
Statistica Sinica: Supplement

Supplementary Material to

Clustering in Complex Latent Variable Models with

Many Covariates

Ya Su1, Jill Reedy2 and Raymond J. Carroll1,3

1Department of Statistics, Texas A&M University,

2Epidemiology and Genomics Research Program, Division of Cancer

Control and Population Sciences, National Cancer Institute,

3School of Mathematical and Physical Sciences, University of Technology

Sydney

Summary

The online Supplementary Material includes proofs, the analysis of Section

3.2 but with K = 4 clusters (table and radar plot), cluster membership

probabilities for 10 individuals in the analysis of Section 3.3, and additional

references.
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S.1. THEORETICAL DEVELOPMENT

S.1 Theoretical Development

The purpose of this section is to show that there are circumstances where

our algorithm of generating realizations of the latent variables will, at least

asymptotically, result in the same set of cluster means as if these latent

variables were observed. Algorithm 1 is clearly much more general than

these contexts. We will illustrate our theoretical results below for two set

of models, the classical measurement error model in Section S.1.1 and the

model (4) in Section S.1.3.

S.1.1 Nonparametric Deconvolution

Consider nonparametric deconvolution. Following the framework of Section

2, for any function h ∈ HK , the expected risk is

EFX (h) =

∫
h(y)dFX(y). (S.1)

Assumption 1. Consider nonparametric deconvolution density estimation.

Make the following assumptions.

(A). FX has bounded support.

(B). The characteristic functions of FX and FU are both integrable and

nonvanishing everywhere.

(C). The function class HK is uniformly Glivenko-Cantelli.

(D). The expected risk (loss), EFX (h), has a unique minimizer in HK .

Remark 1.

(i) Assumptions 1(A) and 1(B) are the same as Conditions A3-A5 in Li and

Vuong (1998).

(ii) Assumption 1(C) is common in the field of learning theory and empir-

ical processes that is related to and can be characterized by its entropy.

Under Assumption 1(A), the function class HK = {h(z) =
∑K

k=1‖z −
ck‖2I(ck is closest to z) : c1, . . . , cK ∈ Rd} is totally bounded for the sup

norm, and thus by Proposition 10.5 of Dudley (1999) Assumption 1(C)

holds for K-means clustering.

(iii) The validity of Assumption 1(D) is linked to the concept of stability
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of an algorithm. Under Assumption 1(D), a clustering algorithm is stable

given that it is convergent, see e.g. Ben-David et al. (2006). On the other

hand, it has been shown in Ben-David et al. (2006) that instability of a

clustering algorithm is inevitable if the underlying probability distribution

function FX maintain a certain symmetry property (there exists a map g

under which FX(A) = FX{g(A)} for all measurable set A ⊂ Rd) and the

expected risk depends only on the distances and FX . However, the symme-

try requirement appears to be something ideal, therefore, from a practical

aspect, Assumption 1(D) is not stringent.

The focus next is on the relationship between ĥn and h̃n. Since both

correspond to the minimizers of certain empirical risk function, it turns out

to be convenient to look at the almost minimizers set for the expected risk

(S.1), namely, for fixed ε,

Qε
FX

= {h ∈ HK : EFX (h) ≤ inf
h′∈HK

EFX (h′) + ε}. (S.2)

The notion of diameter is used to characterize the size of the almost

minimizers set. Here the diameter is chosen to be the L1 norm, that is,

diam(Qε
FX

) = minh1,h2∈QεFX
‖h1 − h2‖L1 .

Proposition 1. Under Assumption 1(D), diam(Qε
FX

) converges to zero as

ε goes to zero.

Proposition 1 can be shown by contradiction. Refer to Rakhlin and

Caponnetto (2006) for details.

Theorem 1. Under Assumptions 1(A), 1(B) and 1(C), for any ε > 0 there

exists nε such that for all n > nε, h̃n and ĥn are in the almost minimizers

set Qε
FX

.

Corollary 1. Under Assumptions 1(A), 1(B), 1(C) and 1(D), ‖h̃n−ĥn‖L1 →
0 as n→∞.

Proof of Theorem 1. Let ham ∈ Q
ε/2
FX

be one function in the almost mini-

mizers set (here ε scaled by 2 is for notational simplicity) then immediately

by the definition of h̃n and ĥn,

n−1
∑n

i=1h̃n(X̃i) ≤ n−1
∑n

i=1h
am(X̃i); (S.3)
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n−1
∑n

i=1ĥn(Xi) ≤ n−1
∑n

i=1h
am(Xi). (S.4)

Let F̃n,m be the empirical distribution function based on X̃1, . . . , X̃n. In

order to compare the expected risk between h̃n and ham, apply the following

identical transformation to h̃n and ham,

n−1
∑n

i=1h(X̃i) =

∫
h(y)dF̃n,m(y)

=

∫
h(y)dF̃n,m(y)−

∫
h(y)dF̃X,mes(y)

+

∫
h(y)dF̃X,mes(y)−

∫
h(y)dFX(y) +

∫
h(y)dFX(y).(S.5)

The last term in (S.5) equals EFX (h). Together with (S.3) we are able to pro-

vide evidence that with probability approaching 1, EFX (h̃n) ≤ EFX (ham) +

ε/2, that is, h̃n ∈ Qε
FX

, if one can show

sup
h∈HK

∣∣∣∣ ∫ h(y)dF̃n,m(y)−
∫
h(y)dF̃X,mes(y)

∣∣∣∣ < ε/8; (S.6)

sup
h∈HK

∣∣∣∣ ∫ h(y)dF̃X,mes(y)−
∫
h(y)dFX(y)

∣∣∣∣ < ε/8, (S.7)

both with probability approaching 1.

