motivated by this fact, we propose the following optimization with the objective

function Gτ (β0) = QMDDτ (Y | β>0 X). Our estimator B0,τ is

B̂0,τ = argmin
β>

0
β

0
=Ip−dτ

Ĝτ (β0), (3.3)

where Ĝτ (·) is the sample counterpart of Gτ (·). In order to optimize (3.3) with an

efficient computational cost, we use the optimization solver with orthogonality

constraint proposed by Wen and Yin (2013). They use an efficient first-order

updating procedure that preserves the orthogonality constraint, and so achieves

a substantial saving in computational time; see Wen and Yin (2013) for more

details.

Next, we show that the estimator proposed above yields a consistent esti-

mate. Because Bτ and B0,τ are only identifiable up to span(Bτ ) and span(B0,τ ),

respectively, we define the following distance and show the theoretical result. For

semi-orthogonal matrices H1, H2 ∈ Rp×p−dτ , that is, H>1 H1 = H>2 H2 = Ip−dτ ,

D(H1,H2) =
√
p− dτ − tr(H1H>1 H2H>2 ). (3.4)

Note that D(H1,H2) = 0 if and only if span(H1) = span(H2). In preparation,

we make the following assumptions.

Condition 2.

(C1) The cumulative distribution function (c.d.f.) of the continuous response

variable Y , FY , is continuously differentiable in a small neighborhood of yτ ,

say [yτ − δ0, yτ + δ0], with δ0 > 0. Let G1(δ0) = infy∈[yτ−δ0,yτ+δ0]fY (y)



QUANTILE DEPENDENCE BASED APPROACH TO DIMENSION REDUCTION 71

and G2(δ0) = supy∈[yτ−δ0,yτ+δ0]fY (y), where fY is the density function of

Y . Assume that 0 < G1(δ0) ≤ G2(δ0) <∞.

(C2) There is a p × (p − dτ ) semi-orthogonal matrix B0,τ that minimizes Gτ .

Furthermore, the minimum value of Gτ is obtained at a semi-orthogonal

matrix β0 if and only if D(β0,B0,τ ) = 0.

The condition (C1) is used in Shao and Zhang (2014) and Zhang, Yao and Shao

(2018) for conditional quantile screening and testing. This assumption is on the

marginal distribution of Y and is quite mild. The last condition (C2) ensures

that B0,τ is the unique minimizer of Gτ in the sense of D; see Lemma 1.1 in the

Supplementary Material.

Theorem 1. Assume that dτ is known. Under Condition 1, Condition 2, and

X ∈ L2, we have D(B̂0,τ ,B0,τ )→p 0 as n→∞.

Remark 1. It is worth mentioning the difference between our method and those

of Kong and Xia (2014) and Christou (2020). In the estimation procedure, Kong

and Xia (2014) and Christou (2020) rely on a local smoothing quantile regression,

whereas we use the QMDD, which is an unconditional mean. Thus, the existing

methods require user-chosen parameters such as a kernel function, bandwidth

parameter, and the order of the polynomial regression, whereas the QMDD-based

approach involves no user-chosen parameters. Moreover, when the structural

dimension is one, the approach of Christou (2020) relies on the OLS estimate

regressing the nonparametric estimate Q̂τ (Y | X) on X, which implicitly assumes

that Qτ (Y | X) is a linear function of B>τ X. In contrast, our approach does not

impose any model assumptions between Qτ (Y | X) and B>τ X.

3.3. Dimension selection

In practice, the dimension of the central quantile subspace is unknown and

needs to be adaptively estimated from the data. Recently, Lee, Zhang and Shao

(2020) introduced a wild bootstrap test for testing the mean independence of

functional data using an MDD-type test statistic. Because the QMDD is an

analogue of the MDD, we follow the approach in Lee, Zhang and Shao (2020)

and propose a new bootstrap test using the QMDD to estimate the structural

dimension dτ . In particular, we sequentially test

H
(k)
0 : dτ = k, k = 1, . . . , p

using the wild bootstrap procedure described below:
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1. Compute the test statistic, Tn = n · Q̂MDDτ (Y | B̂>0,τX), where B̂>0,τ is

estimated using (3.3) and dim(span(B̂0,τ )) = k.

2. Generate the bootstrap statistic using

T ∗n,b =

∣∣∣∣∣∣−1

n

∑
i,j

w
(b)
i {1(Yi ≤ ŷτ )− τ}{1(Yj ≤ ŷτ )− τ}|B̂∗>0,τXi − B̂∗>0,τXj |w(b)

j

∣∣∣∣∣∣,
where (w

(b)
i )ni=1 are i.i.d. with zero mean and unit variance, for example,

standard normal variables, and

B̂∗>0,τ = argmin
β>

0
β

0
=Ip−k

(
−1

n2

∑
i,j

w
(b)
i {1(Yi ≤ ŷτ )− τ}

{1(Yj ≤ ŷτ )− τ}|β>0 Xi − β>0 Xj |w(b)
j

)2

.

3. Repeat step 2 B times, and collect (T ∗n,b)
B
b=1.

4. Obtain the (1− α)th quantile from the collected (T ∗n,b)
B
b=1, say Q∗(1−α), and

set it as the critical value for the test with significance level α.

