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Abstract: We investigate a functional additive quantile regression that models the

conditional quantile of a scalar response based on the nonparametric effects of a

functional predictor. We model the nonparametric effects of the principal com-

ponent scores as additive components, which are approximated by B-splines. We

select the relevant components using a nonconvex smoothly clipped absolute devia-

tion(SCAD) penalty. We establish that, when the relevant components are known,

the convergence rate of the estimator using the estimated principal component

scores is the same as that using the true scores. We also show that the estimator

based on relevant components is a local solution of the SCAD penalized quantile re-

gression problem. The practical performance of the proposed method is illustrated

using simulation studies and an empirical application to corn yield data.

Key words and phrases: Additive quantile regression, functional data, principal

component analysis, splines.

1. Introduction

A functional quantile regression provides an overall picture of the predictive

distribution of the scalar response, given the function-valued covariates, rather

than focusing simply on the mean response. This model is used, for instance, by

Cardot, Crambes and Sarda (2005), Chen and Müller (2012), and Kato (2012),

who construct the τth conditional quantile of a scalar response y from a functional

predictor X using the following linear operation:

Qy(τ |X) = α(τ) +

∫
T
X(t)β(t, τ)dt. (1.1)

Here, X(t) is a predictor process that is a square integrable random function

defined on a compact interval T , and β(t, τ) is the square integrable coefficient

function for a given τ . Yao, Sue-Chee and Wang (2017) and Ma et al. (2019)

extended the model to accomodate high-dimensional scalar predictors. To deal

with functional data that are infinite-dimensional objects, the most widely used
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approach is to project the functional data onto a space spanned by a finite

number of basis functions. The basis can be fixed in advance (e.g, B-splines,

Fourier basis; see Crambes, Gannoun and Henchiri (2013) and Crambes, Gan-

noun and Henchiri (2014)) or data-driven. A convenient choice for the data-

driven option is to use the eigenbasis of the covariance operator of X(t), which

often provides a parsimonious and efficient representation. More specifically,

the covariance kernel is defined as G(s, t) = Cov(X(s), X(t)). By the well-

known functional principal component analysis (FPCA) (Yao, Müller and Wang

(2005), Hall, Müller and Wang (2006), Li and Hsing (2010)), we have the spec-

tral expansion G(s, t) =
∑∞

k=1 λkφk(s)φk(t) and the Karhunen–Loeve expan-

sion X(t) =
∑∞

k=1 ξkφk(t), where λ1 ≥ λ2 ≥ · · · ≥ 0 are ordered eigenval-

ues, {φk}∞k=1 are eigenfunctions making up an orthonormal basis of L2(T ), and

ξk =
∫
T X(t)φk(t)dt are called the principal component scores for X(t). Using the

expansion β(t, τ) =
∑∞

k=1 bk(τ)φk(t), where bk(τ) =
∫
T β(t, τ)φk(t)dt, the model

(1.1) is transformed into a quantile regression model with an infinite number of

“regressors”:

Qy(τ |X) = α(τ) +

∞∑
k=1

bk(τ)ξk, (1.2)

and thus regularization is necessary. In Kato (2012), this regularization is achieved

by truncating the eigensequence to the first K leading terms, where K is chosen

such that it retains most of the variation in predictor X(t).

There is an obvious limitation to model (1.2) in that the linear relationship

can be restrictive for general applications. To make it more flexible, we pro-

pose a functional additive quantile regression in which the linear components are

replaced by the sum of nonlinear functional components; that is,

Qy(τ |X) = α(τ) +

∞∑
k=1

fk,τ (ξk),

where {fk,τ (·)} are unknown smooth functions. To make the estimation feasible,

we assume all useful information is contained in the first s components. That

is, we assume fk,τ ≡ 0, k > s, for some sufficiently large s. Furthermore, to

avoid possible scaling issues, we use the standardized version ζik = Φ(λ
−1/2
k ξik),

where Φ(·) is a continuously differentiable map from R to [0, 1]. Then, the model

becomes

Qy(τ |X) = α(τ) +

s∑
k=1

fk,τ (ζk). (1.3)

To ensure that we can identify fk,τ , we assume that Efk,τ (ζk) = 0, for k =



FUNCTIONAL ADDITIVE QUANTILE REGRESSION 1333

1, 2, . . . , s. We assume the significant components are contained in the first s

components, but that the s components are not all significant.

We approximate the component functions using the B-splines method, which

is computationally convenient. To automatically select the significant compo-

nents, we impose a smoothly clipped absolute deviation (SCAD) penalty (Sher-

wood and Wang (2016)) on the l1 norm of each coefficient group. With the l1
penalty, the minimization can be solved using linear programming. However, the

computation becomes more involved if the l2 penalty is used. This choice is also

made for theoretical convenience. If we penalize the l2 norm, the sufficient con-

dition for the local minimizer of the convex difference problem in Wang, Wu and

Li (2012) is too restrictive and difficult to satisfy. This is because the subgradi-

ents of ‖θ‖1 involves only the signs of θk, whereas the gradients of ‖θ‖2 are not

restricted to {−1, 0, 1}. Empirically, we find that when we penalize ‖θ‖1 inside a

SCAD penalty, the individual components of θ are not sparse, as long as θ 6= 0.

Other penalties, such as the group LASSO or adaptive group LASSO, could also

be used instead of the SCAD penalty. Our choice is mainly for convenience;

several alternatives in the literature exhibit similar performance.

There is a rich body of literature on functional additive models when the

conditional mean of the scalar response is of interest. Müller and Yao (2008)

considered the model E(y|X) = α+
∑∞

k=1 fk(ξk). They estimated {fk} using lo-

cal polynomial smoothing, and regularized the model using truncation, as we do

here. Zhu, Yao and Zhang (2014) estimated and selected the additive components

in a reproducing kernel Hilbert space (RKHS) framework, adopting the compo-

nent selection and smoothing operator (COSSO) penalty. Furthermore, Wong,

Li and Zhu (2018) extended the model to include partial linear functional ad-

ditive regressions with multivariate functional predictors. However, fewer works

examine conditonal quantile modeling with functional predictors. Kato (2012)

pioneered this field by investigating the functional linear quantile regression. His

analysis is based on fully observed X(t). In contrast, we allow observation errors

in the predictor, and apply a B-spline approximation, which is computationally

more convenient than the kernel method in terms of implementation. The rele-

vant components are then selected using a SCAD penalty on the l1 norm of each

coefficient group.

A related line of research is that on additive or sparse additive quantile

regression models; see Horowitz and Lee (2005), Koenker (2011), Kato (2011),

Lian (2012) and Lv et al. (2018). Our work differs from these studies in that

we estimate the scores, which serve as pseudo-predictors, using an FPCA. Thus,

theoretically, we need to deal with the error caused by the estimated predictors.
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This requires new bounds throughout the proof and new conditions constraining

the number of components, number of knots in the splines, and tuning parameter

in the penalty.

