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Abstract: For independent, d-dimensional normally distributed observations we give
a tail approximation for the significance level of the likelihood ratio test of no change
in the mean vector against the alternative of exactly one change. Assuming there is
exactly one change in the mean vector, we obtain conditional likelihood ratio con-
fidence regions for the change-point and joint regions for the change-point and size
of the change. For the significance level we compare our approximation numerically
with the improved Bonferroni upper bound of Srivastava and Worsley (1986). For
our probability calculations we adapt the method of Woodroofe (1976, 1978).
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1. Introduction

The subject of this paper is tests and confidence regions for a change-point
in the mean vector of m independent d-dimensional normal random variables
with an unknown but fixed covariance matrix X.

In testing the hypothesis of no change against the alternative of exactly one
change, our main result is a tail approximation for the significance level of the
likelihood ratio test, generalizing the one dimensional case of our earlier paper
(James, James and Siegmund (1988)). The proof, however, is not a generalization
of the method of our earlier paper. It is inspired by the method of Woodroofe
(1976, 1978), which it resembles in overall design although the detailed calcula-
tions, e.g., in Lemma 4, are different. This approximation is proved in Section
2. Its numerical accuracy and a comparison to the Bonferroni-like upper bound
of Srivastava and Worsley (1986) are the subject of Section 3.

Sections 4 and 5 are concerned with likelihood ratio confidence regions for a
change-point and joint regions for the change-point and amount of change. For
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related recent research see Worsley (1986), Siegmund (1985, 1988), James, James
and Siegmund (1988), and Kim and Siegmund (1989). The latter two papers are
specifically concerned with changes in the mean of univariate normal observa-
tions having an unknown variance and hence face some of the same problems
we encounter in this paper. However, we deal with these problems differently
and, we believe, more satisfactorily. Like these earlier papers we also condition
on statistics which are sufficient for unknown nuisance parameters when a spe-
cific value is hypothesized for the change-point, but unlike James, James and
Siegmund (1988), who carry out their conditioning in two stages, we condition
directly on the minimal sufficient statistic. In the case of joint confidence regions
for the change-point and amount of change, we differ from Kim and Siegmund
(1989) by conditioning on the minimal sufficient statistic for the unknown nui-
sance parameters and hence obtain a region which in principle is exact. Again
we adapt Woodroofe’s method for the calculations; Lemmas 10—13 appear to
have no antecedents in Woodroofe’s work.

It is interesting that although our computations are considerably more com-
plicated than in the univariate case, the resulting approximations are not. How-
ever, because of the large amount of conditioning involved and the iterative na-
ture of the determination of the confidence regions, it seems difficult to approach
this problem numerically or by Monte Carlo methods without a substantial in-
crease in computational speed over what is readily available today. See Worsley
(1983, 1986) for numerical treatment of much simpler single parameter cases.

2. Approximate Tail Probabilities for the Modified Likelihood Ratio
Test

In this section we obtain an approximation for the tail probabilities of the
distribution of the likelihood-ratio test statistic under the null hypothesis of no
change-point.

Assume X;,X3,...,X,, are independent d-dimensional random (column)
vectors having a multivariate normal distribution with the same unknown covari-
ance matrix: X; ~ N(u;,X), i = 1,...,m. We wish to test the null hypothesis
that all of the means are equal to some unknown p, H : yy = --- = Pm = U,
versus the alternative of a single change-point, K : y; = --- = Mo F Ppp1 =
<o = pmy, forsome 1 < p<m-1.

A modification of the likelihood ratio test uses the test statistic Ty =
MaXmo<n<m, n—(;n”%,ﬁ(Sn - Z285n) (Um — %SmS:ﬁ)“l(Sn — 285m), where S, =
Xit -+ X, Upn = X1X{+ -+ Xn X!, and 1 < mg < m; < m. The actual
likelihood ratio test is based on T,, when my = 1 and m; = m — 1. Under the
null hypothesis, the distribution of T}, does not depend on p and ¥; thus, in the
calculations below under Py we may assume that g = 0 and £ = I. Further-
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more, Basu’s Theorem (Lehmann (1986), Theorem 5.2) tells us that under the
null hypothesis 7', is independent of the complete sufficient statistics S,, and
Uy.. Therefore, if 0 < ¢ < 1,

Po(Tm > ¢%) = Po{Tm > ¢*|Sm = O,Um = ml}
= Po{ max my St(mI)™'8, > 2|8 = 0,U, = mI}

mo<n<m; n(m

= Pém)l{ max —M— > cm%},
M me<n<m, [n(1 - i)]

where Pé:'y')(A)z Py(A|Sm=2,U, =y) for events A determined by X;,... , X,,.
By breaking down the above probability according to the last index for which
the term in the maximum exceeds b = cm%, we obtain

( ) ”S “ my—1
Po(Tm > ) = P{™ = /
0( = ) 0 mI{ [ (1 n;Q 5||Zb{n(1—n/m)}’}

(m) _usd -
AR B85 T - o < S —s}Pom,{s e de), o

where P(§ € d€) means fg(€)dE; - - - d€g, with fs the probability density function
of §. By developing approximations for the probabilities and the densities in the
above integrals, we obtain the following theorem, whose proof will follow after a
series of lemmas.