5. Reject the null hypothesis if Tn is greater than the critical value Q∗(1−α).

If k is smaller than the true dimension, dτ , then we expect to reject H
(k)
0 and

accept H
(k)
0 when k is identical to dτ . The theory to show the consistency of

the wild bootstrap test seems very challenging, and is left to future research.

The main difficulty of showing the consistency of the test arises from using the

estimate B̂0,τ to compute Tn, and involves the optimization step. Nevertheless,

we apply the bootstrap test to determine the dimension dτ in our simulation

study, and observe that the bootstrap test with α = 10% works reasonably well;

see Section 5.1.

4. Central Subspace

In this section, we seek the central subspace SY |X and propose an estimation

method using the so-called QMDDM.

4.1. The QMDDM

Most existing inverse regression methods assume the linearity condition, and

the first-moment methods hinge on the fact that Σ−1
{
E(X|Y = y) − E(X)

}
∈
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SY |X, for all y, where Σ = var(X). Then, the central subspace, or its subspace,

can be obtained by estimating E(X|Y = y) − E(X). Often, a nonparametric

approach is used to estimate E(X|Y = y), which involves a user-chosen quantity,

such as the number of slices. Instead, we focus on the observation that

Σ−1
{
E(X|1(Y ≤ yτ ) = y)− E(X)

}
∈ SY |X, ∀τ ∈ (0, 1), ∀y ∈ {0, 1}. (4.1)

Because (4.1) hinges on the mean dependence, we use the MDDM in Lee and

Shao (2018) to characterize this relationship, and define a quantile dependence

analogue of the MDDM that involves no user-chosen quantities.

Definition 4. For a continuous random variable Y , a random vector X ∈ L2,
and τ ∈ (0, 1), the τth QMDDM is defined as

QMDDMX|Y (τ) = −E
[
{X− E(X)}{X′ − E(X

′
)}>|1(Y ≤ yτ )− 1(Y

′ ≤ yτ )|
]
,

where (X
′
, Y

′
) is an independent copy of (X, Y ).

Note that QMDDMX|Y (τ) is a real, symmetric, and positive semi-definite

matrix. Moreover, the QMDDM inherits the same useful property as the MDDM,

which is span{QMDDMX|Y (τ)} = span[cov{E(X | 1(Y ≤ yτ ))}]; see Theorem 1

in Lee and Shao (2018). In the following, we show that QMDDMX|Y (τ) can only

identify one direction of SY |X. Suppose E(X) = 0. The τth QMDDM is defined

as

−E
[
XX

′>|1(Y ≤ yτ )− 1(Y
′ ≤ yτ )|

]
= −E

[
XX

′>{1(Y ≤ yτ )1(Y
′
> yτ ) + 1(Y > yτ )1(Y

′ ≤ yτ )}
]

= c ·mτ (X)mτ (X)>,

where c is a positive number and mτ (X) = E [X1(Y ≤ yτ )] ∈ Rp. This implies

that the rank of QMDDMX|Y (τ) is one. Similarly to the sample estimation of the

MDDM in Lee and Shao (2018), we define the sample estimator of the QMDDM

below.

Definition 5. Given i.i.d. observations (Xi, Yi)
n
i=1 from the joint distribution of

(X, Y ), the sample τth QMDDM is defined as ̂QMDDMX|Y (τ) = (−1/n2)
∑n

h,l=1

(Xh −X)(Xl −X)>|1(Yh ≤ ŷτ )− 1(Yl ≤ ŷτ )|, where X =
∑n

h=1 Xh/n.
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4.2. Estimation of the central subspace

As mentioned in Section 4.1, for a given τ , QMDDMX|Y (τ) can only provide

one direction. In Theorem 2, we show that this direction indeed belongs to SY |X.

Theorem 2. Assume the linearity condition that E(X | B>X) is a linear func-

tion of B>X, where B is a p × d basis matrix for SY |X. Then, for a continu-

ous random variable Y , a random vector X ∈ L2, and any τ ∈ (0, 1), we have

Σ−1span{QMDDMX|Y (τ)} ⊆ SY |X.

In order to gather information on SY |X under different quantiles, we construct

a new matrix by following the approaches in Kong and Xia (2014) and Christou

(2020).

Definition 6. Let γ1,τ be the eigenvector of QMDDMX|Y (τ) associated with the

largest eigenvalue. We define a new matrix by

Γ =

∫ 1

0
Γ(τ)dτ, where Γ(τ) = γ1,τγ

>
1,τ .

Note that the matrix Γ is a real, symmetric, positive semidefinite matrix that en-

codes information about the directions of SY |X. More precisely, the eigenvectors

of Γ corresponding to the largest d eigenvalues of Γ belong to SY |X. The technique

of aggregating the valid directions of the central subspace in Γ is quite common

in SDR, and provides successful finite-sample performance; see Li (1991), Kong

and Xia (2014), and Christou (2020). Because we have finite observations of

(Xi, Yi)
n
i=1, we approximate Γ by (τi)

n−1
i=1 , τi = i/n. In other words, we define

Γ̂ =
1

n

n−1∑
i=1

Γ̂(τi), where Γ̂(τi) = γ̂1,τi γ̂
>
1,τi ,

and γ̂1,τi is the eigenvector of ̂QMDDMX|Y (τi) associated with the largest eigen-

value.