The rest of the paper is organized as follows. In Section 2, we present the

proposed approach and the computational algorithm. In Section 3, we investigate

the asymptotic properties of the proposed estimator. We illustrate the method

by means of simulation studies in Section 4, and apply it to a real data set in

section 5. Section 6 concludes the paper. All proofs are contained in the online

Supplementary Material.

2. Proposed Methodology

Let {yi, Xi(t)}ni=1 be independent and identically distributed (i.i.d.) real-

izations of the pair {y,X(t)}. The trajectories {Xi(t) : t ∈ T } are observed

intermittently on possibly irregular grids ti = (ti1, . . . , tiNi
)T. We further assume

that the predictor trajectories are subject to i.i.d. measurement errors; that is,

Xij = Xi(tij) + εij , with Eεij = 0 and var(εij) = σ2, for j = 1, . . . , Ni. The

sequence of functional principal component (FPC) scores of Xi(t) is denoted by

ξi,∞ = (ξi1, ξi2, . . .)
T. Denote the s truncated FPC scores as ξi = (ξi1, , . . . , ξis)

T.

Similarly, write ζi,∞ = (ζi1, ζi2, . . .)
T and ζi = (ζi1, . . . , ζis)

T. The transformed

FPC scores {ζi} cannot be observed, and need to be estimated from discrete

observations of Xi(t).

When Xi(t) are fully observed, the mean and covariance of X(t) can be esti-

mated using the sample counterparts, µ̂(t) and Ĝ(s, t), respectively. The spectral

decomposition on the estimated covariance function, Ĝ(s, t) =
∑n−1

k=1 λ̂kφ̂k(s)φ̂k(t),

provides the estimated eigenvalues and eigenfunctions. The FPC scores are es-

timated by projecting Xi(t) onto the eigenfunctions, ξ̂ik =
∫
T Xi(t)φ̂k(t)dt, and

we set ζ̂ik = Φ(λ̂
−1/2
k ξ̂ik) for the transformed FPC scores. When only discrete

observations are available, we focus on the case in which dense measurements are

made, such that each Xi(t) can be recovered effectively using smoothing. The

eigenvalues, eigenfunctions, and FPC scores are estimated by replacing Xi(t) with

the estimated X̂i(t). For the detailed algorithm, refer to Section 3.1 in Wong,

Li and Zhu (2018). The estimated transformed FPC scores are denoted by ζ̂i,

which serve as the predictors in the following.

The additive components fk,τ (·), for k = 1, . . . , s are approximated using

B-spline basis functions. Let (b1(t), . . . , bKn+l+1(t))
T be the vector of normal-

ized B-spline basis functions of order l, with Kn quasi-uniform internal knots on

[0, 1]. Refer to Schumaker (2007) for details of the B-spline construction. For



FUNCTIONAL ADDITIVE QUANTILE REGRESSION 1335

ease of notation and to simplify the proofs, we use the same number of basis

functions for all nonlinear components. To accommodate the identifying restric-

tion Efk,τ (ζk) = 0, for 1 ≤ k ≤ s, we use the centered B-spline basis functions

Bm(ζk) = bm+1(ζk) − (1/n)
∑n

i=1 bm+1(ζ̂ik) for m = 1, . . . ,Kn + l, as in Huang,

Horowitz and Wei (2010), and denote w(ζk) = (B1(ζk), . . . , BKn+l(ζk))
T. We

can approximate each fk,τ (t) by fk,τ (t) ≈ w(t)′θk. Let θ = (θ0,θ
T
1 , . . . ,θ

T
s )T be

the spline coefficient for the estimation of the component functions, and define

W (ζi) = (K
−1/2
n ,w(ζi1)

T , . . . ,w(ζis)
T )T, where K

−1/2
n is used to make the scale

of the intercept comparable with that of the B-spline basis functions. Now, we

can apply the SCAD penalty on the l1 norms of θk, for 1 ≤ k ≤ s, to select the

significant components. We estimate θ by θ̂, which minimizes

Sn(θ) = n−1
n∑
i=1

ρτ (yi −W (ζ̂i)
Tθ) +

s∑
k=1

pλ(‖θk‖1), (2.1)

where ρτ (u) = |u|+ (2τ − 1)u is the quantile loss function, ‖θk‖1 =
∑Kn+l

j=1 |θkj |,
and pλ(t) is the SCAD penalty function, defined as

pλ(t) = λtI(0 ≤ t < λ) +
aλt− (t2 + λ2)/2

a− 1
I(λ ≤ t ≤ aλ) +

(a+ 1)λ2

2
I(t > aλ),

for some a > 2. Then, we can estimate the parameters in model (1.3) by α̂(τ) =

K
−1/2
n θ̂0 and f̂k,τ (t) = w(t)T θ̂k.

Owing to the l1 norm in the penalization, the above penalized problem can

be solved using the local linear approximation (LLA) proposed by Zou and Li

(2008). Specifically, for each step t, we update the estimator as follows:

θ̂t = argmin
θ

n−1
n∑
i=1

ρτ (yi −W (ζ̂i)
Tθ) +

s∑
k=1

p′λ(‖θ̂t−1k ‖1)‖θk‖1.

This problem can be transformed to an unpenalized weighted quantile regression

problem based on the observation |θkj | = ρτ (θkj) + ρτ (−θkj) and an augmented

data set. A similar algorithm was used in Sherwood and Wang (2016).

In practice, the selection of the tuning parameter λ is important. We choose λ

to minimize the Bayesian information criterion (BIC; see Section 3.1 in

Lee, Noh and Park (2014)), defined as

BIC(λ) = log

n∑
i=1

ρτ (yi −W (ζ̂i)
T θ̂λ) + Jλ

log n

2n
Cn, (2.2)
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where θ̂λ is the SCAD penalized estimator given λ , Jλ = 1 + (Kn+ l)|Sλ|, |Sλ| is
the number of selected components, and Cn is defined in the asymptotic theory.

3. Asymptotic Properties

In this section, we first study the asymptotic properties of the oracle estima-

tor when the important components are known a priori. Then, we show that the

oracle estimator is a local minimizer of Sn(θ).

3.1. Oracle estimator

Assume there are q nonzero components in {fk,τ (·), 1 ≤ k ≤ s}. In par-

ticular, we denote by S∗ = {k1, k2, . . . , kq} ⊆ {1, 2, . . . , s} the index set of the

important components, with |S∗| = q, where | · | denotes the cardinality of a

set. Denote the corresponding transformed scores as ζi,S∗ = (ζi,k1 , . . . , ζi,kq)T.