Theorem 1. Assume mg/m — to and my/m — t; as m — oo, where 0 < ty <
t1 < 1. Let v be the function defined for t > 0 by

v(t) =2t~ 2exp{—-22n_1<1> n2/2)}

where <I> is the standard normal distribution function. Then for 0 < ¢ < 1 and
b=cm?,

Pé?n)I{ max —M>b}

mo<n<m, [n(l — 1‘-)]2 -

g (%) oy [ -0 (G 4o

as m — oo,
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Lemma 1. For all £ such that ||€]| < {n(m — n)}3,

)

=0, Up=mi)={an(m - my-#2 8T (1 el )"
S50 (€15m =0, Un =mI)={mn(m - n)} rd(m—;l)<1 n(m_n))

where I'y is the d-variate gamma function defined by

d
l‘d(%a) — pd(d-1)/4 HI‘(-;—[a+ 1-j)).

=1

Proof. Obviously

Po{S, € d€, S, € dn, U, € dA)
Py{Sn € dn, Unm € dX\}

P,gj’;){sn €de} =

The numerator equals the joint density of the independent random variables
SnySm—S5n, Un—SnSh/n — (Sm—="51)(Sm—S8n)'/(m—n) evaluated at £, 5 — £,
A=&E/n—(n—&)(n—€)'/(m—n). A similar result holds for the denominator.
By substitution of the appropriate normal and Wishart densities, we obtain

fsn (flsm =n Um = A)
_ Ta(27h) { m_ | Pldet{) - 2£€' — lo(n - ) - €)Y/
~ Ta(252) Lmn(m - n)} {det(x = Lyy)}m—-a-72 :

Substitution of 7 = 0 and A = mI yields the result of the lemma.

Lemma 2. If¢ = [c{n(m - n)}? +z]a forz > 0 and a a fized unit vector, and
fr—tasm—o00,0<t<1, then

fS,,(flSm = O,Um = mI)

1 $
o~ — (2)(m—d-3)/2 _ cz
(27rmt(1 - t)) (1-¢) P (1-c®){t(1 - t)}%]

as m — o0.

Proof. (1 - [[¢|*/{n(m — n)})(m=4=3/2 = (1 — [e{n(m - n)}} + 2]?/{n(m -
)= (1 - ) m=d=3/2 exp{—cx/[(1 - ){¢(1 - t)}}]}. Also,

Pa({m - 1}/2)/Ta({m — 2}/2) ~ (m/2)*/2.

Substituting these relations into the result of Lemma 1 completes the proof.
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Lemma 3. IfC,, and D,, are d X d matrices such that C,, — C and D,, - D
as m — oo, where I — C is invertible, then

de -C,, - 1 o m/2
lim { t(get((;_C:)D )} = exp{~tr[D(I - C)7"]/2}.

m— 00

Proof. The proof follows at once from the observation that

1 3 1 P
det(I = Cp — EDm)/det(I - Cm) = det{I — —Dm(I = Cr) }

=1~ —tr{D(T - C) '} + 0(=s).

Because of conditioning on the pair (S, Uy ), the following calculation is
substantially more elaborate than the corresponding results of Woodroofe (1976,
1978). See also Lemma 8.

Lemma 4. For eachk =1,2,... ,z > 0 and a a unit vector, L(Xn41,.-. s Xnykl|
Sn = [e{n(m —n)}? +z]a, S = 0,U,, = mI) converges to the law of k indepen-
dent, identically distributed N(—c(t/[1 - t])2a,I — c2aa') random vectors, with
t =limpm0(n/m).

Proof. We may assume, without loss of generality (by sufficiency), that Xq,...,
Xn areii.d. N(0,I). For economy of notation, we write

€ = [e{n(m - n)}% + z]a,
as in Lemma 2. Straightforward calculations show that

an+1-"X..+k(zlv"' ,:L'k|Sn = E,Sm = O,Um = mI)

(__m—_n_) %2dk/2 rd('mz__z) Hd-=1[Hf=19°($ij)99{(£j+2f=1 zi;)/(m—n— k)%}]

m—n—k I‘d(m—;—z) H?=1¢{€j/(m - n)%}

exp{}(t1Bm — trApm)}(det Ay, )M k=42
(detB,, )(m—d=3)/2 )

(2.3)
where ¢ is the standard normal density,

1

A, =ml - %ff'— iz:;z,-xﬁ - m(f—}- ixi) ({+ Zzi)’,

and

B, =ml -
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To facilitate our calculations, we note that, by the symmetry of the problem, it

suffices to prove the lemma for a = ¢; = (1,0,...,0)". Since
1
—B, =1- —1———{{' — I —ctad
m n(m — n)

and

det(I — c*aa') =1-¢?,

(detA,, )(m—k=-d=3)/2 1 det(L A,) (m—k—d—3)/2
(detBp)(m=4=3/2" ™ fak/a(1 — 2)% {det(,—ln—Bm)}