Denote {νj , ηj}pj=1 and {ν̂j , η̂j}pj=1 as the eigenvalues and eigenvectors of Γ

and Γ̂, respectively. We make the following assumptions, under which we establish

the consistency of {ν̂j , η̂j}dj=1.

Condition 3.

(D1) The eigenvalues of Γ are given by ν1 > ν2 > · · · > νd > 0 = νd+1 = · · · = νp.

(D2) All elements of Γ(τ) are absolutely continuous on [0,1].

Theorem 3. Under Condition 3 and X ∈ L2, we have
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1. ν̂j − νj = Op(n
−1/2) for j = 1, . . . , d,

2. ‖η̂j − ηj‖ = Op(n
−1/2) for j = 1, . . . , d.

Theorem 3 suggests that the empirical eigenvalues and eigenvectors of Γ̂ are

reasonable estimators of the population counterparts for large sample sizes. This

theorem is proved for fixed p; the theory for increasing p is left to future research.

In practice, the structural dimension d of the central subspace is unknown.

To estimate it, we adopt the BIC-type criterion proposed by Feng et al. (2013):

d̂ = argmax
d∈{1,...,p}

(
n
∑d

m=1(log(λ̂m + 1)− λ̂m)

2
∑p

m=1(log(λ̂m + 1)− λ̂m)
− 2Cn ×

d(d+ 1)/2

p

)
, (4.2)

where Cn is a penalty constant, and d(d + 1)/2 is equal to the number of free

parameters.

5. Numerical Simulations

In this section, we evaluate the finite-sample performance of the proposed

methods using simulations, and compare it with that of existing methods. In

order to assess the estimation accuracy, we compute the trace correlation (Zhu,

Zhu and Feng (2010)), that is, R = tr(PBPB̂)/d, where PB represents the pro-

jection matrix onto the column space of B. Note that 0 ≤ R ≤ 1 and R = 1

if span(B) is identical to span(B̂), and R = 0 if span(B) is perpendicular to

span(B̂). Thus, larger values of R indicate more accurate estimates. For each

example, we repeat the simulations 100 times and report the results in the form of

mean(standard deviation) of R. When assessing the estimation performance,

we treat the structural dimension as known. However, we carry out separate

simulation analyses to assess the performance of estimating the dimension using

the bootstrap procedure of Section 3.3, and using the BIC-type criterion (Feng

et al. (2013)) of Section 4.2.

5.1. Central quantile subspace

In this section, we estimate the central quantile subspace. In particular,

we compare our method with the QOPG of Kong and Xia (2014) and the

SIQR/MIQR of Christou (2020). These two methods involve several user-chosen

parameters. We follow the choices made in the code provided and the sugges-

tions in Li (2018), Kong and Xia (2014), and Christou (2020). We try several

bandwidth parameters, h = chn
−1/(p+4) or h = chn

−1/(dτ+4), depending on the

predictor used for smoothing, ch = 0.7, 1.5, 2.34, and use the Gaussian kernel,
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Table 1. Simulation results for the central τth quantile subspace estimation. Reported
results are the mean(standard deviation) of the trace correlation from 100 replications.

τ = 0.25 τ = 0.5 τ = 0.75

Method p n = 200 n =400 n = 200 n =400 n = 200 n =400

QMDD
5 0.97 (0.02) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 0.97 (0.02) 0.99 (0.01)

10 0.95 (0.02) 0.98 (0.01) 0.96 (0.02) 0.98 (0.01) 0.95 (0.02) 0.98 (0.01)

QOPG

ch = 0.7
5 0.98 (0.01) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01)

10 0.97 (0.01) 0.99 (0.01) 0.97 (0.01) 0.99 (0.01) 0.97 (0.01) 0.99 (0.01)

ch = 1.5
5 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00)

10 0.98 (0.01) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 0.98 (0.01) 0.99 (0.01)

ch = 2.34
5 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00)

10 0.98 (0.01) 0.99 (0.00) 0.98 (0.01) 0.99 (0.00) 0.98 (0.01) 0.99 (0.01)

SIQR

ch = 0.7
5 0.97 (0.03) 0.98 (0.04) 0.97 (0.02) 0.98 (0.04) 0.97 (0.03) 0.98 (0.04)

10 0.97 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01)

ch = 1.5
5 0.97 (0.03) 0.98 (0.04) 0.97 (0.03) 0.98 (0.04) 0.97 (0.03) 0.98 (0.04)

10 0.97 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01)

ch = 2.34
5 0.97 (0.03) 0.98 (0.04) 0.97 (0.03) 0.98 (0.04) 0.97 (0.03) 0.98 (0.04)

10 0.96 (0.02) 0.98 (0.01) 0.96 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01)

and linear quantile regression. Throughout the simulations for the central quan-

tile subspace, we consider the sample sizes n = 200, and 400, the dimensions of

the predictor vector p = 5, and 10, and the quantiles τ = 0.25, 0.5, and 0.75,

unless otherwise specified. For the dimension selection, the bootstrap replicate

B = 400, {wi}ni=1 follows a standard normal distribution, and the significance

level is α = 10%.

