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Abstract: This paper studies the outlier detection and variable selection problem in

linear regression. A mean shift parameter is added to the linear model to reflect the

effect of outliers, where an outlier has a nonzero shift parameter. We then apply an

adaptive regularization to these shift parameters to shrink most of them to zero.

Those observations with nonzero mean shift parameter estimates are regarded as

outliers. An L1 penalty is added to the regression parameters to select impor-

tant predictors. We propose an efficient algorithm to solve this jointly penalized

optimization problem and use the extended Bayesian information criteria tuning

method to select the regularization parameters, since the number of parameters

exceeds the sample size. Theoretical results are provided in terms of high break-

down point, full efficiency, as well as outlier detection consistency. We illustrate our

method with simulations and data. Our method is extended to high-dimensional

problems with dimension much larger than the sample size.

Key words and phrases: Adaptive, breakdown point, least trimmed squares, out-

liers, penalized regression, robust regression, variable selection.

1. Introduction

Occuring frequently in data collection, outliers are observations that deviate

markedly from the rest. In the presence of outliers, likelihood-based inference

can be unreliable, for instance, ordinary least squares regression is very sensi-

tive to outliers. To this end, robust estimation and outlier detection are criti-

cal in statistical learning. We consider the mean shift linear regression model

yi = α + Xiβ + γi + εi, where Xi is a p dimensional predictor, β is a p dimen-

sional parameter, and γi is an observation-specified mean shift parameter that

is nonzero when the corresponding observation is an outlier. This model was

previously used by Gannaz (2006); McCann and Welsch (2007); She and Owen

(2011), and represents the general notion that the response can be arbitrary due

to an outlier.
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In this article, we are interested in variable selection as well as robust coef-

ficient estimation together with the task of outlier detection based on this mean

shift model. Popular methods for variable selection are penalized regression

methods such as LASSO (Tibshirani (1996)), Smoothly Clipped Absolute De-

viation Penalty (Fan and Li (2001)) and adaptive LASSO (Zou (2006)). These

penalized regression methods can be used not only for variable selection but for

outlier detection as well. For example, McCann and Welsch (2007) used an L1

regression while She and Owen (2011) imposed a nonconvex penalty function

on γi’s to avoid the trivial estimate γ̂i = yi and β̂ = 0, and achieved a sparse

solution in terms of the shift parameter. If the estimate of γi was nonzero, the

ith observation was identified as an outlier.

Our method is based on this mean shift model, but we use an adaptive

penalty which depends on the residuals from some robust initial fit. Meanwhile,

we add an L1 penalty to the regression coefficients to achieve variable selection

simultaneously. Our work differs from the work of McCann and Welsch (2007)

and She and Owen (2011). By judicious choice of penalty function, we can

attain high breakdown. Our method enjoys a breakdown point of 1/2, while

the breakdown point of She and Owen (2011) is at most 1/(p + 1) and that of

McCann and Welsch (2007) is 1/n. As shown in our simulation studies, when the

proportion of the outliers is large or the outliers are more extreme, the estimates

in McCann and Welsch (2007) and She and Owen (2011) break down and cannot

detect the outliers correctly, while our methods still perform well. We fully

develop the theoretical properties of our approach in contrast to McCann and

Welsch (2007) and She and Owen (2011).

In the literature, the asymptotic efficiency and the breakdown point are two

criteria to evaluate a robust regression technique. They represent the typical

trade-off in efficiency for robustness. It is ideal to achieve full asymptotic effi-

ciency of the true model compared to ordinary least squares while maintaining

a high breakdown point of 1/2. Typical robust regression methods do not man-

age this. Ordinary least squares, which is fully efficient under normality, has a

breakdown point of 1/n, and hence even a single outlier can render the estimate

arbitrarily bad. The M-estimates (Huber (1981)) also have a breakdown point

of 1/n while Generalized M-estimates (Mallows (1975)) can have a breakdown

point of only 1/(p+ 1) (Maronna, Bustos and Yohai (1979); Donoho and Huber

(1983)). While neither of them enjoys full efficiency. There are several methods

which enjoy a high breakdown point of 1/2, such as the least median of squares es-

timates (Hampel (1975); Rousseeuw (1984)), the least trimmed squares estimates



ROBUST ESTIMATION AND OUTLIER DETECTION 1033

(Rousseeuw (1984)), S-estimates (Rousseeuw and Yohai (1984)), MM-estimates

(Yohai (1987)) and the Schweppe one-step Generalized M-estimates (Coakley

and Hettmansperger (1993)). These methods are not fully efficient. There have

been some methods introduced achieving both properties, for example the robust

and efficient weighted least squares estimators (Gervini and Yohai (2002)) and

the generalized empirical likelihood method (Bondell and Stefanski (2013)).

The proposed method achieves both full efficiency and high breakdown, while

also performing variable selection simultaneously. Specifically, our method is

robust to outliers and enjoys a breakdown point that can be as high as 1/2.

When there are no outliers, our estimator can enjoy full asymptotic efficiency

compared to the LASSO estimator. We define outlier detection consistency in

the robust regression context, and show that our method correctly detects outliers

with probability tending to 1. In particular, we assume the number of outliers is

of constant proportion of the sample size. In the context of the mean shift model,

this corresponds to the case when the number of nonzero components in γi’s is of

the same order as the sample size. In addition to these properties, we propose an

efficient algorithm for our method when the total number of unknown parameters,

n+p, is larger than the sample size. The extended Bayesian information criteria

(ebic) (Chen and Chen (2008, 2012)) is adopted to select the tuning parameters

that control outlier detection and variable selection. Our method can be extended

to the high-dimensional setting when the dimension of the covariate p is diverging

at the exponential rate of the sample size, without loss of its properties.

The rest of this paper is organized as follows. In Section 2, we introduce

our robust regression method and its implementation. In Section 3, we include

the theoretical results for our method, including fully efficiency, high breakdown,

outlier detection consistency, and the equivariance property of our estimator.

Numerical simulations are provided to evaluate the proposed method in Section

4. In Section 5, we apply our method to the Boston Housing dataset. We extend

our method to the high-dimensional setting in Section 6, including the theoretical

properties in the diverging p case. The proofs and technical details are in the

supplementary materials.