We now apply Lemma 3 with C,,, = n(m—l_n)-ff’, C = ctaad,

DozB—A.=__] f£’+i”‘+—"1—(5+§:$')(€+iw~)’
™ m m-—n — YT m—n—k — A

ket u t
D= 1_tele’l + Zx,-z§+c(1 —t)

i=1 i=1 =1
This yields

1 1 -
LHS(2.3) ~ (= e)E O {- st(D(I - C) 1}
1 [ kC2t E?:l z?l
(

1
T omdk/2(1 - )% exp{—-§ 1-c¢2)(1-1) 1—¢?

d 2c t 1 &
+ 2 ;xfj ti{—a (1_—7) ;xn] }
Since
Ta({m - 2}/2)Ta({m — k ~ 2}/2) ~ (m/2)"*/?
and also

I:-Il {‘P({‘fj + gzij}/(m —-n-— k)%) iliIl"P(xij)} exp ( - %trAm)

1
=(27r)_d('°+1)/2 exp { - §tr(mI) + %tr(%{{')}
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and
]i[cp(fj/(m - n)%) exp { — %tr(Bm)}

=(27)~ % exp{—tr(mI)/2 + tr(n"1€¢")/2},

substitution into (2.3) yields the lemma when a = e; and, therefore, in full
generality.

Lemma 5. Let P, ,2 denote the probability under which Y1,Y2,--- are i.i.d.
N(u, 0?) random variables. Let T; =Yy +-- -+ Y;, u(t) = —c/[2{t(1 — )} 3], and
0% = 1 — c2. Then, under the conditions of Lemma 2, as m — oo

(m) 1|:5]] Lo _ <
Po,mr[ng}g’fnl G- #)}% <em?|S, =€ — u(t),az(r?gle, < z).

Proof. It can be checked via the conditional density of S; given S, = E, m =10
and U,, = mlI, that

hm lim sup Z éTn)I 151

oo mo 2t [W > em?|S, = 5] =0. (2.4)

Let Z1,Z,,... be iid. N(—c(t/{1 - t})*a,] — caa’). By Lemma 4,

lim Pé m)I[ max M‘T < cem?|S, = .f]
m—oo n<iin+k {z( — ;;—-)}2
= lim P[(€+ 21+ + Zi)'a < c{i(m—i)}? for all 1 < i < k]

=”}i_1)n°°P[(Z1+ ‘e +Z,—)'a<c({i(m—i)}%—{n(m—n)}%)—x for all 1 < i < k]

=P, u(t), ,2( ma<ka < —I)

This, together with (2.4), yields the lemma.

Lemma 6. Suppose u > 0. With the notation of Lemma 5,

o0
/ exp(—2uz/0?)P, 42 (rrgln T: > :1:) dz = pv(2ujo),
0 iz
where v is the function defined in Theorem 1.

Proof. See problem 8.13 of Siegmund (1985) for the key steps.
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Proof of Theorem 1. The first term in RHS(2.1) is asymptotically negligible.
Using Lemmas 2 and 5, then changing to polar coordinates, we obtain after
substantial calculation

LHS(2.2)

S;
~ Pé,’ll’z[ max —0__ %<Cm%|3n=€]

/nsuzc{n(m—n)}% n<i<mi {i(1 - 1)}

mo<n<m,

.Pg;),{sn € d¢}

~ )

mo<n<m;

{m}s(l_g)(m_d_am exp [_ (1_62){:&_“)}%]@1 o dy

r's

(1 _ cZ)(m——d—S)/? o m2 2
= 2 ; < - o )
R o b T (38T < =)\

Pynyyi_¢ maxTiS—x}
Aﬂlzc{n(m—n)}% #(m),l 2{ s

X

mo<n<m,
X exp [_ (1- 62){65(1:1 - n)}%} ' [z +efn(m - n)}%] Tl

(1 = ¢2)(m=d=3)/2p $—1,d-1 Z { m? i
)

4 _ d _
22 11‘\(5) mo<n<m, n(m "

[o) czm
X P _e2lmaxT; < —z) -ex - dz
/0 #(m)d 2( i>1 ) p{ (1= c?){n(m - n)}%}

Using Lemma 6 and approximating the Riemann sum by an integral, we have

LHS(2.2)
(1 - c2)m=d-3)/2py g -1cd Z m? ( cm )
2&/21"(%) moSmem, n(m —n) v {1 = ¢®)n(m - n)}?
~ RHS(2.2),

which completes the proof of Theorem 1.
3. Numerical Examples

In this section we compare the approximation given in Theorem 1 with
simulations conducted by Srivastava and Worsley (1986) and with their improved
Bonferroni inequality. This inequality gives an upper bound for the significance
level and is quite accurate in small samples but tends to be less accurate for
larger sample sizes.
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As Table 1 below shows, the approximation (2.2) yields numerical results
which usually are somewhat larger than the Monte Carlo estimates and are worse
for larger values of d. To understand this situation better it is helpful to consider
the related approximation (26) in the paper of James, James and Siegmund
(1987). That approximation is concerned with a d-dimensional Brownian bridge,
Wo(t),0 <t <1, and says that for any 0 < ¢y < t; < 1, as b becomes infinitely
large

to<t<t: W
_ blexp(—b%/2)
© 20d-2)/2T(d/2)

where r = [t,(1—1)]/[to(1—11)]. In fact, under suitable conditions the left hand
side of (3.1) is an approximation for the significance level of the likelihood ratio
test of Section 2, but it is a good one only if the sample size is quite large. On
the other hand one may readily verify that the right hand side of (3.1) provides
accurate approximations for the left hand side at least up to d = 4 by comparison
with the exact probabilities obtained numerically by DeLong (1981).