Example 1. This example is adopted from Christou (2020). The response vari-

able Y is generated as Y = 3x1 + x2 + ε, where X = (x1, . . . , xp) and ε is

generated independently from a standard normal distribution. For a given τ ,

Bτ = (3, 1, 0, . . . , 0)>/
√

10.

Table 1 reports the trace correlation R for each method. All methods esti-

mate the central quantile subspace accurately in terms of a higher R. In addition,

all three methods produce comparable results. We observe that when p decreases

or n increases, all methods improve. Note that Qτ (Y | X) depends on B>τ X in

a linear fashion. Therefore, the SIQR of Christou (2020) is expected to perform

well because it uses an OLS estimate regressing Q̂τ (Y | X) on X. It is interesting

that the QMDD-based and QOPG-based approaches outperform the SIQR in

some cases, for example, when p = 5. It appears that the QOPG-based method

performs slightly better than the QMDD and SIQR methods.
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Table 2. Simulation results for the central τth quantile subspace estimation. Reported
results are the mean(standard deviation) of the trace correlation from 100 replications.

τ = 0.25 τ = 0.5 τ = 0.75

Method p n = 200 n =400 n = 200 n =400 n = 200 n =400

QMDD
5 0.89 (0.06) 0.93 (0.04) 0.95 (0.04) 0.98 (0.02) 0.91 (0.06) 0.94 (0.04)

10 0.83 (0.08) 0.90 (0.05) 0.90 (0.05) 0.95 (0.02) 0.84 (0.07) 0.91 (0.04)

QOPG

ch = 0.7
5 0.66 (0.18) 0.75 (0.12) 0.83 (0.15) 0.89 (0.10) 0.81 (0.17) 0.88 (0.10)

10 0.56 (0.11) 0.63 (0.09) 0.83 (0.09) 0.91 (0.05) 0.80 (0.09) 0.86 (0.06)

ch = 1.5
5 0.93 (0.04) 0.97 (0.03) 0.95 (0.03) 0.97 (0.02) 0.97 (0.02) 0.99 (0.01)

10 0.79 (0.09) 0.87 (0.05) 0.89 (0.05) 0.94 (0.03) 0.91 (0.04) 0.95 (0.02)

ch = 2.34
5 0.94 (0.04) 0.97 (0.02) 0.95 (0.03) 0.97 (0.02) 0.97 (0.02) 0.99 (0.01)

10 0.88 (0.06) 0.93 (0.04) 0.91 (0.04) 0.95 (0.02) 0.94 (0.03) 0.97 (0.02)

SIQR

ch = 0.7
5 0.44 (0.25) 0.42 (0.22) 0.52 (0.25) 0.53 (0.21) 0.45 (0.28) 0.47 (0.25)

10 0.41 (0.19) 0.45 (0.17) 0.56 (0.20) 0.64 (0.20) 0.51 (0.21) 0.59 (0.21)

ch = 1.5
5 0.36 (0.25) 0.37 (0.22) 0.43 (0.27) 0.47 (0.24) 0.38 (0.30) 0.43 (0.27)

10 0.36 (0.19) 0.41 (0.19) 0.50 (0.23) 0.60 (0.23) 0.47 (0.24) 0.58 (0.24)

ch = 2.34
5 0.34 (0.25) 0.35 (0.22) 0.40 (0.28) 0.44 (0.25) 0.36 (0.30) 0.42 (0.27)

10 0.35 (0.19) 0.40 (0.19) 0.49 (0.24) 0.60 (0.24) 0.47 (0.25) 0.58 (0.24)

Example 2. This example is adopted from Kong and Xia (2012), with a slight

modification that satisfies Condition 1. The data are generated by Y = exp(3
√

2x1
+3
√

2x5−6+6x3ε)/(1+exp(3
√

2x1+3
√

2x5−6+6x3ε)), where X = (x1, . . . , xp)

are generated independently from U(0, 1), and ε is from U(−1, 1). For a given τ ,

Bτ = (
√

2, 0, 2(2τ − 1), 0,
√

2, 0, . . . , 0)>/
√

4 + 4(2τ − 1)2.

From Table 2, we can see that the QMDD-based and QOPG-based methods

outperform the SIQR method. Note that the model has a strong nonlinear quan-

tile dependence between Y and B>τ X. We speculate that this could be a part of

the reason for the inferior performance of the SIQR approach. It also shows that

the QOPG-based approach performs better than its QMDD-based counterpart

for some cases, depending on (τ, h). Furthermore, the performance of the existing

methods changes substantially with different values of ch, showing its sensitivity

to the choice of h. Note that there seems no uniformly best choice of h that gives

the best performance for all cases. In other words, for different combinations of

(τ, n, p), different values of h yield the best performance.

