Non-stationary variance estimation and kriging prediction Proof of Theorems

Shu Yang and Zhengyuan Zhu

Department of Statistics, Iowa State University

Supplementary Material

Proof of Theorem 1.

Proof of Theorem 2.

Proof of Theorem 3.

Proof of Theorem 4.

Figures from the Simulation Study.

S1 Proof of Theorem 1

To prove Theorem 1, we need the following lemma to simplify the calculation.

$$\textbf{Lemma1:} \ \, \text{If} \, (X,Y) \sim N\left(\left(\begin{array}{cc} 0 \\ 0 \end{array} \right), \left(\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right) \right), \\ \text{then} \, Cov[X^2,Y^2] = 2 \left(Cov[X,Y] \right)^2.$$

Proof: Since
$$X|Y \sim N(\frac{\rho\sigma_1}{\sigma_2}Y,(1-\rho^2)), E[X^2|Y] = (1-\rho^2)\sigma_1^2 + (\frac{\rho\sigma_1}{\sigma_2}Y)^2$$

$$\begin{split} Cov[X^2,Y^2] &= E[X^2Y^2] - E[X^2]E[Y^2] \\ &= E\{E[X^2Y^2|Y]\} - \sigma_1^2\sigma_2^2 \\ &= E[Y^2\{(1-\rho^2)\sigma_1^2 + (\frac{\rho\sigma_1}{\sigma_2}Y)^2\}] - \sigma_1^2\sigma_2^2 \\ &= (1-\rho^2)\sigma_1^2\sigma_2^2 + (\frac{\rho\sigma_1}{\sigma_2})^23\sigma_2^4 - \sigma_1^2\sigma_2^2 \\ &= 2\rho^2\sigma_1^2\sigma_2^2 \\ &= 2(Cov[X,Y])^2. \end{split}$$

To establish the asymptotic results for the local polynomial regression estimator, which will be in Section 3, we rely on the following analytical properties of $K_n(\frac{x-x_i}{\lambda})$,

1.
$$\sum_{i=1}^{n-1} K_n(\frac{x-x_i}{\lambda}) = 1$$
,

2.
$$\sum_{i=1}^{n-1} (x - x_i)^j K_n(\frac{x - x_i}{\lambda}) = 0$$
, for any $j = 1, \dots, p$,

3.
$$K_n(\cdot) = 0$$
 for all $|x - x_i| > \lambda$,

4.
$$K_n(\frac{x-x_i}{\lambda}) = O((n\lambda)^{-1})$$
 uniformly for all $x \in [0,1]$,

5.
$$\sum_{i=1}^{n-1} \left(K_n(\frac{x-x_i}{\lambda}) \right)^2 = O((n\lambda)^{-1}).$$

Property 5 can be derived from property 4 and the Cauchy-Schwartz inequality.

Proof of Theorem 1, recall $\Delta_i=h^{-1}(D_{h,i}^2-2\sigma_\epsilon^2)$, where $D_{h,i}=Z(x_i)-Z(x_i+h)$. So

$$E[D_{h,i}^2] = \sigma_i^2 h + \{\sigma_i^{(1)2} x_i + \sigma_i^{2(1)}\} h^2 + 2\sigma_\epsilon^2 + o(h^2),$$

Thus

$$\begin{split} E[\Delta_i] &= E[h^{-1}(D_{h,i}^2 - 2\sigma_{\epsilon}^2)] \\ &= h^{-1}[\sigma_i^2 h + \{\sigma_i^{(1)2} x_i + \sigma_i^{2(1)}\} h^2 + o(h^2)] \\ &= \sigma_i^2 + \{\sigma_i^{(1)2} x_i + \sigma_i^{2(1)}\} h + o(h). \end{split}$$