The approximation (3.1) is more precise than (2.2), in the sense that it
contains second order terms which depend on the dimension, d, and reduce the
first order approximation considerably when the dimension is large. It would be
interesting, but appears difficult to derive a second order term for the problem of
Theorem 1. See Woodroofe and Takahashi (1982) for the analogous calculation
in a much simpler context.

A suitable interpretation of (3.1) suggests an ad hoc modification of (2.2)
which appears to be more accurate in most cases. It is easy to see that the
approximation (3.1) equals the dominant term in (3.1) multiplied by the factor 1—
d/b* and then added to (a tail approximation for) 2P{||Wy(t)|| > b[t(1 — t)]'/2},
which for ¢ = o or t; makes a boundary correction to the argument of Theorem 1.
This suggests modifying the approximation of Theorem 1 through multiplication
by 1 — d/b* (recall that b = cm?) and then addition of the boundary correction

2P {11 Smy || > b[ma(1 — my/m)] 2}, (3.2)

which is twice the first term on the right hand side of (2.1). It is not difficult to
see that (3.2) equals

P{ max ol >b}

{2711 - db~%)log(r) + 2672 + o(b™2)}, (3.1)

2P{F > (m~-d- 1)c2/[d(1 -}, (3.3)

where F is distributed as Fym_q_;.
Table 1 compares the improved Bonferroni bound of Srivastava and Worsley
(1986) with the two approximations derived here and the outcomes of a Monte
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Table 1. Comparison of the approximation (2.2) and the modified approximation sug-
gested above with the improved Bonferroni bound of Srivastava and Worsley (1986).

d
m 2 4 6
a=0.01
20 b 340 3.74 4.00
IB 0.010 0.011 0.010
(2.2) 0.010 0.014 0.016
(3.4) 0.009 0.011 0.011
40 b 3.63 4.12 4.51
1B 0.015 0.013 0.010
(2.2) 0.013 0.014 0.012
(3.4) 0.012 0.012 0.009
a=0.05
20 b 3.08 352 3.83
IB 0.057 0.068 0.054
(2.2) 0.054 0.068 0.084
(3.4) 0.052 0.054 0.052
40 b 3.25 3.82 4.20
1B 0.074 0.060 0.060
(2.2) 0.063 0.060 0.070
(3.4) 0.058 0.049 0.051
a=10.10 .
20 b 2.92 340 3.73
1B 0.117 0.131 0.111
(2.2) 0.106 0.132 0.175
(3.4) 0.099 0.103 0.115
40 b 3.07 365 4.04
1B 0.139 0.125 0.125
(2.2) 0.118 0.121 0.146
(3.4) 0.107 0.096 0.103

Carlo experiment. The Monte Carlo results are obtained by taking the appropri-
ate percentile from a sample of size 10,000, and are used to determine the values
of b. These values, as well as the improved Bonferroni bounds, labeled IB in Ta-
ble 1, are taken directly from Srivastava and Worsley (1986). In addition to the
approximation (2.2) from Theorem 1, Table 1 contains the heuristic modification

(1-4d/b%) x (2.2) + (3.3). (3.4)

This second approximation almost always improves on the first one, sometimes
quite substantially. It is usually better than the improved Bonferroni bound. It
also appears to be easier to evaluate. None of the three approximations is badly
misleading, as, for example, direct application of (3.1) would be.

4. Confidence Sets for the Change-Point
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In this section we obtain confidence sets for the change-point p by using the
likelihood-ratio tests of the hypothesis of a change-point at p versus two-sided
alternatives (change-point at a point different from p). That is, our level 1 — «
confidence set for p will consist of those values of p for which we accept the
hypothesis of a change-point at p at level a.

Let X;,...,X,, be independent d-dimensional random (column) vectors
having multivariate normal distributions with the same unknown covariance ma-
trix and a change-point at some j € {1,...,m — 1}. Then Xji,...,X; are
iid. N(u,X), and Xj41,...,Xm are iid. N(u + 6,X) for some unknown g,
L, and § # 0. We test the hypothesis H, : j = p versus K, : j # p. If
f(z1,... ,Zm|p,p,6,%) is the joint probability density function of Xi,...,Xm
with the parameters p, u, §, L, the likelihood ratio test statistic of H p versus K,
is given by

— suP]'#p!“y&»E f(X17' . ’X’mlj7/l'a 6’ Z:)
Supu,&,): f(Xl, ,Xm|p,u,§,E)

ti m/f2
= max(de Ap) )
i#p \detX,;
where
~ 1 J — = = % v *
X = ;{ D (Xi= X)X = X + D (Xi— X3)(Xi - X; )'}’
i=1 i=j41
with

Xi=(X1+--+X;)/j and X;=(Xj1+ -+ Xm)/(m = j).