2. Methodology

Let y = (y1, . . . , yn)T, X = (XT

1 , . . . , X
T

n)T be an n × p design matrix, γ =

(γ1, . . . , γn)T, and ε = (ε1, . . . , εn)T. Our model can be written as

y = α1 +Xβ + γ + ε,
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where α is the intercept, 1 is a n × 1 vector of ones, and the error term εi’s

are independent and identically distributed with E(εi) = 0. The mean shift

parameters γi’s serve as indicators of the outliers in the regression of yi | Xi. If

the ith subject is an outlier, γi 6= 0. Another type of outlier may still occur in the

covariate space, i.e. high leverage points, while having γi = 0, but these leverage

points do not result in the breakdown of the estimator. We are interested in both

outlier detection and variable selection for this model. To achieve these goals,

it is natural to devise a selection method via shrinkage. We impose penalties

on the γi’s to encourage them to shrink to zero and identify observations with

nonzero γi’s as outliers. Meanwhile, we add penalties on the coefficient β to

achieve variable selection. Specifically, we solve the minimization problem

min
α,β,γ

Qn(α, β, γ) = min
α,β,γ

‖y − α1−Xβ − γ‖22 + λn

p∑
j=1

|βj |+ µn

n∑
i=1

|γi|
|γ̃i|

, (2.1)

where γ̃i’s are residuals of an initial robust regression fit. Here γ̃i is the weight

we put on penalty, which plays a similar role as that of the weight put on the

adaptive Lasso. For those outliers, we expect γ̃i to be larger, and we shrink

less for the mean shift parameters, while for the “good points”, γ̃i is smaller,

and we would shrink more for the mean shift parameters. Here λn and µn are

regularization parameters controlling the variable selection and outlier detection,

respectively. If we do not want to perform variable selection, we can set λn = 0,

a special case of our method.

In Sections 2–5, we focus on the case that p is a fixed constant and p < n.

We discuss how to extend our method to the high-dimensional case when p is

much larger than n and diverges at an exponential rate of n in Section 6.

2.1. Robust initial estimator

We impose an adaptive penalty on γ that relies on the weights depending

on an initial robust fit. The weight plays a similar role as the weight used in the

adaptive LASSO problem (Zou (2006)), but it is based on the residuals rather

than the parameter estimates. The incorporation of an adaptive lasso type of

penalty function on the mean shift parameters for detecting outliers is what yields

the breakdown theory results, while the use of the residuals from an initial high

breakdown fit provides the high breakdown point to the estimator. Any methods

can be used for this initial step, for example least trimmed squares, S-estimates,

and MM-estimators, among others. The breakdown point of our new method is

no less than the breakdown point of the robust method we use for the initial fit.
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In this article, we use the least trimmed squares method to obtain the initial

robust estimates. We show that the least trimmed squares initial fit carries over

the high breakdown point of our estimator. Meanwhile, full efficiency compared

to the LASSO estimator, outlier detection, and variable selection consistency can

be achieved by using this initial estimator.

Let r2i = (yi − α − Xiβ)2. The least trimmed squares method solves

minβ
∑h

i=1 r
2
(i), where r2(i)’s are the order statistics of r2i , r

2
(1) ≤ r

2
(2) ≤ · · · ≤ r

2
(n).

The number of included residuals, h, is chosen to determine the breakdown

point of the estimator. In particular, the breakdown point can be shown to

be (n − h + 1)/n. In our simulation study and in data applications, we use the

truncation number h = b3n/4c, where bxc denotes the largest integer less than

x, although this does not yield the maximum breakdown point. We have also

tried other truncation numbers; the results were similar and hence are not shown.

For implementation, the R function “ltsReg” is adopted to obtain the initial esti-

mates β̃f = (α̃, β̃T)T. In particular, we implement the fast minimum determinant

estimator algorithm (Rousseeuw and Driessen (1999)), which is computationally

quick. For details of the algorithm, we refer readers to Section 4 of Rousseeuw

and Driessen (1999). After we get the initial least trimmed squares estimates β̃f ,

and the initial residuals are γ̃i = yi − α̃−Xiβ̃.

2.2. Algorithm

The optimization problem in (2.1) is an L1 penalized least squares and can

be easily transformed to a quadratic programming problem. A more efficient way

uses the Least Angle Regression algorithm (Efron et al. (2004)). If ρn = µn/λn,

then the optimization problem in (2.1) is

min
α,β,γ

Qn(α, β, γ) = min
α,β,γ

‖y − α1−Xβ − γ‖22 + λn{
p∑
j=1

|βj |+ ρn

n∑
i=1

|γi|
|γ̃i|
}.

For a fixed ρn, we can reparametrize to γ∗i = ρnγi/|γ̃i| so that the problem is

min
α,β,γ

Qn(α, β, γ) = min
α,β,γ

‖y − α1−Xβ −Bγ∗‖22 + λn{
p∑
j=1

|βj |+
n∑
i=1

|γ∗i |}, (2.2)

with B = diag(|γ̃1|/ρn, . . . , |γ̃n|/ρn) and γ∗ = (γ∗1 , . . . , γ
∗
n)T. Problem (2.2) is

a typical LASSO problem, and can be solved easily by the R package “lars”,

providing the whole solution path of (2) as a function of λn.

2.3. Tuning parameter selection

The minimization (2.1) involves tuning λn and µn, which is equivalent to
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tuning λn and ρn together. Since the number of parameters is n + p and larger

than the sample size, we use the ebic (Chen and Chen (2012)) due to its selection

consistency properties for high-dimensional problems. Suppose β̂ and γ̂ are the

estimates when the tuning parameters are set as λn and ρn. Let e2i = (yi − α̂−
X∗i β̂ − γ̂i)2, and define the residual sum of squares as rss =

∑n
i=1 e

2
i . The ebic

is defined as

ebic = n log(
rss

n
) + k{log n+ c log(n+ p)},

where k is the degree of freedom, the number of nonzero components of (βT, γT)T,

and c is a constant that must be specified. In our case, we have p+n parameters

with order O(n). By Theorem 1 of Chen and Chen (2012), when c > 1, the

ebic can select the tuning parameter consistently if the number of parameters

is on the order of n. Toward this end, we set c = 1 + ε with ε being a small

positive number to meet the requirement of their theoretical results. Based on our

preliminary numerical experience, we have found that the results are not sensitive

to the choice of small ε. Consequently, we set c = 1.01 for convenience. We set

two-dimensional grids for ρn and λn to find the combination that minimizes the

ebic. Specifically, we first choose a dense grid on ρn and, for each ρn, we use

Least Angle Regression algorithm to obtain the solution paths of the problem in

(2.2). We pick the grid of λn on each point that the degree of freedom changes.