Example 3. This example is taken from Luo, Li and Yin (2014) and addresses

the correlated X case. More specifically, the data are generated by Y = 1 + x1 +

(1+0.4x2)ε, where X = (x1, . . . , xp) is fromN(0,Σ), Σ = [Σij ]
p
i,j=1, Σij = 0.5|i−j|,

and ε follows a standard normal distribution. This is a heteroscedastic model,
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Table 3. Simulation results for the central τth quantile subspace estimation. Reported
results are the mean(standard deviation) of the trace correlation from 100 replications.

τ = 0.25 τ = 0.5 τ = 0.75

Method p n = 200 n =400 n = 200 n =400 n = 200 n =400

QMDD
5 0.93 (0.06) 0.95 (0.04) 0.93 (0.06) 0.97 (0.03) 0.88 (0.08) 0.95 (0.04)

10 0.86 (0.08) 0.92 (0.04) 0.86 (0.07) 0.93 (0.04) 0.77 (0.11) 0.88 (0.05)

QOPG

ch = 0.7
5 0.70 (0.25) 0.83 (0.14) 0.75 (0.21) 0.86 (0.12) 0.75 (0.17) 0.86 (0.10)

10 0.71 (0.15) 0.82 (0.09) 0.77 (0.11) 0.89 (0.07) 0.74 (0.10) 0.84 (0.07)

ch = 1.5
5 0.93 (0.05) 0.97 (0.03) 0.94 (0.05) 0.97 (0.02) 0.94 (0.04) 0.97 (0.02)

10 0.83 (0.11) 0.91 (0.05) 0.86 (0.08) 0.93 (0.04) 0.85 (0.07) 0.92 (0.04)

ch = 2.34
5 0.95 (0.05) 0.97 (0.02) 0.95 (0.04) 0.98 (0.02) 0.94 (0.04) 0.97 (0.02)

10 0.89 (0.07) 0.94 (0.04) 0.90 (0.05) 0.95 (0.03) 0.89 (0.05) 0.94 (0.03)

SIQR

ch = 0.7
5 0.46 (0.28) 0.53 (0.29) 0.46 (0.28) 0.54 (0.30) 0.32 (0.23) 0.39 (0.23)

10 0.38 (0.24) 0.56 (0.24) 0.46 (0.24) 0.65 (0.22) 0.30 (0.17) 0.44 (0.19)

ch = 1.5
5 0.42 (0.28) 0.52 (0.30) 0.42 (0.29) 0.54 (0.30) 0.30 (0.23) 0.37 (0.24)

10 0.36 (0.23) 0.55 (0.25) 0.44 (0.25) 0.64 (0.22) 0.28 (0.17) 0.43 (0.19)

ch = 2.34
5 0.42 (0.29) 0.51 (0.30) 0.41 (0.30) 0.54 (0.30) 0.29 (0.23) 0.36 (0.24)

10 0.35 (0.24) 0.55 (0.25) 0.43 (0.25) 0.64 (0.22) 0.27 (0.18) 0.43 (0.19)

where Bτ = (1, 0.4Φ−1(τ), 0, . . . , 0)>/
√

1 + (0.4Φ−1(τ))2, and Φ is the c.d.f. of

the standard normal distribution.

The trace correlation results are reported in Table 3. The QMDD-based and

QOPG-based methods are superior to the SIQR approach in terms of having

a higher R in all cases. For τ = 0.25, and 0.5, we observe that our method is

comparable or outperforms the QOPG method when ch = 0.7, and 1.5. Note that

X is correlated, which indicates that Condition 1 is not valid in this example.

This shows that our QMDD-based approach could still work for correlated B>τ X

and B>0,τX, to some extent.

Example 4. This example considers an inverse model. In particular, we generate

the data from X = β1log(Y 2 + 1.5) + β2(sign(Y )) + ε, where Y is generated

from U(−3, 3), and ε is from Beta(1, 2). Furthermore, β1 = b1, and β2 = b2 or

β1 = (b>1 , b
>
1 )>/

√
2, and β2 = (b>2 , b

>
2 )>/

√
2, where b1 = (2, 0,−1, 0, 2)>/3, and

b2 = (0, 1, 0, 1, 0)>/
√

2. There are two directions, and Bτ = (β1, β2) for τ = 0.25,

and 0.75.

Table 4 summarizes the performance of our method, the QOPG method,

and the MIQR method. The QMDD-based approach is superior to the QOPG

and MIQR. Because the data are generated from the inverse model, this example

seems to be more complicated than the previous examples. Thus, we assume
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Table 4. Simulation results for the central τth quantile subspace estimation. Reported
results are the mean(standard deviation) of the trace correlation from 100 replications.