Since

£i= %{ i(X-‘ - X)(X: - X) - j—(’%;i)(f(j - X7)(X; - X})’},

i=1

where X = (X; + - -+ Xm)/m, we have

R [det{ 7 (X R)(Xi- XY - A (R, - %7)(%, X5 ) ) ™"
T Laet{ T (G- X)(Xi- Xy - ARA(X, - X5) (X, - X;) )

Since L., is independent of S,, = X; + --+ + X,, by Basu’s Theorem,
Pp,u,&E(Lm >29)= Ppuss(Lm >7|85m = 0).

Note that under H,, the distribution of L,, depends on the parameters § and
X, but not on p. By evaluating the significance level conditionally, conditioning
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on the remaining sufficient statistics S, and U, = Y -, X; X!, we obtain a
procedure free of unknown nuisance parameters.

Given Sy, =0, 5, = £ and Uy, = ),

L., = max
™ i#e

det{d - pmrsisi}y-g i /A8 157"
, Bl 7o A EA-1£
det{z\ ~ s &€ } ! m=p)
A bit of algebra shows that an equivalent conditional test, given §,, = 0,

Sp =&, Un = A, rejects when max; mS;A =18;/{j(m — )} is large. So, to carry
out the conditional test, it is sufficient to find ¢g = co(a, p,€, A) such that

P,{SiA718; > coj(1—j/m) for some j # p|Sm = 0,5, = £,Up = A} = a. (4.1)

Approximations for this probability can be obtained by considering sepa-
rately the cases where the crossing occurs before p and after p. Consider first

P,{S;A71S8; > coj(1 — j/m) for some 1 < j < p|Sm = 0,5, = £, U = A}

If X is positive definite, which is true of almost all possible values of U,,, let A
be such that A = mAA’. By multiplying all X; on the left by A=, we see that
this last probability equals

PéTn)I{S_;Sj > coj(m — j) for some 1 < j < p|S, = A7}
p-1
Sall® : _
= P(T:l) —”—n——<c0 for all j<n<p|S;=z,5,=A"1¢
Jz; /uxu*zj(m—j)co * I{ [n(m - n)] ’ ? }
- P\ {S; € da|5, = A€}, (4.2)
As in Section 2, we develop approximations for the probabilities and densities
in the above integrals. These approximations allow us to prove the following

theorem concerning tail probabilities for the conditional test statistics, the proof
of which will be given following a series of lemmas.

Theorem 2. Suppose £ = més, A = mAg and p = mmy, where 0 < 7y < 1,
0<e <1, {6/\5150/{@(1 —mo)} < ¢o, and Ay is positive definite. Then

P,{S;A718; > coj(1 — j/m) for some 1 < j < p|Spm = 0,5, = £,Up = A}

~{co7l’0(1—7f0)}%{ 1-co }(m_d'a)/zy[ allon) + Bt
1

1o 6o _ ioz;f_) (1= m0){(1 = co)E4A316,)3
(4.3)

7|'0(1—7ro

as m — 00.
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With the help of Theorem 2 an approximate conditional likelihood ratio
confidence region for p is obtained as follows. For each trial value of p, set cg
equal to the observed value of

max(Sj = jSm/m) (Um ~ m 1 8m S5 ) T (85 = §Sm/m)/[H(1 = §/m)).

If this maximum is attained at j = p, include p in the confidence set. Otherwise
evaluate approximately the probability in (4.3) and the corresponding probability
for the range p < 7 < m. If the sum of these two terms exceeds a, include the
trial value of p in the confidence set, and otherwise exclude it. (Note that it is not
necessary to find the actual value of ¢y for which (4.1) holds.) In principle one
must repeat this procedure for each p, but in practice the number of trial values
which must be considered depends on the behavior of the data. For numerical
examples in a slightly simpler context see Siegmund (1988).

The conditions of Theorem 2 are assumed to hold in the following lemmas.
Lemma 7 is closely related to Lemma 1.

Lemma 7. If the matriz A satisfies mAA' = A, then forany 1< j<p
fS,»(zISp - A_lé, Sm = O,Um = mI)
4 m—
:{ 4 }’ Py(252)

mj(p=3)} Ta(252)

[det{mi-taa'- (a4 te-a)(a ey (4 aey )]

|det{mI - ccm(a-16)(a-1g)

Jor any z such that the argument of the determinant in the numerator is positive
definite.

}] (m—d—-3)/2

Proof. The joint density of S;, S,, S and U,, can be obtained from that of
the independent Sj, 5,—S;, Sm—5, and Un—5;8%/5—(5,—5;)(S,—5;) [ (p—7) —
(Sm—=5,)(Sm—S5,)" /(m—p), with a similar, but simpler, procedure for the joint
density of S,,S,, and U,,. Substitution of the appropriate normal and Wishart
densities yields the result.

The proofs of Lemmas 8 and 9 below are analogous to those of Lemmas 4
and 5.