Then, θ can be divided as θS∗ = (θ0,θ
T
k1
, . . . ,θTkq)T and θS∗c , which is the com-

plement vector of θS∗ in θ. Similarly, define the B-spline basis W (ζi,S∗) =

(K
−1/2
n ,w(ζik1)

T, . . . ,w(ζikq)T )T. Then, we can obtain the oracle estimator θ∗ as

θ∗S∗c = 0 and

θ∗S∗ = argmin
θS∗

n−1
n∑
i=1

ρτ (yi −W (ζ̂i,S∗)
TθS∗). (3.1)

The oracle estimations for the component functions are α∗(τ) = K
−1/2
n θ∗0, f∗kj ,τ (t)

= w(t)Tθ∗kj , for j = 1, . . . , q, and f∗k,τ (t) = 0, for k /∈ S∗. The following technical

conditions are imposed in order to analyze the asymptotic behavior of θ∗ and

f∗k,τ (t).

(C1) Condition on the functional predictor: E(‖X(t)‖4) < ∞, and there

exists a constant Cξ > 0, such that E(ξ2kξ
2
k′) ≤ Cξλkλk′ and E(ξ2k − λk)2 < Cξλ

2
k,

for all k and k′ 6= k. In addition, C−1λ k−β ≤ λk ≤ Cλk
−β and λk − λk+1 ≥

C−1λ k−1−β, for some constant Cλ and β > 1.

This condition is used in Wong, Li and Zhu (2018). It imposes a weak moment

condition on the functional predictor, and is satisfied ifX(t) is a Gaussian process.

In addition, it assumes the eigenvalues decay at a polynomial rate. Under this

condition, we have the following lemma (Proposition 1 in Wong, Li and Zhu

(2018)).

Lemma 1. Suppose the transformation function Φ(·) has a bounded derivative.

Under condition (C1) and miniNi > C1n
1/4, for some positive constant C1, there

exists a constant C such that E(ζ̂ik− ζik)2 ≤ Ck2/n uniformly for k ≤ Gn, where

Gn = C2n
1/(2+2β), for some constant C2 > 0.
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The dense condition miniNi > C1n
1/4 is justified in Hall, Müller and Wang

(2006) to ensure that the smoothed function estimators X̂(t) are as good as

the true functions X(t), in the sense that the estimators of λk and φk are both

first-order equivalent to those from applying a conventional principal component

analysis to the true curves X(t).

(C2) Condition on the random error: The random error εi = yi − α(τ) −∑s
k=1 fk,τ (ζik) has the conditional distribution function Fi and conditional den-

sity function fi, given Xi(t). In addition, fi is uniformly bounded away from zero

and infinity in a neighborhood of zero. Its first derivative f ′i has a uniform upper

bound in a neighborhood of zero, for i = 1, . . . , n.

(C3) Condition on the component functions: Efkj ,τ (ζik) = 0 and fkj ,τ ∈
Hr, for all 1 ≤ j ≤ q, where q is fixed and Hr is the collection of functions

f on [0, 1], such that the vth-order derivative satisfies the Hölder condition of

order m with r = m + v > 3/2, v is a positive integer, and m ∈ (0, 1]; that is,

|f (v)(t)−f (v)(t′)| ≤ Ch|t− t′|m, for all t, t′ ∈ [0, 1], for some positive constant Ch.

In addition, fk,τ (t) = 0, for all k /∈ S∗.
Condition 2 is more relaxed than that usually imposed on the random error

of a mean regression, which often requires independence from the predictors or

homoscedasticity. Conditions 3 and 4 are typical for applications involving B-

splines. From Schumaker (2007), under Condition 3, there exists θ0S∗ , such that

sup
t∈[0,1]q

|W (t)Tθ0S∗ − α(τ)−
q∑
j=1

fkj ,τ (tj)| = O(K−rn ),

where W (t) = (K
−1/2
n ,w(t1)

T , . . . ,w(tq)
T )T and t = (t1, . . . , tq)

T. The following

theorem summarizes the asymptotic properties of the oracle estimator.

Theorem 1. Assume the conditions in Lemma 1 and (C2)–(C3) hold. The num-

ber of oracle predictors q is fixed and q ≤ s ≤ Gn = C2n
1/(2+2β). If K3

ns
2 � n

and max{Kn, s
2,K−2rn n} � K2

n{s/
√
n+K−rn } log n, then we have

‖θ∗S∗ − θ0S∗‖2 = Op

(
Kn√
n

+

√
Kn

n
s+K−r+1/2

n

)
, (3.2)

n−1
n∑
i=1

(g∗(ζ̂i,S∗)− g(ζi,S∗))
2 = Op

(
Kn

n
+
s2

n
+K−2rn

)
, (3.3)

where g∗(ζ̂i,S∗) = α∗(τ)+
∑q

j=1 f
∗
kj ,τ

(ζ̂i,kj ) and g(ζi,S∗) = α(τ)+
∑q

j=1 fkj ,τ (ζi,kj ).
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Remark 1. In addition to the two terms in the convergence rate also found

in nonparametric regression, we have a third term s2/n caused by the error-

contaminated predictors ζ̂i,S∗ . The technical condition K3
ns

2 � n guarantees

that the B-spline design matrix with estimated scores behaves as well as that

with true scores. Furthermore, max{Kn, s
2,K−2rn n} � K2

n{s/
√
n + K−rn } log n

follows after applying Bernstein’s inequality in the proof.

Remark 2. The optimal choice of Kn is Kn = O(n1/(2r+1)), which satisfies the

order condition max{Kn, s
2,K−2rn n} � K2

n{s/
√
n + K−rn } log n, for any s. If s

is fixed, the convergence rate for g∗ is the traditional nonparametric convergence

rate Op(Kn/n+K−2rn ). This implies that ζ̂i,S∗ converges sufficiently quickly and

does not influence the global convergence rate. If s = O(n1/(2+2β)) under the

framework laid out in Lemma 1, the condition K3
ns

2 � n becomes 3/(2r + 1) +

1/(1 + β) < 1. In this case, there is a trade-off between r and β. A smaller β

allows us to consistently estimate a higher number of scores. However, we require

a stronger smoothness assumption on the functions to be estimated; that is, fkj ,τ
must satisfy the Hölder condition with a larger r.

3.2. SCAD penalized estimator

To investigate the asymptotic properties of the SCAD penalized estimator,

we need an additional condition on how quickly the nonzero signal can decay.

(C4) Condition on the signal strength: The minimal signal mink∈S∗ ‖θ0k‖2 ≥
C
√
Kn/n(K

1/2
n + s)nα, for some positive constants C and α.

Owing to the nonsmoothness and nonconvexity of the penalized objective

function, in our proof, we use a sufficient condition for the local minimizer of

a convex difference problem, as in Wang, Wu and Li (2012) and Sherwood and

Wang (2016). Specifically, the penalized objective function can be represented

as the difference of two convex functions. By verifying that the oracle estimator

meets the sufficient condition, we obtain our main theorem. Let E(λ) be the set

of local minima of Sn(θ). The oracle estimator belongs to the set E(λ), with

probability approaching one.