τ = 0.25 τ = 0.75

Method p n = 200 n =400 n = 200 n =400

QMDD
5 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)

10 0.97 (0.02) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01)

QOPG

ch = 0.7
5 0.57 (0.09) 0.53 (0.05) 0.58 (0.10) 0.53 (0.05)

10 0.51 (0.06) 0.53 (0.07) 0.52 (0.08) 0.54 (0.08)

ch = 1.5
5 0.94 (0.04) 0.96 (0.02) 0.94 (0.03) 0.97 (0.02)

10 0.87 (0.04) 0.93 (0.02) 0.87 (0.04) 0.93 (0.02)

ch = 2.34
5 0.94 (0.04) 0.97 (0.02) 0.94 (0.03) 0.97 (0.02)

10 0.82 (0.05) 0.91 (0.03) 0.82 (0.06) 0.91 (0.03)

MIQR

ch = 0.7
5 0.54 (0.07) 0.55 (0.07) 0.54 (0.07) 0.54 (0.06)

10 0.49 (0.03) 0.51 (0.03) 0.49 (0.03) 0.51 (0.03)

ch = 1.5
5 0.55 (0.08) 0.54 (0.07) 0.54 (0.06) 0.54 (0.07)

10 0.49 (0.03) 0.51 (0.02) 0.49 (0.02) 0.51 (0.03)

ch = 2.34
5 0.53 (0.06) 0.54 (0.06) 0.53 (0.06) 0.52 (0.04)

10 0.49 (0.03) 0.51 (0.02) 0.49 (0.02) 0.51 (0.02)

that this could have affected the nonparametric modeling step in the QOPG and

MIQR, leading to some loss of accuracy.

Example 5. In this example, we generate the response variable Y from Y =√
x1 + 1 +

√
x2 + 1 + ε, where X = (x1, . . . , xp) is generated from χ2(2), and

ε is from Beta(1,2). Here, Bτ = (β1, β2), where β1 = (1, 0, . . . , 0)> and β2 =

(0, 1, 0, . . . , 0)>.

From Table 5, it appears that our approach outperforms the existing meth-

ods in all cases. Overall, our simulation evidence suggests that the QMDD-based

approach can outperform existing methods for both forward and inverse mod-

els with quite stable performance. In contrast, the performance of the existing

methods is sensitive to the choice of h. Note that our approach does not involve

any user-chosen quantities and is simpler to implement.

Lastly, we apply the bootstrap test described in Section 3.3 to select the

dimension of the central quantile subspace. Table 6 reports the percentages of

correctly identifying the structural dimension of the central quantile subspace

under the previous simulation models when n = 400 and p = 5. The bootstrap

test for the dimension selection has reasonable results for all models.
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Table 5. Simulation results for the central τth quantile subspace estimation. Reported
results are the mean(standard deviation) of the trace correlation from 100 replications.

τ = 0.25 τ = 0.5 τ = 0.75

Method p n = 200 n =400 n = 200 n =400 n = 200 n =400

QMDD
5 0.90 (0.07) 0.94 (0.05) 0.92 (0.06) 0.96 (0.04) 0.93 (0.06) 0.96 (0.03)

10 0.80 (0.09) 0.86 (0.07) 0.86 (0.08) 0.91 (0.05) 0.87 (0.06) 0.92 (0.05)

QOPG

ch = 0.7
5 0.61 (0.13) 0.62 (0.12) 0.60 (0.13) 0.62 (0.11) 0.61 (0.13) 0.63 (0.14)

10 0.54 (0.06) 0.54 (0.07) 0.55 (0.07) 0.55 (0.07) 0.55 (0.07) 0.56 (0.08)

ch = 1.5
5 0.65 (0.16) 0.72 (0.15) 0.68 (0.16) 0.76 (0.15) 0.70 (0.16) 0.77 (0.16)

10 0.53 (0.04) 0.55 (0.06) 0.56 (0.08) 0.61 (0.11) 0.60 (0.10) 0.67 (0.13)

ch = 2.34
5 0.77 (0.17) 0.89 (0.10) 0.75 (0.17) 0.86 (0.12) 0.74 (0.15) 0.86 (0.12)

10 0.58 (0.10) 0.69 (0.13) 0.65 (0.11) 0.75 (0.12) 0.67 (0.13) 0.77 (0.12)

MIQR

ch = 0.7
5 0.64 (0.14) 0.64 (0.15) 0.64 (0.14) 0.66 (0.15) 0.63 (0.14) 0.64 (0.15)

10 0.54 (0.06) 0.54 (0.07) 0.54 (0.06) 0.54 (0.06) 0.54 (0.07) 0.54 (0.06)

ch = 1.5
5 0.66 (0.14) 0.65 (0.13) 0.65 (0.14) 0.65 (0.14) 0.66 (0.15) 0.65 (0.15)

10 0.54 (0.07) 0.54 (0.07) 0.55 (0.07) 0.55 (0.08) 0.55 (0.08) 0.55 (0.07)

ch = 2.34
5 0.67 (0.14) 0.65 (0.13) 0.67 (0.15) 0.66 (0.14) 0.67 (0.15) 0.65 (0.15)

10 0.55 (0.07) 0.55 (0.07) 0.55 (0.08) 0.56 (0.08) 0.56 (0.09) 0.55 (0.07)

Table 6. Percentages of correctly selected dimension, under-selection, and over-selection
over 100 replicates for each example.