For high-dimensional problems with the number of parameters exceeding the

sample size, we get a perfect fit if the degree of freedom is large enough, which

makes the ebic small as the residual sum of squares goes to zero. This gives the

wrong selection of λn, because it tends to select the λn that gives a perfect fit.

Consequently, we search over the λn that lead to k ≤ b0.5nc as we assume that

the number of outliers is less than half of the sample size.

3. Theoretical Results

In this section, we investigate some asymptotic results including outlier de-

tection consistency and variable selection consistency, in the first and third sub-

section respectively, and we consider the high breakdown point in the second

subsection. As far as we know, this is the first time that outlier detection con-

sistency has been formulated in the statistical literature.

Without loss of generality, we only show the results for the case that there

is no intercept. The results, as well as the proofs, for the case with an intercept

follow in a similar manner.
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3.1. Asymptotic theory when there are no outliers

We discuss our main results for outlier detection consistency and variable

selection consistency when no outlier exists. Then outlier detection consistency

reveals that the resulting estimator is asymptotically equivalent to the simple L1-

penalized regression, and thus shares its asymptotic efficiency properties. With-

out loss of generality, we assume that the first q components of β0 are nonzero, de-

noted by β0(1), and the remaining p−q components are zero, denoted by β0(2) =

0. Let ψ = n−1/2γ, and take θ = (β(1)T, β(2)T, ψT)T = (θ(1)T, θ(2)T, θ(3)T)T =

(θ1, . . . , θp+n)T with θ(1) = β(1), θ(2) = β(2) and θ(3) = ψ. Let Xa,b be the

submatrix consisting of the ath to bth column of the matrix X. We take

A =
(
X1,q Xq+1,p n

1/2In

)
,

C = n−1ATA =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 ,

with C11 = n−1XT

1,qX1,q, C21 = n−1XT

q+1,pX1,q and C31 = n−1/2X1,q.

Our method is equivalent to solving

min
θ

‖y −Aθ‖22
2

+ λn

p∑
j=1

|θj |+ n1/2µn

p+n∑
j=p+1

|θj |
|γ̃j−p|

.

Suppose a1 and a2 are two column vectors with same dimension and write

a1 ≤ a2 if the inequality holds elementwise. We let |a1| be the vector with

same dimension as a1, where each element of |a1| is the absolute value of the

corresponding element in a1.

We need some conditions; they may not be the weakest conditions but help

to simplify the proof.

(A) The error εi’s are independent and identically distributed with E(ε2ki ) <∞
for some positive integer k.

(B1) There exists a constant vector C such that |C21C
−1
11 sign(θ0(1))| ≤ 1 − C,

where the 1 on the righthand side of the inequality is a vector of ones.

There exists 0 < d ≤ 1 and M1,M2,M3 > 0 so that

(B2) n−1XT

,jX,j ≤ M1 for any 1 ≤ j ≤ p, where X,j denotes the jth column of

X,

(B3) αTC11α
T ≥M2 for any ‖α‖ = 1,

(B4) n(1−d)/2 minj=1,...,q |βj0| ≥M3 for some 0 < d ≤ 1.
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Conditions (B1)-(B4) are related to n, and we require Conditions (B1)-(B4) to

hold for all sufficient large n. Condition (B1) was introduced by Zhao and Yu

(2006) to guarantee the selection consistency for LASSO. Condition (B2) can

be achieved by normalizing the covariates. Condition (B3) is trivial and only

requires the smallest eigenvalue of the matrix C11 be nonzero. Condition (B4)

quantifies the smallest signal of the coefficient βj0, and we could identify the

signal on the order of O(n(d−1)/2) for some 0 < d ≤ 1. In particular, when d = 1,

β0 can be some fixed value that does not depend on n. In other cases, we allow

the magnitude of β0 to decay as the sample size increases.

Define a1 =s a2 if the signs of these two vectors a1 and a2 are the same

elementwise.

Theorem 1. Under conditions (A) and (B1)-(B4), for λn = o(n(d+1)/2) and

n−1/2λn →∞, and µnn
−1/(2k)−d/2 →∞, we have pr(θ̂ =s θ0)→ 1 as n→∞.

Thus we can select the important predictors consistently when no outliers

exist.

Remark 1. If a robust estimator can have the same efficiency compared with a

non-robust procedure when no outliers exist, we call the robust estimator fully

efficient compared to the non-robust procedure. Since pr(γ̂ = 0)→ 1 from The-

orem 1, our method is equivalent to the LASSO problem, and thus our estimator

is fully efficient compared to the LASSO estimator. If we do not impose any

penalty on β, λn = 0, our estimator is fully efficient compared to the ordinary

least squares.

3.2. High breakdown point

Let the n× (p+ 1) matrix Z = (X, y) denote the sample, and Z̃m denote the

contaminated sample by replacing m data points by arbitrary values. The finite

sample breakdown point for the regression β̂ is defined as

BP (β̂, Z) = min{m
n

: sup
Z̃m

‖β̂(Z̃m)‖2 =∞},

where β̂(Z̃m) denotes the estimate of the regression parameter using the contam-

inated sample Z̃m.

We assume the general position condition that is typical in high breakdown

point proofs. Suppose G is the set containing all good points (Xi, yi); for any

p× 1 vector v 6= 0, {(Xi, yi) : (Xi, yi) ∈ G, and Xiv = 0} contains at most p− 1

points.
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In contrast, our method would have a breakdown point of at least (n− h+

1)/n, which is shown by the following theorem.

Theorem 2. If we use the least trimmed squares with truncation number h as the

initial estimator, then under the general position condition the breakdown point

of our estimator satisfies that BP (β̂, Z) ≥ min{(n− h+ 1)/n, b(n− p)/2c/n}.

Remark 2. The least trimmed squares with truncation number h has a break-

down point of min{(n−h+1)/n, b(n−p)/2c/n}, see Rousseeuw and Leroy (1987)

for example. This theorem provides a lower bound of the breakdown point of the

proposed method, which performs at least as well as the least trimmed squares

initial estimator in terms of high breakdown point. Typically, we choose h < n/2

so that the breakdown point cannot exceed 1/2 since we aim for model to fit the

majority of the data.

3.3. Outlier detection consistency

In this subsection, we consider the case when there are outliers in the con-

ditional distribution of y | X, and show that we can identify these outliers con-

sistently. We assume that the fraction of outliers in the data remains nonzero as

more data are collected, otherwise we are in the trivial case. Denote sn as the

number of outliers, and assume sn = O(n) and sn < n/2. We take ψ = n−1/2γ.