Theorem 2. Assume the conditions in Theorem 1 and (C4) are satisfied. The

optimal rate Kn = O(n1/(2r+1)) is used. Let θ∗ be the oracle estimator defined

in (3.1). If max{1/
√
n, s/

√
Knn } � λ �

√
Kn/n(K

1/2
n + s)nα, then P (θ∗ ∈

E(λ))→ 1 as n→∞.

3.3. Consistency of the BIC in model selection
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In this section, we investigate the consistency of the BIC in terms of model

selction. The generic notation S ⊆ {1, . . . , s} denotes an arbitrary candidate

model. We define the BIC for model S as

BIC(S) = log

n∑
i=1

ρτ (yi −W (ζ̂i,S)T θ̂S) + JS
log n

2n
Cn, (3.4)

where θ̂S is the estimator under model S, JS = (1+(Kn+ l)|S|), and Cn diverges

to infinity. The diverging order of Cn is specified later. The main challenge is

that the number of candidate models increases exponentially with s. We use

additional conditions to establish the model selection consistency of the BIC for

our model.

(C5) Condition on the spline design covariates:

(i) max1≤k≤s ‖W (ζi,k)‖ = Op(1),

(ii) b2/Kn ≤ infS Eλmin(W (ζi,S)W (ζi,S)T ) ≤ supS Eλmax(W (ζi,S)W (ζi,S)T ) ≤
b∗2/Kn, for some positive constants b2 and b∗2.

Condition (C5) is not strong, and is satisfied in most nonparametric estima-

tions based on a B-spline basis approximation (see Lee, Noh and Park (2014)). It

is well known that ‖W (ζi,k)‖ = Op(1), for every 1 ≤ k ≤ s. In addition, we have

b2/Kn ≤ Eλmin(W (ζi,S)W (ζi,S)T ) ≤ supS Eλmax(W (ζi,S)W (ζi,S)T ) ≤ b∗2/Kn,

for every S (see the proof of Lemma S1.1(2)). Condition (C5) specifies a uniform

version. Using these conditions, we obtain the model selection consistency of the

BIC when s is diverging under the framework laid out in Lemma 1.

Theorem 3. Assume the conditions in Theorem 2 and (C5) are satisfied. The

number of candidate components s = O(n1/2(1+β)) and mink∈S∗ ‖θ0k‖ ≥ C
√
Kn.

For any sequence Cn →∞ satisfying Kn(log n/(2n))Cn → 0 and s/(KnCn)→ 0,

we have

P
(

inf
S6=S∗

BIC(S) > BIC(S∗)
)
→ 1.

Let Sλ denote the model selected using the penalized estimation with λ.

From the definitions, BIC(λ) ≥ BIC(Sλ) because the latter uses an unpenalized

estimator. In addition, Theorem 1 implies that, with high probability, the oracle

estimator can be produced by some λ∗ on the solution path; thus, BIC(λ∗) =

BIC(Sλ∗). Therefore, by Theorem 3, for any λ not inducing the oracle model, we

have BIC(λ) ≥ BIC(Sλ) > BIC(Sλ∗) = BIC(λ∗). This suggests that the BIC is

consistent for the tuning parameter selection.
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4. Simulation Studies

We conduct simulation studies to illustrate the empirical performance of the

proposed method. We generate predictor trajectories Xi(t) over a grid with 100

equally spaced points over 0 ≤ t ≤ 10 from

Xi(t) = t+ sin(t) +

10∑
k=1

ξikφk(t),

where ξik ∼ N(0, λk), λk = 30k−2, corr(ξik, ξik′) = 0, for k 6= k′, and φk(t) =

(1/
√

10)sin(πkt/10+π/4). This is the Karhunen–Loève expansion, and the scores

are independent. The measurement errors are generated independently from

N(0, 0.22). For the regression function, we set f1(ζ1) = 3ζ1 − 3/2, f2(ζ2) =

sin(2π(ζ2 − 1/2)), f3(ζ3) = 8(ζ3 − 1/3)2, and f4(ζ4) = 8(ζ4 − 1/3)2 − 8/9. Then,

we generate responses using five models:

Model 1: yi = 1.4 + f1(ζi1) + f2(ζi2) + f4(ζi4) + εi, εi ∼ N(0, 1);

Model 2: yi = 1.4 + f1(ζi1) + f2(ζi2) + f4(ζi4) + εi, εi ∼ t(5);

Model 3: yi = 1.4 + f1(ζi1) + f2(ζi2) + f4(ζi4) + f3(ζi3)εi, εi ∼ N(0, 1);

Model 4: yi = 1.4 + f1(ζi1) + f2(ζi2) + f4(ζi10) + εi, where εi is N(0.5, 0.2) when

u < 0.3, and N(−0.5, 1) when u > 0.7 with u ∼ Uniform(0, 1);

Model 5: yi = 1.4 + f1(ζi1) + f2(ζi2) + f10(ζi10) + εi, where εi ∼ N(0, 1) and

f10(x) = 8(x− 1/3)2 − 8/9.

Model 1 is homoscedastic and the τth conditional quantile is Qyi(τ |Xi) =

1.4 + Φ−1(τ) + f1(ζi1) + f2(ζi2) + f4(ζi4). For identification, we fit the demeaned

functions f1(ζ1) − E(f1(ζ1)), f2(ζ2) − E(f2(ζ2)), and f4(ζ4) − E(f4(ζ4)). With

a slightly abuse of notation, we still denote these demeaned functions as f1(ζ1),

f2(ζ2), and f4(ζ4) respectively. Model 2 mimics Model 1 with a heavy-tailed

error. Model 3 is heteroscedastic and the τth conditional quantile is Qyi(τ |Xi) =

1.4 + f3(ζi3)Φ
−1(τ) + f1(ζi1) + f2(ζi2) + f4(ζi4). Here, ζ3 plays a role in the

conditional distribution of y given X(t), but does not directly influence the center

(mean or median) of the conditional distribution. Model 4 mimics Model 1 with

a bimodal distribution. Model 5 uses the 10th score instead of the fourth score

in Model 1. Note that the estimation of the 10th score is more challenging than

that of the fourth score.

We consider sample sizes n = 200 and n = 400 with three quantiles τ =

0.1, 0.5, and 0.9. We choose s to recover at least 99.9% of the total variation in
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X(t), use cubic splines with two knots, and select the tuning parameters using

the BIC with Cn = 1.5, which is shown by Lee, Noh and Park (2014) to perform

well when s is small relative to n. One can select the number of knots using

cross-validation or some other information criterion, but this would increase the

computational burden, without offering appreciable numerical advantages. In

the literature, using a pre-fixed number of basis functions is not uncommon; see

for example, Huang, Horowitz and Wei (2010) and Fan, Feng and Song (2011).

This choice of the number of knots is small enough to avoid overfitting in typical

problems in which the sample size is not too small, and big enough to flexibly

approximate many smooth functions accurately.