The bias of $\hat{\sigma}_{\lambda}^2(x; \sigma_{\epsilon}^2) = \sum_{i=1}^{n-1} K_n(\frac{x-x_i}{\lambda}) \Delta_i$ can be calculated as

$$\begin{split} E[\hat{\sigma}_{\lambda}^{2}(x;\sigma_{\epsilon}^{2}) - \sigma^{2}(x)] &= \sum_{i=1}^{n-1} K_{n}(\frac{x - x_{i}}{\lambda}) \{ E[\Delta_{i}] - \sigma^{2}(x) \} \\ &= \sum_{i=1}^{n-1} K_{n}(\frac{x - x_{i}}{\lambda}) \{ \sigma_{i}^{2} - \sigma^{2}(x) + (\sigma_{i}^{(1)2}x_{i} + \sigma_{i}^{2(1)})h + O(h^{2}) \} \\ &= \sum_{i=1}^{n-1} K_{n}(\frac{x - x_{i}}{\lambda}) \{ \sum_{j=1}^{\lfloor \beta \rfloor} \frac{\sigma^{2(j)}(x)}{j!} (x_{i} - x)^{j} + O(|x_{i} - x|^{\beta}) \\ &+ (\sigma_{i}^{(1)2}x_{i} + \sigma_{i}^{2(1)})h + O(h^{2}) \} \\ &= \sum_{i=1}^{n-1} K_{n}(\frac{x - x_{i}}{\lambda}) \{ O(|x_{i} - x|^{\beta}) + (\sigma_{i}^{(1)2}x_{i} + \sigma_{i}^{2(1)})h + O(h^{2}) \}, \end{split}$$

where the third equality is obtained by Taylor expansion of $\sigma_i^2 = \sigma^2(x_i)$ at x and the assumption that $\sigma^2 \in C_{\beta}^+$, and the last equality follows by Property 2 of $K_n(\frac{x-x_i}{\lambda})$. Note that

$$\left| \sum_{i=1}^{n-1} K_n(\frac{x - x_i}{\lambda}) |x_i - x|^{\beta} \right| \leq \sum_{i=1}^{n-1} |K_n(\frac{x - x_i}{\lambda})| |x_i - x|^{\beta}$$

$$\leq \sum_{i;|x - x_i| < \lambda} |K_n(\frac{x - x_i}{\lambda})| \lambda^{\beta}$$

$$= O(\lambda^{\beta})$$

where the second inequality comes from Property 3 of $K_n(\frac{x-x_i}{\lambda})$. So Bias term is $O(\max(h, \lambda^{\beta}))$.

To simplify the notation, let $\sigma_{i,h} = \sigma(x_i + h)$, $\sigma_{i,2h} = \sigma(x_i + 2h)$,

$$Var[D_{h,i}^{2}] = Var[(Z(x_{i} + h) - Z(x_{i}))^{2}]$$

$$= 2\{\sigma_{i}^{2}x_{i} + \sigma_{i,h}^{2}(x_{i} + h) - 2\sigma_{i}\sigma_{i,h}x_{i} + 2\sigma_{\epsilon}^{2}\}^{2}$$

$$= 2\{\sigma_{i}^{2}h + (\sigma_{i}^{(1)2}x_{i} + \sigma_{i}^{2(1)})h^{2} + O(h^{3}) + 2\sigma_{\epsilon}^{2}\}^{2},$$

where the second equality follows from Lemma 1. For j = i + 1,

$$Cov[\Delta_{i}, \Delta_{j}] = h^{-2}Cov[D_{h,i}^{2}, D_{h,j}^{2}]$$

$$= 2h^{-2}[Cov\{D_{h,i}, D_{h,j}\}]^{2}$$

$$= 2h^{-2}\sigma_{\epsilon}^{4},$$

For $j \geq i + 2$, $Cov[\Delta_i, \Delta_j] = 0$. Thus

$$Var[\hat{\sigma}_{\lambda}^{2}(x;\sigma_{\epsilon}^{2})] = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} K_{n}(\frac{x-x_{i}}{\lambda}) K_{n}(\frac{x-x_{j}}{\lambda}) Cov[\Delta_{i}, \Delta_{j}]$$

$$= \sum_{i=1}^{n-1} K_{n}(\frac{x-x_{i}}{\lambda})^{2} Var[\Delta_{i}]$$

$$+ 2 \sum_{i=1}^{n-1} \sum_{j>i}^{n-1} K_{n}(\frac{x-x_{i}}{\lambda}) K_{n}(\frac{x-x_{j}}{\lambda}) Cov[\Delta_{i}, \Delta_{j}]$$