Without loss of generality, we assume that the first sn components ψ0(1) are out-

liers while the remaining n− sn components ψ0(2) = 0 correspond to the normal

data points. We take η = (ψ(1)T, βT, ψ(2)T)T = (η(1)T, η(2)T, η(3)T)T. With Xa:b

as the ath to bth row of the matrix X and Xa:b,c:d as the sub matrix of X with

ath to bth row and cth to dth column, the design matrix is

B =
(
B1 B2 B3

)
,

where B1 = (n1/2Isn , 0sn×(n−sn))
T, B2 = X and B3 = (0(n−sn)×sn , n

1/2In−sn)T.

Let

D = n−1BTB =

D11 D12 D13

D21 D22 D23

D31 D32 D33


with D11 = Isn , D21 = n−1/2XT

1:sn , D31 = 0, D22 = n−1XTX.

The estimator is the solution to

min
η

‖y −Bη‖22
2

+ n1/2µn

sn∑
j=1

|ηj |
|γ̃j |

+ λn

sn+p∑
j=sn+1

|ηj |+ n1/2µn

p+n∑
j=p+sn+1

|ηj |
|γ̃j−p|

.
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As sn = O(n), our problem is a weighted L1 regression with the number of

nonzero components on the order of O(n). It is different from the traditional

high-dimensional sparse regression problem, for example Zhao and Yu (2006);

they deal with the case when the number of nonzero components is on the order

of O(na) with some a < 1.

Let πn = mini=1,...,sn |γi0|. We need some further conditions:

(C1) πnn
−1/(2k) →∞ as n→∞.

(C2) The number of outliers sn ≤ n− h, and sn = O(n).

(C3) There exists a constant vector C such that |D21sign(η0(1))| ≤ 1−C, where

1 on the righthand side of the inequality is a vector of ones.

Condition (C1) requires that the minimum signal of the outliers diverges

with the sample size. To see this is needed, consider that yi = γi + εi, where

εi ∼ N(0, 1), γi = d∗ > 0 for 1 ≤ i ≤ sn and γi = 0 for sn + 1 ≤ i ≤ n. Then

πn = d∗. As the support of the distribution is the real line, there cannot be a

fixed d∗ that defines an “outlier” in this distribution as n grows. Hence it must

be assumed that πn diverges sufficiently fast in order to distinguish the “outlier”

from a random variable coming from the true distribution. (C2) requires that

the number of data points used in least trimmed squares cannot be smaller than

the number of the good points in the data, guaranteeing a robust initial estimate.

Condition (C3) is parallel to Condition (B1) in Section 3.1 when no outliers exist.

Theorem 3. Under conditions (A), (B2), (C1)-(C3), for µn = o(π2n), µknn
−1 →

∞ and λnn
−1µ−1n πn →∞, we have pr(γ̂ =s γ0)→ 1 as n→∞.

3.4. Equivariance properties of our estimator

In this subsection, we discuss the equivariance properties of our estimator.

There are three types of equivariance properties: regression, scale, and affine

equivariance; see Rousseeuw and Leroy (1987) for example.

An estimator T is called regression equivariant if

T ({Xi, yi +Xiv), i = 1, . . . n}) = T ({Xi, yi), i = 1, . . . n}) + v,

where v is any column vector.

An estimator T is called scale equivariant if

T ({Xi, cyi), i = 1, . . . n}) = cT ({Xi, yi), i = 1, . . . n})

for any constant c.

An estimator T is called affine equivariant if

T ({XiA, yi), i = 1, . . . n}) = A−1T ({Xi, yi), i = 1, . . . n})
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for any nonsingular square matrix A.

We focus on the equivariance of our estimator from (2.1) in terms of the

parameter β. We consider the two cases: λn is nonzero, and zero. As our method

depends on the residuals from the initial estimator, the equivariance properties

of our estimators depend on the equivariance properties of the initial estimators.

If no penalty is imposed on β, λn = 0, then our estimator inherits the equiv-

ariance properties of the initial estimator. In particular, for the least trimmed

squares estimator we use, it has been shown that it is regression, scale, and affine

equivariant (Rousseeuw and Leroy (1987)). Thus, our estimator is regression,

scale, and affine equivariant.

If λn is nonzero, to obtain equivariance properties for the estimator, we

center and scale the Xi’s and yi’s at the beginning of our two-step procedure,

typical in penalized regularization problems, then scale the estimate of β back.

In this case, our procedure enjoys regression equivariance, scale equivariance,

and partial affine equivariance. In particular, this equivariance is with respect to

scale change transformations only, not general affine transformations. This is the

situation with all penalized regressions as other affine transformations no longer

preserve the desired coordinate system for variable selection.

As mentioned in Section 2.1, we can use such other initial estimators as

least median of squares, S-estimator, and MM-estimator as long as they have a

high breakdown point. For least median of squares and S-estimator, they are

regression, scale and affine equivariant (Rousseeuw and Leroy (1987)). For the

MM-estimator, it is scale equivariant. As MM-estimator depends on an initial

high breakdown estimator, if the initial estimator is regression and/or affine

equivariant, the resulting estimator is as well (Yohai (1987)). Consequently,

when λn = 0, our estimator inherits the equivariance properties of the initial

estimator. When λn is nonzero, if we use the standardization procedure, our

estimator still inherits the scale and regression equivariance properties of the

initial estimator. If the initial estimator is equivariant with respect to scale

change transformations, our estimator is as well.

4. Simulation Studies

In this section, we report on our method using simulation examples. The

covariate Xi was generated independently and identically from a multivariate

normal distribution with zero mean and covariance matrix Σ, with the jkth

element of the matrix Σjk = 0.5|j−k|. The true coefficient was set as β0 =
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(4, 2, 1, 0.5, 0.2, 0, . . . , 0)T with q = 5 nonzero components and the remaining

(p − q) elements zero. The random error was simulated independently from

εi ∼ N(0, 0.25). The data were generated from yi = Xiβ0 + εi for 1 ≤ i ≤ n. We

contaminated the first cn observations by setting X∗i = Xi+L and y∗i = yi+V for

1 ≤ i ≤ cn with parameters L and V given later. Thus the first cn observations

were outliers and the remainder normal points.