Model τ d̂τ < dτ d̂τ = dτ d̂τ > dτ

Example 1

0.25 0 100 0

0.50 0 100 0

0.75 0 100 0

Example 2

0.25 0 99 1

0.50 0 100 0

0.75 0 100 0

Example 3

0.25 0 100 0

0.50 0 100 0

0.75 0 100 0

Example 4
0.25 0 100 0

0.75 0 100 0

Example 5

0.25 1 90 9

0.50 0 88 12

0.75 0 99 1

5.2. Central subspace

In this section, we estimate the central subspace. We compare our method

with existing inverse regression methods, including the sliced inverse regression



QUANTILE DEPENDENCE BASED APPROACH TO DIMENSION REDUCTION 81

(SIR; Li (1991)), directional regression (DR; Li and Wang (2007)), and cumulative

slicing (CUME; Zhu, Zhu and Feng (2010)). For the SIR and DR, the number of

slices is five. We consider the sample sizes n = 200, and 400, and dimensions of

the predictor p = 10, and 20. When we estimate the structural dimension using

the BIC-type criterion, we use Cn = n1/3p2/3, following the recommendation in

Feng et al. (2013).

Example 6. This example considers a single index model. More specifically, the

response Y is generated using Y = (β>1 X + 1)3 + ε, where X and ε are generated

from U(0, 5) and U(−1, 1), respectively. The central subspace is spanned by

B = β1, where β1 = (1, 1, 1, 0, 0, . . . , 0)>.

Table 7 summarizes the performance of all methods under different mod-

els. For this example, it appears that all approaches perform reasonably well,

where our QMDDM-based method performs slightly better than the existing

ones. Overall, when n increases and p decreases, all methods produce better

estimates of PB as R increases.

Example 7. In this example, we consider a heteroscedastic model. In particular,

we generate the data using the following model: Y = exp(β>1 X+1+β>2 Xε), where

X and ε are defined in Example 6. The structural dimension is equal to two, and

B = (β1, β2), where β1 = (1, 1, 1, 0, 0, . . . , 0)> and β2 = (0, 0, 0, 1, 1, 1, 0, . . . , 0)>.

From Table 7, we observe that our QMDDM-based approach is superior to

existing methods in terms of having a higher R. This shows that the CUME and

SIR are comparable, with the CUME performing slightly better than the SIR

and outperforming the DR.

Example 8. In this example, we examine a model with correlated X. We gen-

erate the response from Y = β>1 X/(β>2 X + 1.5)2 + 0.5 + 0.5β>1 Xε, with X gen-

erated from N(0,Σ), where Σ = [σij ]
p
i,j=1, σij = 0.5|i−j|, and ε is generated from

N(0, 1). Here, B = (β1, β2), where β1 = (1, 0, . . . , 0)>, β2 = (0, 1, 0 . . . , 0)>.

Table 7 also presents the means and standard errors of all approaches for this

example. The results suggest that the QMDDM-based method generates higher

R values than the other methods do, indicating that the QMDD-based approach

outperforms the other methods in all cases.

Example 9. In this example, we consider the inverse model introduced in Ex-

ample 4. In particular, we generate X = β1log(Y 2+1.5)+β2(sign(Y ))+ε, where

Y , ε, and B = Bτ are defined in Example 4.
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Table 7. Simulation results for the central subspace estimation. Reported results are the
mean(standard deviation) of the trace correlation from 100 replications.

Model p n CUME SIR DR QMDDM

Example 6

10
200 0.98 (0.01) 0.99 (0.00) 0.99 (0.00) 1.00 (0.00)

400 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

20
200 0.97 (0.01) 0.99 (0.00) 0.98 (0.01) 1.00 (0.00)

400 0.98 (0.01) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00)

Example 7

10
200 0.79 (0.07) 0.75 (0.10) 0.51 (0.14) 0.83 (0.06)

400 0.88 (0.04) 0.85 (0.06) 0.65 (0.15) 0.91 (0.03)

20
200 0.63 (0.07) 0.57 (0.10) 0.26 (0.12) 0.66 (0.07)

400 0.78 (0.05) 0.73 (0.07) 0.38 (0.12) 0.79 (0.05)

Example 8

10
200 0.79 (0.07) 0.74 (0.11) 0.65 (0.13) 0.88 (0.08)

400 0.86 (0.06) 0.86 (0.09) 0.80 (0.13) 0.94 (0.05)

20
200 0.63 (0.09) 0.52 (0.11) 0.40 (0.11) 0.75 (0.10)

400 0.76 (0.06) 0.72 (0.08) 0.63 (0.12) 0.87 (0.05)

Example 9

10
200 0.99 (0.00) 0.86 (0.05) 0.83 (0.05) 0.99 (0.00)

400 0.99 (0.00) 0.92 (0.02) 0.91 (0.03) 1.00 (0.00)

20
200 0.98 (0.01) 0.72 (0.05) 0.66 (0.05) 0.99 (0.00)

400 0.99 (0.00) 0.84 (0.03) 0.81 (0.04) 0.99 (0.00)

Table 8. Percentages of correctly selected dimension, under-selection, and over-selection
over 100 replicates for each example.