Lemma 8. Let z = [{coj(m — 7)}? + zo]a where zo > 0, a is a unit vector, and
limpy, oo j/m =1 0<t<m. If A\ =mAA', where A is a fized positive definite
matriz, then for each k = 1,2,.. .,

ﬁ(Xj.*_l,... ,Xj+k|5j = 27,5,, = A_lf,Sm = O,Um = mI)
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converges to the law of k independent, identically distributed N(uo(t),X¢,) ran-
dom vectors, where

po(t) = (mo — ) [A71E — {cot(1 — 1)} 2q]
and

Tta =1 (1-t)coaa’ — (rg — t)po(t){po(t)} — (1 — 7o) 1 (A7 1&)(A1&)'.

Remark 1. The above result is intuitively correct, because () and I o are the
limits of the conditional mean and covariance matrix of X;4;,¢ = 1,2,.... For
example, the conditional expectation of X;4;,1 < i< p—j,is (A716-2)/(p—7).

Lemma 9. Let ag = A™1&/||A71& || and

= £ 6o g = o= m0)” + €2 &o
co(1—m0)? + EA5 & 2(1 - mo)(€hAg M60)?

Under the conditions of Lemma 8,

lim lim é::;)z{”Sn”z < con(m—n) for all j <n <p|S; =z,5, = A71¢}

a—ag,t—t* m—o00
= Ly*1-co (maXTn < _1'0),
n>1
where P, ,2 has the same meaning as in Lemma 5.

Remark 2. The reason for considering the special values o and t* is that
conditionally, given S, = A7¢, §,, = 0 and U,, = ml, if the process crosses
the boundary it will tend to do it near j = mt* and in the direction of ag. This
claim is made precise by the following lemmas.

Lemma 10. Let o = I — (A71&)(A™ &) /{mo(1 = m)} and f(2) = (za —
j(mmo) T A716)' S5 (20 — j(mmo) "L A &y). Under the conditions of Lemma 8,
as m — oo,

[ det{ml—}zx'— zi—j(A_lé' - x)(A—1£ - x)’_m;_p(A—lg)(A-—lg)i} ] (m—d-4)/2
det{ml - ;o (a-1¢)(A-1¢) }

aSE =l (GGl R G =

{eot(1 - )} i 'S5 a — L(A716) S5 a }

7o

1= it [{Cot(l—t)}%a— ﬁA*Eo] ,Eo—l[{cot(l—t)}%a—;%A“{o]
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Proof. Since
det(B — yy')
det(B)

for invertible matrices B, we can set
1 .
yz{ _P } (2~ 2a7%)
ilp—7) p

det(mZo — yy') (m-d=3)/2 _ (1— 1 S )(m—d—S)/2
det(mZXZ) - m? 0 Y

m : S\ 17 (mmd-3)/2
:(1 - j(mo —;/m)f[{c()%(l - %)} ])
< - s f{eod (1 )} + ﬂ})(m‘d‘:’)/?
1- s J/m)f[{col(l— iy ]

To complete the proof, it is sufficient to show that the last factor above converges
to the exponential term of (4.4). Since

it (-2 2] st 0- )]~ 2r[fo - )]

and

— 1 - yIB—ly

to obtain

LHS(4.4) ={

fl(z) = 2{za'}]0_1a - mLWO(A'l&))'E[)'Ia},

the lemma follows from the fact that limp, oo (1492)™ = e® when limy, o0 Gm =
a.

Remark 3. The exponential term in Lemma 10, evaluated at @ = ag and t = t*
(see Remark 2), equals

> [—xo{CO(l = 70)* + & 0_160}].
(1= co)(1 - m0)(&Ag " 60)?

Lemma 11. Let ¢; = (1,0,...,0)',0 < t < m and let a be a unit vector. The
function '

=g - ] - )

: [{cotu ~t)}ta - (t/7r0)||A’1£0|]e1]
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has a unique mazimum at o = €; and t = t*, where t* is defined in Lemma
9. Furthermore, g(t, ) is bounded away from g(t*,e1) outside a neighborhood of
(t*,e1), and

ot )= (1= ) (1 - 2060,

mo(1 — mp)

Proof. For fixed t, one can use Lagrange multipliers to show that g(t,a) is
maximized at @ = e;. In this case,

v [fetli = 0)} - m)lla~ 6]
mo 1) 1— (A5 &)/ [mo(1 = mo)]

This is maximized at t = t*, with g(¢*,e;) as given above.

g(tael) =1-

Lemma 12. Let e1,g(t,a) be as defined in Lemma 11 and t* as in Lemma 9.

Then
p—1 (m-d—4)/2
g(L, 61)}
; { g(t*,e1)
2(1 = mo)?[2mmeo(1 — co)(€h Ay "Eo){como(1 — mp) — €505 &0 }]2
{eo(1 —m0)? + £4Ag &0 }?
as m — oQ.