We investigated the numerical performance of our method by using the fol-

lowing measures. M: the masking probability (fraction of undetected true out-

liers); S: the swamping probability (fraction of good points labeled as outliers);

JD: the joint outlier detection rate (fraction of simulations with 0 masking);

FZR: the false zero rate (fraction of nonzero coefficients that are estimated as

zero)

FZR(β̂) =
|{j ∈ {1, . . . , p} : β̂j = 0 ∧ βj 6= 0}|
|{j ∈ {1, . . . , p} : βj 6= 0}|

,

where |S| denotes the size of the set S; FPR: the false positive rate (fraction of

zero coefficients that are estimated as nonzero)

FPR(β̂) =
|{j ∈ {1, . . . , p} : β̂j 6= 0 ∧ βj = 0}|
|{j ∈ {1, . . . , p} : βj = 0}|

;

SR: the correct selection rate (fraction of identifying both nonzeros and zeros of

β); CR: the correct coverage rate (fraction of identifying nonzeros of β); MSE:

the mean square error of the parameters

MSE = (β̂f − βf,0)TE(XT

fXf )(β̂f − βf,0),

where α is the estimated intercept, βf = (α, βT)T, βf,0 represents the true value

of βf , and Xf = (1, X) with X being the uncontaminated covariates. For per-

formance in terms of outlier detection, M and S should be as small as possible

while JD should be as large as possible. For sparse estimator of β, FZR and

FPR should be as small as possible and SR and CR as large as possible. With

respect to the estimation accuracy of β, MSE should be as small as possible.

We compared our method with the sparse least trimmed squares method,

Least Absolute Deviation-LASSO (Wang, Li and Jiang (2007)), the robust and

efficient weighted least squares estimators (Gervini and Yohai (2002)) and the

estimator proposed by She and Owen (2011) with L1 penalty, which is just the

method in McCann and Welsch (2007). We also compared with the LASSO

and adaptive LASSO methods to see how non-robust methods perform under

different scenarios. For those scenarios that have outliers, we pretended that we

knew the outliers in advance and fitted LASSO and adaptive LASSO only on
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the true good points. We also compared our method with the oracle LASSO

and oracle adaptive LASSO estimator, which served as benchmarks. For the

LASSO and adaptive LASSO procedures involved in the comparisons, we used

BIC for parameter tuning. For the adaptive LASSO, we chose the weights as

the reciprocal of the ordinary least squares estimates (Zou (2006)).

The sparse least trimmed squares method gives a binary weight to each

observation. If wi = 1, we identified the ith observation as a normal point and

if wi = 0, we regarded it as an outlier. The truncation number was chosen

the same as our initial least trimmed squares fit, h = b0.75nc. For the Least

Absolute Deviation-LASSO method and LASSO, they cannot be used for outlier

detection, we only report the MSE, FZR, FPR, SR, and CR. For the oracle

LASSO, since we only fit the LASSO on the true good points, we only report

the MSE, FZR, FPR, SR and CR. For the robust and efficient weighted least

squares estimators method, we also used an initial least trimmed squares fit with

the truncation number h = b0.75nc. Since the robust and efficient weighted least

squares estimators method and She and Owen (2011)’s method do not perform

variable selection, we only report the M, S, JD and MSE.

We used different (n, p, V, L, c) combinations. For each combination, we ran

Monte Carlo studies with 1,000 replicates. We report the average over 1,000

replicates in terms of the aforementioned performance criteria. The standard

errors of these quantities are given in the corresponding parentheses. We use

PM, SLTS, LL, REWLS, She, LASSO, ALASSO, Oracle, and Aoracle to

denote our proposed method, the sparse least trimmed squares, the Least Ab-

solute Deviation-LASSO method, the robust and efficient weighted least squares

estimators, She and Owen (2011)’s method, LASSO, adaptive LASSO, the oracle

LASSO, and the oracle adaptive LASSO, respectively. When no outliers exist,

the LASSO and Oracle, ALASSO and Aoracle are exactly the same. Thus,

we do not report the results of Oracle and Aoracle when c = 0. We have

included the results when n = 100 in Table 1, and n = 200 in Table 2.

From Tables 1 and 2, we can see that our method, sparse least trimmed

squares, and robust and efficient weighted least squares estimators perform quite

well in terms of outlier detection. For She and Owen (2011)’s method, it works

well when (V,L, c) = (4, 0, 0.1), but fails for the other scenarios when outliers ex-

ist. With the contamination rate of 0.2, our method performs slightly worse than

the sparse least trimmed squares and robust and efficient weighted least squares

estimators methods in terms of outlier detection. For the LASSO estimator, when

the proportion of outliers increases, and L increases, LASSO performs worse in
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Table 1. Simulation results for our methods PM compared with the SLTS, LL, REWLS,
She, LASSO, ALASSO, Oracle and Aoracle methods when n = 100. The ∗ denotes
the values that are not applicable.

(n, p, V, L, c) Method M S JD FZR FPR SR CR MSE
(100, 15, PM 0 (0) 0.01(0) 1 0.02(0.002) 0.04(0.002) 0.58 0.91 0.2 (0.002)
4, 0, 0.1) SLTS 0 (0) 0.04(0.001) 1 0.02(0.002) 0.28(0.007) 0.13 0.9 0.26(0.002)

LL * * * 0.04(0.003) 0.37(0.01) 0.14 0.8 0.22(0.002)
REWLS 0 (0) 0.01(0) 1 * * * * 0.22(0.001)

She 0 (0) 0.08(0.002) 0.999 * * * * 0.3 (0.002)
LASSO * * * 0.09(0.003) 0.09(0.004) 0.23 0.55 0.57(0.003)
ALASSO * * * 0.17(0.003) 0.05(0.003) 0.12 0.22 3.65(0.009)
Oracle * * * 0.01(0.001) 0.11(0.004) 0.36 0.97 0.17(0.001)
Aoracle * * * 0.04(0.003) 0.05(0.003) 0.51 0.78 0.16(0.001)

(100, 15, PM 0 (0.001) 0.02(0.001) 0.998 0.02(0.002) 0.06(0.003) 0.49 0.89 0.22(0.002)
4, 0, 0.2) SLTS 0 (0) 0.01(0) 1 0.01(0.002) 0.27(0.007) 0.17 0.94 0.22(0.002)

LL * * * 0.02(0.002) 0.7 (0.008) 0.02 0.89 0.29(0.003)
REWLS 0 (0) 0 (0) 0.995 * * * * 0.23(0.001)

She 0.44(0.016) 0.08(0.003) 0.552 * * * * 0.72(0.01)
LASSO * * * 0.13(0.004) 0.08(0.003) 0.17 0.41 0.96(0.003)
ALASSO * * * 0.22(0.004) 0.04(0.003) 0.06 0.12 3.75(0.009)
Oracle * * * 0.01(0.001) 0.12(0.004) 0.36 0.95 0.18(0.002)
Aoracle * * * 0.05(0.003) 0.05(0.003) 0.47 0.76 0.17(0.002)