Based on 500 repetitions, Tables 1–5 report the component-selection results

for Models 1–5 respectively. We show the selection percentages for the first six

component functions from our functional additive modeling and quantile linear

regression modeling (also with a SCAD penalty for variable selection) for Models

1–5 (for Model 5, we show the results for the first five and the 10th component

functions). The column “correct set” corresponds to the percentages of exact

selection, and the column “super set” gives the percentages of fittings that include

all nonzero functions. For the linear regression modeling, we also use the SCAD

penalty to select important components, and use the ordinary BIC to select the

tuning parameter. One can see that the functional additive model performs

slightly better than the functional linear model. In addition, the linear model

tends to select slightly larger model sizes.

For the estimation accuracy of fk, we calculate the average integrated squared

errors (AISEs) of the estimated component functions. The integrated squared

errors are defined as

ISE(f̂k) =

∫ 1

0
{f̂k(t)− fk(t)}2dt.

Tables 6–10 show the AISEs of the six component functions for Models 1–5. The

AISE for ĝ is the summation of those of the first six component functions. The

last column shows the prediction errors, computed as (1/n)
∑n

i=1{Q̂yi(τ |Xi) −
Qyi(τ |Xi)}2, on 200 newly generated testing points. To compute the prediction,

we first estimate the transformed FPC scores of Xi(t) in the test set using the

estimates of the mean function, eigenvalues, and eigenfuncions from the training

data. Then, we substitute these scores into the estimated component functions.

Note that the functional additive model performs significantly better than the

functional linear model, yielding smaller estimation and prediction errors.
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Table 1. Model 1: Selection percentages of the first six component functions and the
mean of the selected model size (last column).

Model 1 1 2 3 4 5 6 correct set super set model size
n = 200 τ = 0.1 QFAM 1.00 0.84 0.03 0.85 0.07 0.05 0.52 0.73 2.98

QFLM 1.00 0.84 0.20 0.90 0.27 0.14 0.21 0.76 4.00
τ = 0.5 QFAM 1.00 0.80 0.01 0.99 0.01 0.00 0.78 0.80 2.82

QFLM 1.00 0.86 0.12 1.00 0.20 0.05 0.52 0.86 3.33
τ = 0.9 QFAM 1.00 0.85 0.06 1.00 0.08 0.02 0.67 0.85 3.07

QFLM 1.00 0.79 0.19 1.00 0.22 0.10 0.27 0.79 3.85
n = 400 τ = 0.1 QFAM 1.00 0.99 0.01 1.00 0.05 0.01 0.88 0.99 3.10

QFLM 1.00 0.98 0.18 0.99 0.34 0.09 0.36 0.98 4.00
τ = 0.5 QFAM 1.00 0.99 0.00 1.00 0.01 0.00 0.99 0.99 3.00

QFLM 1.00 0.99 0.14 1.00 0.28 0.04 0.56 0.99 3.55
τ = 0.9 QFAM 1.00 0.99 0.04 1.00 0.06 0.00 0.88 0.99 3.12

QFLM 1.00 0.97 0.16 1.00 0.28 0.07 0.38 0.97 3.91

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

Table 2. Model 2: Selection percentages of the first six component functions and the
mean of the selected model size (last column).

Model 2 1 2 3 4 5 6 correct set super set model size
n = 200 τ = 0.1 QFAM 1.00 0.60 0.01 0.64 0.04 0.02 0.34 0.46 2.43

QFLM 1.00 0.72 0.17 0.83 0.24 0.13 0.17 0.61 3.69
τ = 0.5 QFAM 1.00 0.64 0.00 0.96 0.01 0.00 0.63 0.64 2.61

QFLM 1.00 0.83 0.11 0.99 0.17 0.03 0.51 0.82 3.26
τ = 0.9 QFAM 1.00 0.70 0.04 0.97 0.04 0.02 0.57 0.69 2.84

QFLM 1.00 0.71 0.16 0.99 0.22 0.10 0.29 0.70 3.68
n = 400 τ = 0.1 QFAM 1.00 0.90 0.02 0.96 0.03 0.01 0.78 0.88 2.98

QFLM 1.00 0.88 0.14 0.97 0.26 0.09 0.32 0.86 3.80
τ = 0.5 QFAM 1.00 0.98 0.00 1.00 0.01 0.00 0.97 0.98 2.99

QFLM 1.00 0.97 0.09 1.00 0.23 0.02 0.61 0.97 3.41
τ = 0.9 QFAM 1.00 0.89 0.03 1.00 0.03 0.01 0.81 0.89 2.97

QFLM 1.00 0.87 0.12 1.00 0.17 0.09 0.42 0.87 3.64

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

Table 3. Model 3: Selection percentages of the first six component functions and the
mean of the selected model size (last column).

Model 3 1 2 3 4 5 6 correct set super set model size
n = 200 τ = 0.1 QFAM 1.00 0.70 0.86 0.91 0.06 0.02 0.52 0.63 3.65

QFLM 1.00 0.58 0.89 0.84 0.24 0.10 0.16 0.43 4.16
τ = 0.5 QFAM 1.00 0.96 0.02 0.99 0.01 0.00 0.94 0.96 2.98

QFLM 1.00 0.90 0.12 1.00 0.17 0.02 0.60 0.90 3.27
τ = 0.9 QFAM 1.00 0.93 0.95 1.00 0.05 0.01 0.80 0.90 4.00

QFLM 1.00 0.80 0.92 0.99 0.17 0.08 0.37 0.74 4.46
n = 400 τ = 0.1 QFAM 1.00 0.98 1.00 1.00 0.08 0.00 0.88 0.98 4.09

QFLM 1.00 0.83 0.98 0.98 0.30 0.08 0.38 0.80 4.54
τ = 0.5 QFAM 1.00 1.00 0.01 1.00 0.01 0.00 0.98 1.00 3.02

QFLM 1.00 0.99 0.15 1.00 0.29 0.02 0.55 0.99 3.53
τ = 0.9 QFAM 1.00 1.00 1.00 1.00 0.05 0.00 0.94 1.00 4.05

QFLM 1.00 0.96 0.99 1.00 0.17 0.07 0.54 0.96 4.55

QFAM: quantile functional additive model; QFLM: quantile functional linear model.
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Table 4. Model 4: Selection percentages of the first six component functions and the
mean of the selected model size (last column).