Model d̂ < d d̂ = d d̂ > d

Example 6 0 100 0

Example 7 0 100 0

Example 8 14 86 0

Example 9 0 100 0

According to Table 7, it seems that all methods produce accurate results be-

cause the R values are sufficiently high. More precisely, the CUME and QMDDM-

based methods are very comparable and outperform the other existing methods.

To summarize, the simulation results clearly demonstrate the usefulness of the

proposed approach, which is easy to implement and includes no user-chosen pa-

rameters.

Table 8 reports the percentages of correctly identifying the structural dimen-

sion of the central subspace under the previous simulation models when n = 400

and p = 10. We apply the BIC-type criterion in Section 4.2. We observe that

the BIC-type criterion works fairly well under all models.
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6. Real-Data Illustration

In this section, we focus on the central quantile subspace, and consider the

riboflavin data analyzed by Buhlmann, Kalisch and Meier (2014) and Zhang, Lee

and Shao (2020). These data contain 71 samples of the riboflavin production rate

and the expression levels of 4,088 genes. The response is the logarithm of the

riboflavin production rate, and the predictors are the logarithms of the expression

levels of the genes. Owing to the high dimensionality and relatively small sam-

ple size, we apply variable screening to the predictors, similarly to Buhlmann,

Kalisch and Meier (2014) and Zhang, Lee and Shao (2020). In particular, we

select g genes that are strongly related to the riboflavin production rate by us-

ing the quantile dependence analogue of the martingale difference correlation in

Shao and Zhang (2014). After applying the bootstrap test in Section 3.3, we

determine dτ = 1 for τ = 0.25, 0.5, 0.75 with the selected genes. We apply the

proposed method and the existing methods with the same user-chosen quantities

in Section 5.1. Figure 1 reports the estimated direction using all of the data with

g = 5; the estimated direction with g = 10 is similar to that in the figure; see the

Supplementary Material. The results show some curvatures for τ = 0.25, 0.5,

and 0.75. To evaluate the estimation stability of the central quantile subspace, we

consider the boostrap variability B−1
∑B

b=1 ‖PB̂τ
− PB̂b

τ
‖F , where B̂τ is the es-

timated semi-orthogonal matrix on the whole data set, and B̂b
τ , for b = 1, . . . , B,

is the estimated semi-orthogonal matrix on 71 bootstrap samples from B = 100

bootstrap replicates. The boostrap variability is summarized in Table 9, which

includes the best results of the existing methods for different bandwidth param-

eters. The results show that the proposed method generates estimations of the

central quantile subspace that are more stable than those of existing methods.

Furthermore, the QMDD-based approach requires comparable or less computa-

tional time than existing methods do for this data set. In particular, when g = 5,

ch = 0.7, and τ = 0.25, the QMDD, QOPG, and SIQR methods take 4.64, 14.54,

and 5.17 (seconds), respectively, for B = 100 bootstrap replicates. The compu-

tation was performed on a Windows 10 computer with an Intel(R) Core(TM)

i7-7700 CPU @ 3.60GHz processor, 32.0 GB installed memory (RAM), and a

64-bit operating system.

7. Conclusion

In this study, we use two metrics, the QMDD and the QMDDM to estimate

the central quantile subspace and the central subspace, respectively. We also

introduce a new bootstrap test to select the structural dimension for the cen-
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Figure 1. Sufficient summary plots of the central τth-quantile subspace direction for
QMDD approach, with g = 5. The solid lines refer to the local quantile regressions for
each quantile.

Table 9. Comparison of methods for the central quantile subspace in estimation stability.

QMDD QOPG SIQR

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

g = 5 0.20 (0.02) 0.16 (0.01) 0.15 (0.01) 0.45 (0.02) 0.72 (0.03) 0.55 (0.03) 0.50 (0.03) 0.85 (0.03) 0.64 (0.02)

g = 10 0.28 (0.02) 0.20 (0.01) 0.17 (0.01) 0.69 (0.02) 0.89 (0.03) 0.87 (0.03) 0.72 (0.02) 0.85 (0.03) 0.93 (0.03)

tral quantile subspace, and use a BIC-type criterion to choose the dimension of

the central subspace. The finite-sample performance and a real-data application

suggest that our QMDD(M)-based approach performs relatively well, and pro-

duces results that are more accurate, with comparable or less computational time.

In contrast to existing methods for the central quantile subspace or the central

subspace, the QMDD(M)-based approach includes no user-chosen parameters,

making it convenient and simple to implement. Theoretical results are obtained

under suitable conditions, and justify the validity of our methods.

We conclude by mentioning several future research topics. The bootstrap

test used to select the structural dimension is worth investigating. A rigorous

theoretical study is needed. It is important to understand the theoretical behavior

of the proposed approaches when the dimension p is large, and to examine whether

we can extend the method to the large p case; however, this seems to be very

challenging. Another issue is that we assume Y is univariate. It would be useful

to extend our methods to multivariate Y , which seems nontrivial. Lastly, it would

be interesting to extend the idea to estimate the envelope quantile regression in

Ding et al. (2021), considering the connection between SDR and the predictor

envelope model.
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Supplementary Material

The online Supplementary Material contains proofs of Theorems 1, 2, 3, an

additional simulation, and an additional figure.
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