(100, 15, PM 0 (0) 0 (0) 1 0.03(0.002) 0.06(0.003) 0.5 0.87 0.22(0.002)
4, 4, 0.1) SLTS 0 (0) 0.04(0.001) 1 0.02(0.002) 0.29(0.007) 0.16 0.89 0.25(0.002)

LL * * * 0.03(0.003) 0.95(0.003) 0 0.87 2.46(0.006)
REWLS 0 (0) 0.01(0) 1 * * * * 0.22(0.001)

She 0.93(0.005) 0.03(0.002) 0 * * * * 2.36(0.005)
LASSO * * * 0.32(0.005) 0.74(0.004) 0 0.09 2.42(0.006)
ALASSO * * * 0.23(0.005) 0.56(0.005) 0 0.24 16.78(0.947)
Oracle * * * 0.01(0.001) 0.11(0.004) 0.36 0.97 0.17(0.001)
Aoracle * * * 0.04(0.003) 0.05(0.003) 0.51 0.78 0.16(0.001)

(100, 15, PM 0 (0.001) 0.01(0) 0.999 0.04(0.003) 0.09(0.003) 0.36 0.8 0.25(0.003)
4, 4, 0.2) SLTS 0 (0) 0.01(0) 1 0.01(0.002) 0.27(0.007) 0.17 0.94 0.22(0.002)

LL * * * 0.03(0.003) 0.95(0.003) 0 0.88 2.62(0.006)
REWLS 0 (0.001) 0 (0) 0.999 * * * * 0.23(0.003)

She 0.96(0.003) 0.03(0.002) 0 * * * * 2.47(0.006)
LASSO * * * 0.33(0.005) 0.75(0.004) 0 0.08 2.54(0.006)
ALASSO * * * 0.26(0.006) 0.59(0.005) 0 0.19 15.03(0.93)
Oracle * * * 0.01(0.001) 0.12(0.004) 0.36 0.95 0.18(0.002)
Aoracle * * * 0.05(0.003) 0.05(0.003) 0.47 0.76 0.17(0.002)

(100, 15, PM * 0 (0) * 0.01(0.002) 0.03(0.002) 0.68 0.94 0.18(0.002)
0, 0, 0) SLTS * 0.08(0.001) * 0.03(0.002) 0.28(0.007) 0.11 0.86 0.27(0.003)

LL * * * 0.04(0.003) 0.3 (0.009) 0.2 0.81 0.2 (0.002)
REWLS * 0.02(0.001) * * * * * 0.22(0.001)

She * 0.01(0.001) * * * * * 0.2 (0.001)
LASSO * * * 0 (0.001) 0.11(0.004) 0.41 0.98 0.16(0.001)
ALASSO * * * 0.04(0.002) 0.05(0.003) 0.54 0.82 0.15(0.001)

terms of both variable selection and parameter estimation as the MSE can be

very large, which shows the benefits of using a robust method when outliers exist.

The adaptive LASSO estimator performs even worse than LASSO because it uses

the ordinary least squares estimator as an initial fit. Our method has a much
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Table 2. Simulation results for our methods PM compared with the SLTS, LL, REWLS,
She, LASSO, ALASSO, Oracle and Aoracle methods when n = 200. The ∗ denotes
the values that are not applicable.

(n,p,V,L,c) method M S JD FZR FPR SR CR MSE
(200, 15, PM 0 (0) 0.01(0) 1 0 (0) 0.03(0.002) 0.71 1 0.15(0.001)
4, 0, 0.1) SLTS 0 (0) 0.02(0) 1 0 (0.001) 0.25(0.006) 0.12 0.98 0.18(0.002)

LL * * * 0.02(0.002) 0.2 (0.007) 0.34 0.91 0.16(0.001)
REWLS 0 (0) 0 (0) 1 * * * * 0.15(0.001)

She 0 (0) 0.06(0.001) 1 * * * * 0.22(0.001)
LASSO * * * 0.05(0.003) 0.07(0.003) 0.39 0.74 0.5 (0.002)
ALASSO * * * 0.12(0.003) 0.03(0.002) 0.28 0.38 3.61(0.006)
Oracle * * * 0 (0) 0.08(0.003) 0.5 1 0.12(0.001)
Aoracle * * * 0 (0.001) 0.02(0.002) 0.79 0.98 0.1 (0.001)

(200, 15, PM 0.03(0.005) 0.02(0) 0.974 0.01(0.001) 0.05(0.002) 0.63 0.97 0.19(0.004)
4, 0, 0.2) SLTS 0 (0) 0 (0) 1 0 (0) 0.27(0.006) 0.09 1 0.15(0.001)

LL * * * 0.01(0.001) 0.61(0.007) 0.01 0.97 0.23(0.002)
REWLS 0 (0) 0 (0) 0.996 * * * * 0.16(0.001)

She 0.38(0.015) 0.07(0.002) 0.624 * * * * 0.57(0.009)
LASSO * * * 0.08(0.003) 0.06(0.003) 0.33 0.6 0.88(0.002)
ALASSO * * * 0.16(0.003) 0.03(0.002) 0.15 0.24 3.69(0.006)
Oracle * * * 0 (0) 0.09(0.003) 0.46 1 0.13(0.001)
Aoracle * * * 0.01(0.001) 0.03(0.002) 0.75 0.96 0.11(0.001)

(200, 15, PM 0 (0) 0 (0) 1 0 (0.001) 0.06(0.002) 0.57 0.98 0.17(0.001)
4, 4, 0.1) SLTS 0 (0) 0.02(0) 1 0 (0.001) 0.28(0.006) 0.12 0.98 0.17(0.002)

LL * * * 0.05(0.003) 0.94(0.003) 0 0.8 2.47(0.004)
REWLS 0 (0) 0 (0) 1 * * * * 0.15(0.001)

She 0.97(0.003) 0.01(0.001) 0 * * * * 2.44(0.003)
LASSO * * * 0.28(0.005) 0.87(0.003) 0 0.1 2.46(0.004)
ALASSO * * * 0.14(0.004) 0.71(0.005) 0 0.44 97.6(45.208)
Oracle * * * 0 (0) 0.08(0.003) 0.5 1 0.12(0.001)
Aoracle * * * 0 (0.001) 0.02(0.002) 0.79 0.98 0.1 (0.001)

(200, 15, PM 0 (0) 0.01(0) 1 0.01(0.001) 0.12(0.004) 0.32 0.94 0.22(0.002)
4, 4, 0.2) SLTS 0 (0) 0 (0) 1 0 (0) 0.3 (0.007) 0.13 1 0.15(0.001)