Model 4 1 2 3 4 5 6 correct set super set model size
n = 200 τ = 0.1 QFAM 1.00 0.78 0.04 0.82 0.09 0.04 0.45 0.68 2.95

QFLM 1.00 0.80 0.21 0.90 0.26 0.14 0.20 0.72 3.98
τ = 0.5 QFAM 1.00 0.82 0.00 0.98 0.02 0.00 0.79 0.81 2.83

QFLM 1.00 0.91 0.16 1.00 0.20 0.05 0.53 0.90 3.43
τ = 0.9 QFAM 1.00 0.96 0.10 1.00 0.06 0.00 0.80 0.95 3.13

QFLM 1.00 0.90 0.19 1.00 0.22 0.07 0.37 0.89 3.82
n = 400 τ = 0.1 QFAM 1.00 0.97 0.03 0.99 0.04 0.01 0.85 0.97 3.10

QFLM 1.00 0.94 0.18 1.00 0.29 0.12 0.32 0.94 4.13
τ = 0.5 QFAM 1.00 1.00 0.00 1.00 0.01 0.00 0.98 1.00 3.01

QFLM 1.00 0.99 0.16 1.00 0.30 0.02 0.54 0.99 3.55
τ = 0.9 QFAM 1.00 1.00 0.08 1.00 0.09 0.00 0.84 1.00 3.17

QFLM 1.00 0.98 0.13 1.00 0.25 0.09 0.43 0.98 3.84

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

Table 5. Model 5: Selection percentages of the first six component functions and the
mean of the selected model size (last column).

Model 5 1 2 3 4 5 10 correct set super set model size
n = 200 τ = 0.1 QFAM 1.00 0.74 0.02 0.01 0.03 0.61 0.39 0.51 2.52

QFLM 1.00 0.85 0.12 0.15 0.15 0.82 0.20 0.70 3.92
τ = 0.5 QFAM 1.00 0.82 0.00 0.00 0.00 0.95 0.78 0.80 2.80

QFLM 1.00 0.88 0.06 0.04 0.04 1.00 0.45 0.88 3.52
τ = 0.9 QFAM 1.00 0.80 0.01 0.00 0.02 0.99 0.60 0.79 3.04

QFLM 1.00 0.83 0.14 0.09 0.11 1.00 0.24 0.83 4.05
n = 400 τ = 0.1 QFAM 1.00 0.98 0.02 0.01 0.01 0.97 0.82 0.95 3.10

QFLM 1.00 0.98 0.15 0.09 0.11 0.98 0.33 0.97 4.08
τ = 0.5 QFAM 1.00 1.00 0.00 0.00 0.00 1.00 0.97 1.00 3.02

QFLM 1.00 1.00 0.06 0.03 0.02 1.00 0.53 1.00 3.58
τ = 0.9 QFAM 1.00 0.99 0.01 0.00 0.00 1.00 0.88 0.99 3.11

QFLM 1.00 0.96 0.11 0.09 0.09 1.00 0.36 0.96 4.01

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

5. Empirical Application

Weather has a significant effect on crop yield, as a result, many studies have

developed statistical models of this relation (Cadson, Todey and Taylor (1996),

Prasad et al. (2006), Lobell and Burke (2010)). In this section, we apply our

proposed method to the corn yield data set of Wong, Li and Zhu (2018). We have

yield-related variables for corn from 105 counties in Kansas for the period 1999 to

2011. The data set contains the average corn yield per acre for a specific year and

county, which is the scalar outcome of interest. The functional predictor is X(t) =

(X1(t)+X2(t))/2, where X1(t) is the daily maximum temperature trajectory, and

X2(t) is the daily minimum temperature trajectory with the time domain T =

[0, 365]. These are gathered from 1,123 weather stations and aggregated at the

county level. After deleting missing data, we use the remaining 857 observations
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Table 6. Model 1: Average integrated squared errors (AISEs) and standard deviations
(in parentheses).

Model 1 f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 ĝ prediction error

n = 200 τ = 0.1 QFAM 0.11 0.18 0.01 0.27 0.01 0.01 0.58 0.88
(0.07) (0.16) (0.04) (0.34) (0.05) (0.04) (0.40) (0.42)

QFLM 2.80 0.79 0.09 1.65 0.13 0.04 5.50 1.02
(1.02) (0.36) (0.26) (0.76) (0.26) (0.13) (1.47) (0.28)

τ = 0.5 QFAM 0.07 0.16 0.00 0.13 0.00 0.00 0.36 0.58
(0.04) (0.17) (0.03) (0.30) (0.04) (0.01) (0.38) (0.22)

QFLM 2.67 0.76 0.05 1.76 0.09 0.02 5.35 0.74
(0.79) (0.27) (0.17) (0.53) (0.20) (0.08) (0.99) (0.11)

τ = 0.9 QFAM 0.11 0.18 0.02 0.17 0.02 0.00 0.51 0.77
(0.07) (0.15) (0.07) (0.32) (0.08) (0.03) (0.41) (0.27)

QFLM 2.62 0.77 0.08 1.93 0.09 0.03 5.52 0.96
(0.98) (0.33) (0.20) (0.67) (0.20) (0.12) (1.25) (0.22)

n = 400 τ = 0.1 QFAM 0.05 0.08 0.00 0.08 0.01 0.00 0.22 0.46
(0.03) (0.06) (0.02) (0.14) (0.03) (0.01) (0.17) (0.16)

QFLM 2.70 0.75 0.05 1.69 0.10 0.02 5.30 0.85
(0.67) (0.25) (0.13) (0.57) (0.18) (0.06) (0.99) (0.16)

τ = 0.5 QFAM 0.03 0.06 0.00 0.05 0.00 0.00 0.14 0.36
(0.02) (0.05) (0.00) (0.13) (0.01) (0.00) (0.14) (0.11)

QFLM 2.68 0.73 0.03 1.78 0.07 0.01 5.30 0.68
(0.57) (0.20) (0.10) (0.37) (0.14) (0.04) (0.69) (0.08)

τ = 0.9 QFAM 0.05 0.08 0.01 0.06 0.01 0.00 0.21 0.45
(0.03) (0.06) (0.03) (0.13) (0.05) (0.01) (0.16) (0.13)

QFLM 2.62 0.72 0.03 1.87 0.07 0.01 5.32 0.85
(0.68) (0.24) (0.09) (0.40) (0.15) (0.06) (0.84) (0.16)

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

Table 7. Model 2: Average integrated squared errors (AISEs) and standard deviations
(in parentheses).