Proof. By Lemma 11, one may restrict the summation to j such that j/m lies
in a neighborhood of t*. The sum may then be evaluated by using a Taylor series
for f(t) = g(t,e1)/g(t*,e1) about t = t*, since by Lemma 11 we have f(t*) = 1
and f'(t*) = 0. Thus,

p—1 m,eq) ) (md-0/2 _
Z{g(]/ s )} ~ Z {f(]/m)}(m—d-4)/2

g(ttvel)

i=1 |4 —t*|<e
1 ] * 2 e (m—d_4)/2
~ Z {1+§<a—t>f(t)
|& —t*|<e _
t"+e —d—
1 (m—d—4)/2
~m {1 S i (2 TE t*)2} dt
t*—e 2

mye 2 (m—d—4)/2
1 z 1% mm
m /_mée{”%f (¢ )} d’”z[{—f"(t*)}]

1
2
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The lemma then follows from the fact that

{co(1 = mo)® + €575 &o}?
2¢o(1 — eo)(1 — m0)* (€525 €o){como(1 — 7o) — £ Ag &0}

fll(tt) —

Lemma 13. Let e; and g(t,a) be as defined in Lemma 11. Assume
limm—oo(j/m) =t, where 0 < t < mg. Then

y (m—d—4)/2
lim lim m(d"l)ﬁ/ {M} da
t—1* m—oo Sd—1 g(-‘rz;,el)

- [2”{001&)(1 — 7o) — {{,Aglgo}](d—l)/z
co(€525 " o)

)

where S?~1 means the unit sphere in R?, and da means the differential of surface
volume.

Proof. By writing a = aje; + (1 — a?)%e, where ee} = 0, we can evaluate
the integrand above and show that it depends on « only through «;. Letting
ay = cos @, where 6 is the angle between o and e;, we can write the integrand as
a function of 8; that is,

h(8) = h(8,t,m) = { GL) }(m“d_‘im - {1 1

g(t,e1) (o — 1)
x [2t(1—cos 8){cot(1—1)(£\ A5 60)} 3 —cot(1-1)(EgAg 1 €0)(1—m0) ™1 (1—cos? )

12516 To L paig 3 ~19(m—d—4)/2
X {l_ﬂ'o(l—no)—t(wo_t)[{cot(l_t)} —try  (&pAg o) ]2} ]

Integrating over the hypersphere corresponding to fixed #, we obtain

9(i/m, ) \ TN T i gy 2E T
/sa-x{g(j/m,el)} d= [ @m0 rid- 172"

The conclusion of the lemma now follows by a calculus argument.

Proof of Theorem 2. By (4.2) and circular symmetry, it is sufficient to prove
the theorem when (A71&)/||[A71&]|| = e1 = (1,0,...,0); therefore, this is as-
sumed below.

Let z = [{coj(m—7)}7 +zo)a, where zo > 0 and a is a unit vector. Formula
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(4.2) and Lemmas 7 through 11, together with Remark 3, imply that, as m — oo,

LHS(4.3) ~ r“gm{:; [det{f - (A;tf(i)(_A;ol)&)' }] -

ST L (G e

_ _ _ 10{00(1—7T0)2+€6f\51€o}] )
Fu '1‘°°(T§¥T" < —a0) exp [ (1 co)(1 - mo) (@A T60)E | 247

The ratio of the gamma functions is asymptotically equivalent to (m/2)%/2, and

det{I-— (A"&)(A'lfo)’} PR < L

7!'0(1—7['0) 7l'0(1 —71’0)'

Now change to polar coordinates, to obtain

1 X6 1"
LHS(4.3) ~ 275{1 - %ZH‘)}

:—I{WJ(p J)} /sa 1/ {( )}(m_d—4)/2p""1”°°(Tgi(T”S_z")

exp [_ zo{co(1 = m0)® + &g &0}
(1= eo)(1~ mo)(€5Ag " 60)?
where the integration over the sphere is as in Lemma 11. By Lemma 11, we can

substitute for [{coj(m — j)}? + 20]*"! by [m{cot*(1 - t*)}2]¢~1 and [p/{7r](p—
J)}]2 by [mo/{mmt*(mo — t*)}]z in the asymptotic expression. By Lemma 6,

* —_ - 2 1y—1
/ Pu‘,l-co<maxTn < —.’co) exp [ zo{co(l — m)* + fo_’\lo Eli} dzq
° n2t (1 = co)(1 = 70)(€ 25 €0)?

. { 2;1.* }_ Co(].—?fo)z-i—f(,))\(;-l&) { 00(1—770)2"}"6(,)’\(;150 }
=pv T (= —1r 1Y 1 ~1y—-1, 2
(1-co)? 2(1 = mo)(&oAg &0)7 L(1=co)7(1-m0)(& ' Ay '6o)?

which is independent of a. Therefore, we have

LHS(4.3) ~ {m”"c“ (1-# )} meot*(t — t*){l _ M}]_

2m(mo — mo(1 ~ mo)

Ll {(1—%):}2/ { ( )}""“d“"”dw (4.6)

p

][{ coj(m — )} + 2ol daoda
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The sum of integrals in (4.6) can be handled by writing

p—-1 i (m—d—4)/2
> [ {s(Z.e)} dor = {g(t*,e1))m=4=9/2
i=1

The proof of Theorem 2 is then completed by using Lemmas 12 and 13 and
evaluating the constants via Lemma 11 and the definition of ¢*.