$$= \sum_{i=1}^{n-1} K_{n}(\frac{x-x_{i}}{\lambda})^{2} h^{-2} 2\{\sigma_{i}^{2} h + (\sigma_{i}^{(1)2} x_{i} + \sigma_{i}^{2(1)}) h^{2} + O(h^{3}) + 2\sigma_{\epsilon}^{2}\}^{2}$$

$$+ 2 \sum_{i=1}^{n-2} K_{n}(\frac{x-x_{i}}{\lambda}) K_{n}(\frac{x-x_{i+1}}{\lambda}) 2h^{-2} \sigma_{\epsilon}^{4}$$

$$= O\left((n\lambda)^{-1} \cdot \max\{1, n^{2-2\alpha}\}\right),$$

where the last equality is obtained by Property 5 of $K_n(\frac{x-x_i}{\lambda})$. If $\alpha \geq 1$, the bias term is $O(\max(h, \lambda^{\beta}))$ and the variance term is $O((n\lambda)^{-1})$, the optimal bandwidth is $\lambda = O(n^{-1/(1+2\beta)})$, under which the mean squared error is $O(n^{-\beta/(1+2\beta)})$.

If $\frac{1}{2} < \alpha < 1$, the bias term is $O(\max(h, \lambda^{\beta}))$ and the variance term is $O((n\lambda)^{-1}n^{2-2\alpha})$, the optimal bandwidth is $\lambda = O(n^{-(2\alpha-1)/(1+2\beta)})$, under which the mean squared error is $O(n^{-2(1+\beta-\alpha)/(1+2\beta)})$. Theorem 1 follows.

S2 Proof of Theorem 2

Proof: Let $a_{ni} = K_n(\frac{x - x_i}{\lambda})$ and $\xi_i = \Delta_i$. Check the following conditions as in Theorem 2.2 in Peligrad and Utev (1997).

1. $\max_{1 \le i \le n} |a_{ni}| \to 0$ as $n \to \infty$ and this condition holds since

$$K_n(\frac{x-x_i}{\lambda}) = O((n\lambda)^{-1}),$$

2. $\sup_{n} \sum_{i=1}^{n} a_{ni}^{2} < \infty$ and this condition holds since

$$\sum_{i=1}^{n-1} \left(K_n\left(\frac{x-x_i}{\lambda}\right) \right)^2 = O((n\lambda)^{-1}),$$

3. For a certain $\delta > 0$, $\{|\xi_i|^{2+\delta}\}$ is uniformly integrable and this condition can be easily verified by the fact that

$$\Delta_i = h^{-1}(D_{h,i}^2 - 2\sigma_{\epsilon}^2)$$

and

$$D_{h,i} = Z_i - Z_{i+1} \sim N(0, u_i),$$

where $u_i = \sigma_i^2 h + (\sigma_i^{(1)2} x_i + \sigma_i^{2(1)}) h^2 + O(h^3) + 2\sigma_\epsilon^2$. So $E\{D_{h,i}^6\} = 15u_i^3$, then it is easy to check that

$$\sup_{1 \le i \le n} E\{|\xi_i|^3\} < \infty,$$

which guarantees that $\{|\xi_i|^{2+\delta}\}$ is uniformly integrable.

The CLT in Theorem 2 follows.

S3 Proof of Theorem 3

To prove Theorem 3, we can write

$$\hat{U}(\sigma_{\epsilon}^{2}) = \frac{\partial}{\partial \sigma_{\epsilon}^{2}} \left(-\frac{1}{2} \log |\hat{\Sigma}| - \frac{1}{2} \mathbf{d}^{T} \hat{\Sigma}^{-1} \mathbf{d}\right)
= -\frac{1}{2} tr(\hat{\Sigma}^{-1} B) + \frac{1}{2} \mathbf{d}^{T} \hat{\Sigma}^{-1} B \hat{\Sigma}^{-1} \mathbf{d}, \qquad (S3.1)$$
where $B = \begin{pmatrix} 0 & -1 & \cdots & 0 & 0 \\ -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -1 \\ 0 & 0 & \cdots & -1 & 0 \end{pmatrix}$, and
$$\hat{\Sigma} = \begin{pmatrix} \hat{D}_{h,\lambda}(x_{1}) & -\sigma_{\epsilon}^{2} & \cdots & 0 & 0 \\ -\sigma_{\epsilon}^{2} & \hat{D}_{h,\lambda}(x_{2}) & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \hat{D}_{h,\lambda}(x_{n-2}) & -\sigma_{\epsilon}^{2} \\ 0 & 0 & \cdots & \hat{D}_{h,\lambda}(x_{n-2}) & -\sigma_{\epsilon}^{2} \end{pmatrix}.$$