LL * * * 0.05(0.003) 0.95(0.003) 0 0.81 2.65(0.004)
REWLS 0 (0) 0 (0) 1 * * * * 0.16(0.001)

She 0.98(0.002) 0.01(0.001) 0 * * * * 2.57(0.004)
LASSO * * * 0.28(0.005) 0.88(0.003) 0 0.11 2.58(0.004)
ALASSO * * * 0.16(0.005) 0.73(0.005) 0 0.37 35.06(5.304)
Oracle * * * 0 (0) 0.09(0.003) 0.46 1 0.13(0.001)
Aoracle * * * 0.01(0.001) 0.03(0.002) 0.75 0.96 0.11(0.001)

(200, 15, PM * 0 (0) * 0 (0) 0.02(0.002) 0.78 1 0.12(0.001)
0, 0, 0) SLTS * 0.05(0.001) * 0.01(0.001) 0.22(0.005) 0.14 0.97 0.19(0.002)

LL * * * 0.02(0.002) 0.07(0.004) 0.6 0.9 0.14(0.001)
REWLS * 0.01(0) * * * * * 0.15(0.001)

She * 0 (0) * * * * * 0.14(0.001)
LASSO * * * 0 (0) 0.07(0.003) 0.52 1 0.11(0.001)
ALASSO * * * 0 (0.001) 0.02(0.002) 0.83 0.99 0.09(0.001)

higher selection accuracy than the sparse least trimmed squares and the Least

Absolute Deviation-LASSO methods for the parameter β, no matter whether

we have contamination or not, although the correct coverage rates of the three
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methods are comparable. The oracle adaptive LASSO method performs better

than the oracle LASSO in terms of false positive rate, but worse than oracle

LASSO in terms of false zero rate, resulting in higher correct selection rate but

lower correct coverage rate. For the MSE, oracle adaptive LASSO is slightly

better because it is asymptotically unbiased compared with oracle LASSO.

When there is no contamination, our method is more efficient in estimating β

than the sparse least trimmed squares and the Least Absolute Deviation-LASSO

method, as expected, because our method is fully efficient compared with the

LASSO estimator while the above comparison methods are not. Our method is

comparable with LASSO estimator in terms of MSE when no outliers exist. The

adaptive LASSO method performs better than LASSO in terms of false positive

rate, but worse than LASSO in terms of false zero rate, which results in higher

correct selection rate but lower correct coverage rate. For the MSE, the adaptive

LASSO is slightly better because it is asymptotically unbiased compared with

LASSO. Our estimator is also more efficient than the robust and efficient weighted

least squares estimators in the finite sample scenario. Although the robust and

efficient weighted least squares estimator is also fully efficient asymptotically, its

finite-sample efficiency can be relative low, as noted by Gervini and Yohai (2002),

for example. Our estimator is also more efficient than She and Owen (2011)’s

method in finite sample scenario, which indicates that the adaptive weights not

only help for outlier detection but also for estimation of the parameter.

We have run more comprehensive simulations by considering different corre-

lation structures for the design matrix, different combination of p and q, different

settings of β, different settings of γ instead of a constant. The results are in Sec-

tion 1 and Tables 1-6 in the supplementary materials. The findings are quite

similar as the findings from this simulation except in Setting III (Tables 5 and 6)

in the supplementary, the oracle adaptive LASSO outperforms oracle LASSO in

terms of lower false positive rate, higher correct selection rate, and lower MSE.

For the false zero rate and correct coverage rate, the methods perform the same.

5. Data Application

We applied our method to the Boston housing data, which originated with

Harrison and Rubinfeld (1978) and was corrected by Pace and Gilley (1997).

The dataset consists of median values of owner-occupied housing and various

predictors. We have listed them in the Table 3.

We used exactly the same model as Belsley, Kuh and Welsch (1980) and
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Table 3. Boston Housing Data variables and descriptions.

Name Description
CMEDV Corrected median values of owner-occupied housing
CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIS weighted distances to five Boston employment centers

RAD index of accessibility to radial highways
TAX full-value property-tax rate per $10, 000

PTRATIO pupil-teacher ratio by town
B 1,000(Bk − 0.63)2 where Bk is the proportion of blacks by town

LSTAT lower status of the population
LON Geographical longitude
LAT Geographical lattitude

Pace and Gilley (1997), which contains 18 candidate predictors:

log(CMEDV ) = β0 + β1CRIM + β2ZN + β3INDUS + β4CHAS

+β5NOX
2 + β6RM

2 + β7AGE + β8 log(DIS)

+β9 log(RAD) + β10TAX + β11PTRATIO + β12B

+β13 log(LSTAT ) + β14LAT + β15LON + β16LAT · LON
+β17LAT

2 + β18LON
2.

We standardized all variables in Table 3 except DIS, RAD, and LSTAT . For

these three variables, we first took logs and then standardized them. Since the

model involves quadratic terms and interaction term, we standardized these terms

after taking squares and multiplication.

We applied our method to the data and selected predictors with indices (1, 4,

5, 6, 10, 11, 12, 13, 15, 17). We also detected six data points with subject indices

(372, 373, 381, 410, 419, 490) as the outliers. We compared our method with

sparse least trimmed squares, which selects all the predictors. It also detected

fifty data points as outliers that contained all six outliers we detected using our

method. It has been seen in our simulation studies that the sparse least trimmed

squares method often overselects the number of significant predictors because it

has a much larger false positive rate. Thus, it is reasonable that sparse least

trimmed squares selects more predictors than our method. For the robust and
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efficient weighted least squares method that does not perform variable selection,

we only report the outlier detection result. The robust and efficient weighted

least squares method identifies thirty-two data points as outliers, which contains

all six outliers found by our method. We also applied the method of She and

Owen (2011), which does not identify any data points as outliers.

6. Extension to the High-Dimensional Case

In this section, we study the problem when the number of parameters p

diverges with n, written by pn in this section. We can extend our outlier detection

and variable selection procedures to the case in which pn is much larger than n.