5. Joint Confidence Regions

This section is concerned with joint confidence regions for the change-point
pand 6 = py — py. The case of known ¥ was discussed by Siegmund (1988).
The present case is substantially more complicated. See also Kim and Siegmund
(1989) and Knowles, Siegmund and Zhang (1991). It is convenient to introduce
the notation

§ = 3 (K- X)(Xi - XY, (5.1)
1=1
W; = [jSm/m — S;1/5(1 = 5/m)]'/?, (5.2)
Aj= [m?xW,-'S‘IWi - WiST'W;)/[1 - WisTiWy), (5.3)
W;i(8) = [iSm/m = S; = j(1 - j/m)é)/[5(1 — j/m)]'/?, (5.4)
and
A;(8) = Wi(8)[S — W W[ + Wi(§)W[(8)] "1 W;(é). (5.5)

The log likelihood ratio statistic for testing the specific values (p,6) against
a general alternative is proportional to

—log(1 — A,) —log(1 — A,(6)). (5.6)

Large values of the first term provide evidence against the hypothesized value of
p; and given a specific p, large values of the second term provide evidence against
the hypothesized value of §. The set of values not rejected by an a level test
are a (1 — a) confidence region. The significance level will not depend on the
unknown nuisance parameter ¥ provided we evaluate it conditionally given the
sufficient statistic when (p, é) is known, to wit, S, and

Vo(8) = § — W, W, + W,(65)W,(5). (5.7)
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Since (5.6) is invariant with respect to changes in location, we can condition on
any convenient value of §,,, e.g. §,, = 0.

Assuming the true change-point is p, we find, from standard multivariate
analysis and Basu’s Theorem (Lehmann (1986), Theorem 5.2), that (5.5) at j = p
and (5.7) are stochastically independent and hence

Pp'é{Ap(a) > CIVp(é),Sm = 0} = P{Bd/2,(m—-d—-1)/2 > C}, (5.8)

where By/; (m—d-1)/2 has a Beta distribution with the indicated parameters.
Simple algebra shows that the statistic in (5.6) exceeds b if and only if
Ap + Ay (8) — ApA,(8) exceeds ¢ = 1 — exp(—b). Hence we seck to evaluate

Pps{Ap+ Ap(8) = ApAp(8) > c|Vy(6), Sm = 0} = P, s{A,(8) > ¢|V,(6), Sm = 0}

+ E, 5[ P{,> i—:%‘,%wp(a),sm = 0,5, }5 A,(6) < €lVy(6), Sm = 0]. (5.9)

The first term on the right hand side of (5.9) is given in (5.8). The conditional
probability in the second term can be evaluated approximately by the results
of Theorem 2, and the resulting expression integrated numerically to obtain an
approximation to the desired probability.

To be more specific, by (5.1)—(5.5) the conditional probability in (5.9) can
be rewritten

re-1y17. ro-1 _wi!e-1 c— Ay (%) -
P,,{m]aijS Wi > WIS™'W, + (1- W'S W")[l—Ap(é)]IS”’S’Sm—O}’

which is in the form addressed by Theorem 2 if we put

- A6
0 = WSIW, + (1 - wis~w,) £33

If S, = mo, Sm =0, § = mAo and p = mmo, then W.S™W, = €)A5 €/ mo(1 -
7o) and hence the factor

{(1 = c0)/(1 = &g o/ [mo(1 — mo)]}m—4=3)/2
appearing on the right hand side of (4.3) equals
(1= )/ (1 = A, (6)))(m 4912, (5.10)
To take the expectation in (5.9), we must integrate with respect to

P 6{Ax(8) € dy|V,(6), Sm = 0} P, 5{W,(6) € dw|A,(8) = Y, Vp(6), Sm = 0}.
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By (5.8) the conditional probability density function of A,(§) equals
[B(d/2,(m — d — 1)/2)] 7 y{#=D/2(1 — y)(m=a=9/2, (5.11)

the final factor of which cancels with the denominator of (5.10).

It follows from standard arguments that given V,(§) = v and §,, = 0, the
conditional distribution of U = v~1/2W,(§) is that of the first d coordinates of
a point uniformly distributed on the unit sphere $™~2 in m — 1 dimensional
Euclidean space. Since ||U||> = W,(6)'v™1W,(6) = A,(§), the conditional distri-
bution of U/||U|| given V,(6) = v, S, = 0 and A,(6) is uniform on $¢~1. Hence
unconditioning (5.9) involves d-dimensional integration which can be expressed
in terms of a product measure involving (5.11) and surface measure on S%°!.
By virtue of the cancellation between (5.10) and (5.11) the result is the product
of a numerical constant depending on m, (1 — ¢)(™~4-3)/2_ and a d-dimensional
integral which does not involve the sample size m. We omit the details. For
values of d up to about d = 4, the integral arising in this argument can be easily
evaluated numerically, but for larger values of d it would be useful to have a
comparatively simple approximation.

With the help of the preceding approximation one can evaluate (5.9) ap-
proximately and hence determine an approximate joint confidence region for p
and 4. As in the case of a confidence region for p alone, numerical implementa-
tion involves selection of trial values and evaluation of (5.9) with ¢ set equal to
the observed value of A, + A,(6) — A,A,(6). The confidence region consists of
all pairs of parameter values yielding a probability greater than a. For efficient
selection of trial values it is useful first to compute a confidence region for p
and confidence regions for § at a few values of p, assumed known. A numerical
example in a simpler context is given by Siegmund (1988).
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