Since $\hat{\sigma}_{\epsilon}^2$ satisfies $\hat{U}(\hat{\sigma}_{\epsilon}^2) = 0$, by the mean value theorem, we have

$$0 = \hat{U}(\hat{\sigma}_{\epsilon}^{2})$$

= $\hat{U}(\sigma_{\epsilon,0}^{2}) + \dot{U}(\sigma_{\epsilon}^{2*})(\hat{\sigma}_{\epsilon}^{2} - \sigma_{\epsilon,0}^{2}),$

where σ_{ϵ}^{2*} is the value between $\sigma_{\epsilon,0}^2$ and $\hat{\sigma}_{\epsilon}^2$, and

$$\dot{U}(\sigma_{\epsilon}^{2}) = \partial \hat{U}(\sigma_{\epsilon}^{2})/\partial \sigma_{\epsilon}^{2}
= \frac{1}{2} tr\{(\hat{\Sigma}^{-1}B)^{2}\} - \mathbf{d}^{T}\hat{\Sigma}^{-1}B\hat{\Sigma}^{-1}B\hat{\Sigma}^{-1}\mathbf{d}.$$
(S3.2)

So

$$\hat{\sigma}_{\epsilon}^2 - \sigma_{\epsilon,0}^2 = -\{\dot{U}(\sigma_{\epsilon}^{2*})\}^{-1} \hat{U}(\sigma_{\epsilon,0}^2). \tag{S3.3}$$

Follow the same argument in proof of Theorem 1, we can establish

$$\hat{D}_{h,\lambda}(x) = D_{h,\lambda}(x) + O_p\left(n^{-1-\beta/(1+2\beta)}\right).$$

So we have

$$\hat{\Sigma} = \Sigma + O_p \left(n^{-1 - \beta/(1 + 2\beta)} \right) D,$$

where D is some constant diagonal matrix. Using the property of matrix inverse, if ϵ is a small number then

$$(V + \epsilon F)^{-1} = V^{-1} - \epsilon V^{-1} F V^{-1} + O(\epsilon^2).$$

We have

$$\hat{\Sigma}^{-1} = \Sigma^{-1} + O_p(n^{-1-\beta/(1+2\beta)})\Sigma^{-1}D\Sigma^{-1}.$$

Replacing $\hat{\Sigma}^{-1}$ by the above expression in terms of Σ^{-1} in (S3.1) and (S3.2), we obtain

$$\begin{split} \hat{U}(\sigma_{\epsilon}^2) &= -\frac{1}{2}tr\left(\{\Sigma^{-1} + O_p(n^{-1-\beta/(1+2\beta)})\Sigma^{-1}D\Sigma^{-1}\}B\right) \\ &+ \frac{1}{2}\mathbf{d}^T\{\Sigma^{-1} + O_p(n^{-1-\beta/(1+2\beta)})\Sigma^{-1}D\Sigma^{-1}\}B\{\Sigma^{-1} + O_p(n^{-1-\beta/(1+2\beta)})\Sigma^{-1}D\Sigma^{-1}\}\mathbf{d}, \end{split}$$

and

$$\begin{split} \dot{U}(\sigma_{\epsilon}^2) &= \frac{1}{2} tr \left([\Sigma^{-1} + O_p(n^{-1-\beta/(1+2\beta)}) \Sigma^{-1} D \Sigma^{-1} \} B]^2 \right) \\ &- \mathbf{d}^T \{ \Sigma^{-1} + O_p(n^{-1-\beta/(1+2\beta)}) \Sigma^{-1} D \Sigma^{-1} \} B \{ \Sigma^{-1} + O_p(n^{-1-\beta/(1+2\beta)}) \Sigma^{-1} D \Sigma^{-1} \} \\ &\cdot B \{ \Sigma^{-1} + O_p(n^{-1-\beta/(1+2\beta)}) \Sigma^{-1} D \Sigma^{-1} \} \mathbf{d}. \end{split}$$

Now we will discuss the order of (S3.3) case by case.