Under this scenario, especially when pn > h, the least trimmed squares cannot be

used as an initial fit because it leads to overfitting. We therefore use the sparse

least trimmed squares (Alfons, Croux and Gelper (2013)) as the initial fit and

get the fitted residuals γ̃. Rather than minimizing the trimmed squares, we find

min
H,β

Q(H,β) = min
H,β
{
∑
i∈H

(yi −Xiβ)2 + hλs

pn∑
j=1

|βj |},

withH ⊆ {1, . . . , n} and |H| = h. For a fixed subsampleH, if β̂H = argminβQ(H,

β) and

Hopt = argminH⊆{1,...,n},|H|=hQ(H, β̂H),

the sparse least trimmed squares estimator is β̂Hopt
. To choose the tuning pa-

rameter λs, we use the root trimmed mean squared prediction error criterion

(Alfons, Croux and Gelper (2013)). After obtaining the initial fit, we apply the

analogous reparameterization and solve (2.2) using the “lars” package in R.

6.1. Theoretical results

We give the results for diverging pn. In particular, when pn diverges at an

exponential rate of the sample size n, Corollary 1 shows that our method can

select the important predictors consistently and identify all the data as good

points with probability tending to 1 when there are no outliers. When outliers

exist, Corollary 2 shows that our method still enjoys a high breakdown point.

Corollary 3 shows that our method enjoys outlier detection consistency.

A random variable Z is subgaussian if there exists some C > 0 such that

for every t ∈ R, E({exp(tZ)}) ≤ exp(Ct2/2). We need conditions to guarantee

reasonable estimates for the initial residual γ̃. Without loss of generality, we

assume the first sn observations are outliers. Let G = {sn + 1, sn + 2, . . . , n}
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denote the indices corresponding to the good points.

(D1) The error εi’s are independent and identically subgaussian distributed.

(D2) The λs used in the sparse least trimmed squares satisfy λs →∞.

(D3) E(y2i ) <∞ for all i ∈ G and ‖β0‖2 <∞.

Condition (D1) is a stronger condition than (A). It is commonly used in high-

dimensional literature that allows the dimension of the covariates pn to diverge

at the exponential rate in n.

We first show variable selection consistency when no outliers exist. We still

need the conditions (B1)-(B4), only needing to change p into pn and q into qn in

them. We still refer to the modified conditions as (B1) to (B4) when p and q are

replaced by pn and qn.

(B5) qn = O(nc1) for some constant 0 < c1 < d.

Write an ≡ O(bn) if an and bn have the same order.

Corollary 1. Under conditions (B1)-(B5), (D1)-(D3), if there exists 0 < c2 <

d − c1 for which pn = O(en
c2 ), for λn ≡ O(n(1+c3)/2) and µnn

−1−c1−c3/2 → ∞
such that 0 < c2 < c3 < d− c1, we have pr(θ̂ =s θ0)→ 1 as n→∞.

Corollary 1 allows pn to diverge at an exponential rate of n, and under this

scenario, we can still identify all the data as good points and select the important

predictors consistently.

Corollary 2. If we use the sparse least trimmed squares method with trunca-

tion number h, under the general position condition the breakdown point of our

estimator BP (β̂, Z) ≥ (n− h+ 1)/n.

Since Alfons, Croux and Gelper (2013) showed that the sparse least trimmed

squares has breakdown point (n−h+ 1)/n, our method performs at least as well

as the sparse least trimmed squares initial estimator in terms of high breakdown

point.

Our method still enjoys outlier detection consistency when pn diverges at an

exponential rate of sample size. We still need the conditions (B2), (C2) and (C3)

only needing to change p into pn and q into qn in them. With a little abuse of the

notation, we still call the modified conditions (B2)(C2)(C3) when p is replaced

by pn. We also need conditions (B5), (D1)-(D3) used in corollary 1.

(C4) πnn
−1/2(log n)−1/4 →∞.

Condition (C4) is parallel to condition (C1), but requires a faster diverging

rate of πn due to the high dimensionality of X.

Corollary 3. Under conditions (B2), (B5), (C2)-(C4), (D1)-(D3), if there exists
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Table 4. Simulation results for our methods PM compared with the SLTS, LASSO,
Oracle methods when (n, p) = (100, 500). The ∗ denotes the values that are not
applicable.

(n, p, V, L, c) Method M S JD FZR FPR SR CR MSE

(100, 500, PM 0(0) 0.12(0.004) 0.997 0.02(0.002) 0.07(0.001) 0 0.88 0.33(0.003)
4, 0, 0.1) SLTS 0(0) 0.05(0.001) 0.985 0.08(0.003) 0.02(0.001) 0.04 0.62 0.5(0.004)

LASSO * * * 0.11(0.004) 0.15(0.002) 0.02 0.47 1.26(0.007)
Oracle * * * 0.03(0.002) 0.14(0.002) 0.07 0.87 0.46(0.003)

(100, 500, PM 0(0) 0.19(0.005) 1 0.02(0.002) 0.07(0.001) 0 0.88 0.32(0.002)
4, 4, 0.1) SLTS 0(0) 0.05(0.002) 1 0.07(0.003) 0.02(0.001) 0.04 0.64 0.48(0.003)

LASSO * * * 0.11(0.004) 0.15(0.002) 0.02 0.47 1.26(0.007)
Oracle * * * 0.03(0.002) 0.14(0.002) 0.07 0.87 0.46(0.003)

(100, 500, PM * 0.07(0.003) * 0.01(0.001) 0.07(0.001) 0 0.94 0.28(0.003)
0, 0, 0) SLTS * 0.07(0.002) * 0.09(0.003) 0.01(0.001) 0.03 0.56 0.61(0.005)

LASSO * * * 0.02(0.002) 0.16(0.002) 0.09 0.9 0.46(0.003)

a constant d1 such that λnn
−1/2−d1/2 → ∞, and there exists 0 < c2 < d1 − c1

(c1 > 0) for which pn = O(en
c2 ), then for µn = o(π2n), µnn

−1(log n)−1/2 → ∞
and λnn

−1µ−1n πn →∞, we have pr(γ̂ =s γ0)→ 1 as n→∞.

6.2. Simulation results

We now report on a simulation study with p > n. In particular, we set

(n, p) = (100, 500). The true coefficient was set as β0 = (4, 2, 1, 0.5, 0.2, 0, . . . , 0)T

with q = 5 nonzero components and the remaining (p − q) elements zero. The

other settings are the same as the previous simulation. We compared our methods

with SLTS, LASSO, and Oracle as the other comparison methods are not

applicable for the high dimensional case. For tuning methods, we used the root

trimmed mean squared prediction error cross-validation criterion. The results

are in Table 4. From the results, our method has similar performance as SLTS,

obtaining smaller MSE but higher swamping probability.

Supplementary Materials

Supplementary material available online includes additional simulation re-

sults, the auxiliary lemmas and the proofs of the lemmas, theorems, and corol-

laries.
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