On the other hand, let F̂X be the empirical distribution function based

on X1, . . . ,Xn, the relationship between n−1
∑n

i=1h(Xi) and EFX (h) is

n−1
∑n

i=1h(Xi) =

∫
h(y)dF̂X(y)

=

∫
h(y)dF̂X(y)−

∫
h(y)dFX(y) +

∫
h(y)dFX(y).(S.8)

Now (S.8) holds for ĥn and ham. Then a sufficient condition for ĥn ∈ Qε
FX

,

with probability approaching 1 as n→ 0, is that

sup
h∈HK

∣∣∣∣ ∫ h(y)dF̂X(y)−
∫
h(y)dFX(y)

∣∣∣∣ < ε/4 (S.9)

holds with probability approaching 1.

We next confirm the validity of (S.6), (S.7) and (S.9).
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Both (S.6) and (S.9) are implied by Assumption 1(C), which says

sup
P
P ∗
(

sup
h∈HK

∣∣∣∣ ∫ hdPn −
∫
hdP

∣∣∣∣ > ε

)
→ 0, as n→ 0. (S.10)

Here P ∗ is an outer measure of the product measure P n because of the

measurability issue of the event inside the probability.

Remark 2. The uniformly Glivenko-Cantelli property is useful in showing

that the convergence (in probability) of
∫
hdPn −

∫
hdP is uniform in h

when the underlying probability is changing with n and with the sample

observed. Under (S.10), (S.9) holds naturally for a single choice of P , FX .

The random quantity in (S.6) lies in the same probability space as that

of X̃1, . . . , X̃n, say, P̃ . Given W1, . . . ,Wn, the conditional probability of

P̃ becomes F̃X,mes. The uniformly Glivenko-Cantelli property shows that

(S.6) holds under all conditional probabilities, so that (S.6) is valid with

respect to the marginal distribution P̃ .

To see (S.7), we turn to the literature on the convergence of F̃X,mes

to FX . Li and Vuong (1998) established the uniform convergence of the

density of F̃X,mes to that of FX assuming Assumption 1(A) and 1(B). Given

the uniform convergence of the density and bounded support of FX , the

term in (S.7) shrinking to zero follows immediately.

This concludes the proof of Theorem 1.

S.1.2 Parametric Deconvolution

Here we suppose that we have a parametric model S for the distribution of

X and then estimate FX by maximizing the likelihood function based on

marginal distribution of W, i.e.,

F̃X,mes = arg max
PX∈S

n∑
i=1

log

∫
fU(Wi − x)dPX(x). (S.11)

Here, the expected risk is

EX,S(h) =

∫
h(y)dPX,S(y). (S.12)
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The function PX,S ∈ S minimizes the Kullback-Leibler distance between

distributions of W under the true model yielded by FX and the misspecified

one in terms of, say PX ∈ S.

Finally, the almost minimizers set is

Qε
X,S = {h ∈ HK : EX,S(h) ≤ inf

h′∈HK
EX,S(h′) + ε}. (S.13)

Also, diam(Qε
X,S) = minh1,h2∈QεX,S ‖h1 − h2‖L1 .

The parametric model yields an estimate F̃X,mes ∈ S. White (1982)

has arguments stating the consistency of F̃Xmes to PX,S under the following

conditions: we have avoided a lot of notation here.

Assumption 2. The following are inherited from the A1, A2 and A3 in

White (1982).

(A). The true distribution of W has a measurable Radon-Nikodym density.

(B). Under the parametric distribution in S, the distribution of W has

a measurable Radon-Nikodym density. If the parametric distribution is

specified by certain parameter θ, the density is continuous in θ for fixed

value of w.

(C). The expectation of the logarithm of the density in Assumption 2(A)

exists while the logarithm of the density in (B), say f(w, θ) is bounded

above by some function in w, m(w). Also, m is integrable with respect to

the density in Assumption 2(A).

(D). The Kullback-Leibler distance between distributions of W under the

true model yielded by FX and the misspecified one in terms of, say PX ∈ S,

has a unique minimizer, PX,S, defined above.

Assumption 3.

(A). The function class HK is uniformly Glivenko-Cantelli.

(B). The expected risk (loss), EX,S(h), has a unique minimizer in HK .

Proposition 2. Under Assumption 3(B), diam(Qε
X,S) converges to zero as

ε goes to zero.