Model 2 f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 ĝ prediction error

n = 200 τ = 0.1 QFAM 0.16 0.31 0.00 0.44 0.01 0.00 0.92 1.26
(0.11) (0.21) (0.03) (0.39) (0.05) (0.04) (0.49) (0.57)

QFLM 2.65 0.80 0.10 1.68 0.14 0.05 5.43 1.11
(1.10) (0.43) (0.27) (0.86) (0.35) (0.17) (1.60) (0.34)

τ = 0.5 QFAM 0.08 0.23 0.00 0.15 0.00 0.00 0.46 0.66
(0.05) (0.23) (0.00) (0.31) (0.02) (0.00) (0.42) (0.27)

QFLM 2.72 0.79 0.05 1.80 0.08 0.01 5.44 0.76
(0.84) (0.31) (0.16) (0.60) (0.19) (0.07) (1.10) (0.12)

τ = 0.9 QFAM 0.18 0.28 0.02 0.23 0.01 0.00 0.72 1.07
(0.13) (0.22) (0.09) (0.35) (0.06) (0.03) (0.47) (0.45)

QFLM 2.76 0.85 0.09 1.94 0.12 0.04 5.80 1.06
(1.20) (0.45) (0.25) (0.71) (0.30) (0.15) (1.49) (0.29)

n = 400 τ = 0.1 QFAM 0.08 0.14 0.00 0.12 0.00 0.00 0.35 0.61
(0.05) (0.13) (0.02) (0.16) (0.03) (0.01) (0.23) (0.27)

QFLM 2.69 0.76 0.05 1.68 0.10 0.02 5.30 0.90
(0.79) (0.32) (0.14) (0.64) (0.22) (0.09) (1.13) (0.22)

τ = 0.5 QFAM 0.04 0.07 0.00 0.04 0.00 0.00 0.15 0.37
(0.02) (0.07) (0.01) (0.08) (0.02) (0.00) (0.11) (0.12)

QFLM 2.70 0.74 0.03 1.79 0.07 0.00 5.32 0.68
(0.57) (0.22) (0.09) (0.35) (0.14) (0.02) (0.72) (0.08)

τ = 0.9 QFAM 0.08 0.15 0.01 0.09 0.00 0.00 0.33 0.60
(0.05) (0.14) (0.04) (0.08) (0.03) (0.02) (0.19) (0.22)

QFLM 2.66 0.76 0.04 1.90 0.05 0.02 5.44 0.90
(0.83) (0.30) (0.12) (0.44) (0.14) (0.09) (0.93) (0.18)

QFAM: quantile functional additive model; QFLM: quantile functional linear model.
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Table 8. Model 3: Average integrated squared errors (AISEs) and standard deviations
(in parentheses).

Model 3 f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 ĝ prediction error

n = 200 τ = 0.1 QFAM 0.06 0.21 0.35 0.18 0.01 0.00 0.81 1.52
(0.05) (0.20) (0.33) (0.25) (0.04) (0.01) (0.59) (0.74)

QFLM 2.45 0.60 1.64 1.44 0.10 0.03 6.26 2.10
(0.98) (0.21) (0.66) (0.90) (0.22) (0.10) (1.60) (0.45)

τ = 0.5 QFAM 0.02 0.07 0.00 0.09 0.00 0.00 0.18 0.46
(0.02) (0.09) (0.02) (0.21) (0.01) (0.00) (0.25) (0.19)

QFLM 2.45 0.70 0.05 1.28 0.06 0.00 4.54 0.73
(0.65) (0.23) (0.16) (0.49) (0.14) (0.03) (0.83) (0.11)

τ = 0.9 QFAM 0.06 0.11 0.25 0.12 0.01 0.00 0.55 1.20
(0.05) (0.12) (0.24) (0.24) (0.03) (0.01) (0.48) (0.57)

QFLM 2.51 0.90 1.90 1.14 0.07 0.03 6.56 2.03
(0.98) (0.49) (0.83) (0.53) (0.18) (0.13) (1.39) (0.37)

n = 400 τ = 0.1 QFAM 0.02 0.07 0.15 0.07 0.00 0.00 0.32 0.85
(0.02) (0.07) (0.10) (0.06) (0.02) (0.00) (0.15) (0.31)

QFLM 2.43 0.55 1.56 1.34 0.08 0.01 5.97 1.89
(0.62) (0.12) (0.52) (0.59) (0.15) (0.06) (1.06) (0.31)

τ = 0.5 QFAM 0.01 0.03 0.00 0.04 0.00 0.00 0.09 0.32
(0.01) (0.02) (0.02) (0.06) (0.01) (0.00) (0.07) (0.11)

QFLM 2.43 0.68 0.04 1.28 0.06 0.00 4.49 0.68
(0.46) (0.17) (0.10) (0.29) (0.10) (0.02) (0.56) (0.08)

τ = 0.9 QFAM 0.03 0.04 0.13 0.05 0.00 0.00 0.25 0.69
(0.02) (0.03) (0.09) (0.09) (0.01) (0.00) (0.13) (0.24)

QFLM 2.49 0.84 1.81 1.11 0.04 0.02 6.30 1.84
(0.68) (0.32) (0.57) (0.34) (0.11) (0.07) (0.93) (0.26)

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

Table 9. Model 4: Average integrated squared errors (AISEs) and standard deviations
(in parentheses).

Model 4 f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 ĝ prediction error

n = 200 τ = 0.1 QFAM 0.13 0.21 0.01 0.28 0.02 0.01 0.65 0.96
(0.08) (0.17) (0.04) (0.32) (0.08) (0.04) (0.43) (0.42)

QFLM 2.75 0.80 0.10 1.66 0.14 0.04 5.49 1.01
(1.04) (0.38) (0.24) (0.77) (0.30) (0.14) (1.44) (0.27)

τ = 0.5 QFAM 0.06 0.15 0.00 0.11 0.00 0.00 0.33 0.60
(0.04) (0.17) (0.01) (0.22) (0.04) (0.00) (0.30) (0.24)

QFLM 2.73 0.78 0.06 1.75 0.09 0.01 5.43 0.77
(0.78) (0.31) (0.16) (0.53) (0.21) (0.06) (1.02) (0.13)

τ = 0.9 QFAM 0.07 0.11 0.02 0.10 0.01 0.00 0.31 0.63
(0.05) (0.10) (0.06) (0.23) (0.06) (0.01) (0.29) (0.24)

QFLM 2.72 0.77 0.06 1.88 0.08 0.02 5.52 1.11
(0.89) (0.33) (0.14) (0.52) (0.19) (0.07) (1.07) (0.27)

n = 400 τ = 0.1 QFAM 0.06 0.10 0.00 0.09 0.01 0.00 0.26 0.51
(0.04) (0.09) (0.03) (0.14) (0.03) (0.01) (0.18) (0.18)

QFLM 2.68 0.75 0.05 1.71 0.09 0.02 5.31 0.85
(0.75) (0.29) (0.14) (0.59) (0.18) (0.08) (1.07) (0.17)

τ = 0.5 QFAM 0.03 0.05 0.00 0.05 0.00 0.00 0.14 0.37
(0.02) (0.04) (0.01) (0.13) (0.01) (0.00) (0.14) (0.12)

QFLM 2.66 0.76 0.04 1.78 0.08 0.00 5.31 0.71
(0.55) (0.22) (0.09) (0.40) (0.13) (0.02) (0.73) (0.10)

τ = 0.9 QFAM 0.03 0.06 0.01 0.05 0.01 0.00 0.15 0.43
(0.02) (0.04) (0.03) (0.16) (0.03) (0.00) (0.18) (0.16)

QFLM 2.63 0.74 0.02 1.91 0.06 0.01 5.37 1.03
(0.60) (0.22) (0.08) (0.36) (0.12) (0.05) (0.73) (0.21)

QFAM: quantile functional additive model; QFLM: quantile functional linear model.
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Table 10. Model 5: Average integrated squared errors (AISEs) and standard deviations
(in parentheses).

Model 5 f̂1 f̂2 f̂3 f̂4 f̂5 f̂10 ĝ prediction error

n = 200 τ = 0.1 QFAM 0.11 0.21 0.00 0.00 0.00 0.45 0.80 1.22
(0.07) (0.18) (0.02) (0.02) (0.02) (0.38) (0.47) (0.46)

QFLM 2.62 0.77 0.04 0.04 0.05 1.33 5.11 1.16
(0.94) (0.35) (0.12) (0.13) (0.14) (0.61) (1.31) (0.32)

τ = 0.5 QFAM 0.07 0.15 0.00 0.00 0.00 0.18 0.41 0.79
(0.05) (0.17) (0.01) (0.00) (0.00) (0.31) (0.41) (0.27)

QFLM 2.56 0.77 0.02 0.01 0.01 1.59 5.17 0.84
(0.76) (0.29) (0.09) (0.07) (0.06) (0.51) (0.99) (0.12)

τ = 0.9 QFAM 0.12 0.21 0.00 0.00 0.00 0.21 0.61 1.05
(0.08) (0.17) (0.02) (0.01) (0.04) (0.34) (0.45) (0.36)

QFLM 2.58 0.79 0.06 0.03 0.04 1.88 5.69 1.08
(0.98) (0.36) (0.17) (0.11) (0.13) (0.68) (1.26) (0.24)

n = 400 τ = 0.1 QFAM 0.05 0.08 0.00 0.00 0.00 0.14 0.29 0.66
(0.03) (0.07) (0.01) (0.01) (0.01) (0.17) (0.19) (0.21)

QFLM 2.59 0.75 0.03 0.02 0.02 1.30 4.87 0.96
(0.66) (0.25) (0.09) (0.06) (0.06) (0.40) (0.84) (0.19)

τ = 0.5 QFAM 0.03 0.05 0.00 0.00 0.00 0.06 0.15 0.51
(0.02) (0.04) (0.00) (0.00) (0.00) (0.09) (0.11) (0.12)

QFLM 2.57 0.75 0.02 0.01 0.00 1.62 5.08 0.75
(0.56) (0.20) (0.07) (0.04) (0.03) (0.32) (0.70) (0.08)

τ = 0.9 QFAM 0.05 0.08 0.00 0.00 0.00 0.08 0.24 0.64
(0.04) (0.06) (0.01) (0.01) (0.01) (0.12) (0.16) (0.17)

QFLM 2.59 0.74 0.02 0.02 0.02 1.90 5.44 0.96
(0.70) (0.26) (0.07) (0.07) (0.06) (0.47) (0.88) (0.17)

QFAM: quantile functional additive model; QFLM: quantile functional linear model.

Table 11. Average model size across 500 bootstrap samples and the average prediction
error (standard deviation in parentheses) for five-fold cross-validation across 100 random
partitions for corn yield data.

τ = 0.1 τ = 0.5 τ = 0.9
QFAM QFLM QFAM QFLM QFAM QFLM

MS 7.42 39.89 14.95 40.72 11.69 42.91
PE-BIC 5.77 5.42 14.70 13.13 5.77 5.34

(0.60) (0.30) (0.90) (0.64) (0.56) (0.33)
PE-CV 5.77 5.37 13.94 12.89 5.77 5.25

(0.60) (0.34) (0.71) (0.63) (0.56) (0.32)
MS: model size; PE-BIC: prediction error with BIC tuning; PE-CV: prediction error with CV tuning; QFAM:
quantile functional additive model; QFLM: quantile functional linear model.

in our analysis.

For the data exploration, we include 45 principal components in the regres-

sion model, which account for 99.9% of the variation in the daily temperature

trajectories. Then, we fit the proposed functional additive quantile regression

and linear quantile regression for τ = 0.1, 0.5, 0.9, separately. The linear model

is also equipped with a SCAD penalty for the variable selection. We choose the

tuning parameter using both the BIC and five-fold cross-validation (CV). The

results in Table 11 show that the tuning parameters chosen by CV produce bet-
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Figure 1. Additive component functions f̂k(ζ) selected by FAQR with τ = 0.1, sorted by
selection frequencies (in parentheses) across 500 bootstrap samples.
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Figure 2. Additive component functions f̂k(ζ) selected by FAQR with τ = 0.5, sorted by
selection frequencies (in parentheses) across 500 bootstrap samples.
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Figure 3. Additive component functions f̂k(ζ) selected by FAQR with τ = 0.9, sorted by
selection frequencies (in parentheses) across 500 bootstrap samples.

ter predictions. Thus, in the following, we focus on the results with the tuning

parameter chosen by CV. In Figures 1–3, we show the corresponding additive

component functions f̂k(ζ) selected for τ = 0.1, 0.5, 0.9, respectively. The dashed

curves are the pointwise confidence bands f̂k(ζ) ± 2 × se{f̂k(ζ)}. The standard

errors are estimated as se{f̂k(ζ)} = (1/(B − 1))
∑B

b=1(f̂
(b)
k (ζ) − f̄ (b)k (ζ))2, where

f̄
(b)
k (ζ) = (1/B)

∑B
b=1 f̂

(b)
k (ζ) and f̂

(b)
k (ζ) is the estimation from a pair bootstrap

sample {y(b)i , X
(b)
i }, for b = 1, . . . , B. We report the average model size over dif-

ferent bootstrap samples in Table 11. Note that the additive regression modeling

produces notably smaller models than those of the linear regression, without sac-

rificing much prediction accuracy. Only ζ1 and ζ2 are shared between the three

conditional quantile regressions. Figures 1–3 show that the effect of the tem-

perature trajectory on the corn yield varies, because different components are

selected.

6. Conclusion

Many researchers have used a functional linear quantile regression to study

the relationship between a functional predictor and the conditional quantile of

a response. We model the effects of a functional covariate nonparametrically

to increase the model flexibility. We consider a nonconvex penalized estimation
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of the functional additive quantile regression model. Under mild conditions, we

derive the oracle convergence rate when true relevant components are used.

A problem of important practical interest is to extend our model to take into

account scalar covariates and functional covariates simultaneously, as Wong, Li

and Zhu (2018) have done for the mean regression. Another relevant problem is to

estimate the conditional quantile function in the RKHS framework, and then to

compare its performance with that of our proposed method. Finally, because we

fit each quantile level separately, quantile crossing may occur. Methods proposed

in the literature, such as those of Koenker and Ng (2005), Bondell, Reich and

Wang (2010), Chernozhukov, Fernandez-Val and Galichon (2010), and Qu and

Yoon (2015), may be used to address this problem. These topics are left to future

research.

Supplementary Material

The online Supplementary Material contains proofs of the technical results.
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