The proof of Proposition 2 is the same as Proposition 1 in Section S.1.1.
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Theorem 2. Under Assumptions 2(A)-2(D) and Assumption 3(A), for any

ε > 0 and there exists nε such that for all n > nε, h̃n and ĥn are in the

almost minimizers sets Qε
X,S and Qε

FX
.

The steps to prove Theorem 2 are almost identical to that of Theorem 1.

The differences lie in the details filled in these steps. The major difference is

in (S.5). Instead of the term
∫
h(y)dFX(y) there, here under Assumption 2,

we have the expected risk term
∫
h(y)dPX,S(y). As previously mentioned

that the distribution F̃X,mes converges to PX,S. On the other hand The

proof of ĥn in Qε
FX

remains the same as Theorem 1.

Remark 3. It is worth pointing out that the parametric model needs to

be correctly specified. Theorem 2 indicates that when we fit a parametric

model to the distribution of X, it is likely that the clustering function h̃n

and the clustering function ĥn do not converge to each other unless the true

distribution of X falls into the parametric family S.

S.1.3 Classical-Type Measurement Error Model (4) Where the

Latent Variable is Associated with Covariates

Under model (4),

Wij = AZi + ξi + Uij. (S.14)

In this set up, X̃i = ÂZi+ ξ̃i, Â is a consistent estimator of A and ξ̃1, . . . , ξ̃n

are an independent and identically distributed pseudo-sample from F̃ξ,mes.

If F̃ξ,mes is deconvolved nonparametrically, and if, in addition, we as-

sume that q(z) = limn n
−1∑

i 1(Zi≤z) and Zi for i = 1, . . . , n are bounded,

under the same flow of logic as in Section S.1.1, h̃n will converge to the

minimizer of the corresponding expected risk. The expected risk now takes

the form

EFξ,Z (h) =

∫
h(Az + y)dFξ,Z(y, z) (S.15)

with Fξ,Z(y, z) = q(z)Fξ(y).
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Under model (4), the distribution of X depends on Z and can be ex-

pressed as FX(x) =
∫
Fξ(x − Az)dq(z). Therefore, (S.15) has another

variant

EFX (h) =

∫
h(x)dFX(x). (S.16)

As in Section S.1.1, we know that ĥn converges to the minimizer of

(S.16). We conclude that h̃n and ĥn will yield the same clusters asymptot-

ically.

Remark 4. In view of model (4), an alternative approach would be to fit

a nonparametric model to X ignoring the covariates entirely. Intuitively

the classical nonparametric deconvolution is able to blend the effects of the

covariates in the distribution of X by itself, therefore, we should be able to

recover the results by the method in this section when the distribution for

ξ is estimated nonparametrically. Guided by Section S.1.2, if one decides to

adopt a parametric approach in (4) while completely ignoring the covariates

Z as opposed to the approach in S.1.3 while estimating Fξ parametrically,

in both cases there are likely to be misspecifications, however, we do benefit

from the second approach which prevents from a too wild parametric model.
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Maximum

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Possible

Total Fruit 1.57 4.16 3.94 4.28 5

Whole Fruit 1.40 4.62 4.28 4.53 5

Total Grains 4.66 4.57 4.95 4.93 5

Whole Grains 1.05 1.17 2.13 2.34 5

Total Vegetables 3.78 4.14 4.19 4.74 5

DOL 1.29 1.59 1.96 2.77 5

Milk 5.02 5.08 5.75 5.62 10

Meat & Beans 9.85 9.90 7.67 9.88 10

Oil 5.72 6.56 6.24 5.77 10

Saturated Fat 4.51 5.42 8.26 8.34 10

Sodium 1.97 2.59 2.55 1.19 10

SoFAAS 7.39 10.12 11.52 15.44 20

Total Score 48.21 59.92 63.44 69.82 100

Table S.1: Cluster mean scores for the analysis of Section 3.2 with K = 4 clusters,
and their maximum possible values. The Total Score is the sum of the cluster means.
The cluster ”sizes”, i.e., the sum of the probabilities of being in each cluster, are 81,101,
85,596 and 25,384 and 101,533, respectively.
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Subject No. Cluster 1 Cluster 2 Cluster 3

1 0.00 0.00 1.00

2 0.10 0.75 0.15

3 0.02 0.06 0.92

4 0.05 0.94 0.01

5 0.07 0.02 0.91

6 0.38 0.25 0.37

7 0.46 0.54 0.00

8 0.00 0.26 0.74

9 0.99 0.01 0.00

10 0.00 0.71 0.29

Table S.2: Analysis of the EATS data of Section 3.3. For the first 10 subjects, displayed
are the cluster probabilities for 3 clusters. Observe that the cluster assignment for subject
6, for example, is not at all clear.
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Figure S.1: Data analysis for the HEI-2005 analysis in Section 3.2. Radar plot for the
usual, measurement error corrected, intake among men: clustering is based on the HEI-
2005 total score. The listed amounts for the clusters are the means of the HEI-2005
total score within the clusters, although the total score was not part of the clustering
algorithm. The cluster sizes are 81,101, 85,596, 25,384 and 101,533, respectively.
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