1.
$$\alpha > 1$$
: $\Sigma^{-1} = O(n)$ and $O_p(n^{-1-\beta/(1+2\beta)})\Sigma^{-1}D\Sigma^{-1} = O_p(n^{1-\beta/(1+2\beta)})$, thus $\hat{U}(\sigma_{\epsilon}^2) \cong -\frac{1}{2}tr(\Sigma^{-1}B) + \frac{1}{2}\mathbf{d}^T\Sigma^{-1}B\Sigma^{-1}\mathbf{d}$, and $\hat{U}(\sigma_{\epsilon}^2) \cong \frac{1}{2}tr(\Sigma^{-1}B)^2 - \mathbf{d}^T\Sigma^{-1}B\Sigma^{-1}\mathbf{d}$. So

$$\hat{\sigma}_{\epsilon}^{2} - \sigma_{\epsilon,0}^{2} \cong -E\left\{\dot{U}(\sigma_{\epsilon}^{2})\right\}^{-1} \left\{-\frac{1}{2}tr\left(\Sigma^{-1}B\right) + \frac{1}{2}\mathbf{d}^{T}\Sigma^{-1}B\Sigma^{-1}\mathbf{d}\right\}$$
$$= \left\{\frac{1}{2}tr\left\{(\Sigma^{-1}B)^{2}\right\}\right\}^{-1} \left\{-\frac{1}{2}tr\left(\Sigma^{-1}B\right) + \frac{1}{2}\mathbf{d}^{T}\Sigma^{-1}B\Sigma^{-1}\mathbf{d}\right\}.$$

We claim that

$$[tr\{(\Sigma^{-1}B)^2\}]^{-1}\{tr(\Sigma^{-1}B) - \mathbf{d}^T \Sigma^{-1}B\Sigma^{-1}\mathbf{d}\} = O_p(n^{-3/2})$$

in probability as $n \to \infty$. Since

$$E\left(\left[tr\{(\Sigma^{-1}B)^2\}\right]^{-1}\left\{tr(\Sigma^{-1}B) - \mathbf{d}^T\Sigma^{-1}B\Sigma^{-1}\mathbf{d}\right\}\right) = 0$$

and

$$\begin{split} &Var\left([tr\{(\Sigma^{-1}B)^2\}]^{-1}\{tr(\Sigma^{-1}B)-\mathbf{d}^T\Sigma^{-1}B\Sigma^{-1}\mathbf{d}\}\right)\\ =&[tr\{(\Sigma^{-1}B)^2\}]^{-2}Var\left(\mathbf{d}\Sigma^{-1}B\Sigma^{-1}\mathbf{d}\right)\\ =&[tr\{(\Sigma^{-1}B)^2\}]^{-2}tr\left\{(\Sigma^{-1}B)^2\right\}\\ =&[tr\{(\Sigma^{-1}B)^2\}]^{-1}\\ =&O(n^{-3}) \end{split}$$

2. $\alpha < 1$: $\Sigma^{-1} = O(n^{\alpha})$ and $O_p(n^{-1-\beta/(1+2\beta)})\Sigma^{-1}D\Sigma^{-1} = O_p(n^{2\alpha-1-\beta/(1+2\beta)})$. The inequality $2\alpha - 1 - \beta/(1+2\beta) < \alpha$ always holds in case of $\alpha < 1$, regardless of $\beta > 0$. So

$$\begin{split} \hat{\sigma}_{\epsilon}^2 - \sigma_{\epsilon,0}^2 &\;\cong\;\; -E\left\{\dot{U}(\sigma_{\epsilon}^2)\right\}^{-1} \left\{ -\frac{1}{2}tr\left(\Sigma^{-1}B\right) + \frac{1}{2}\mathbf{d}^T\Sigma^{-1}B\Sigma^{-1}\mathbf{d} \right\} \\ &=\;\; \left\{ \frac{1}{2}tr\{(\Sigma^{-1}B)^2\} \right\}^{-1} \left\{ -\frac{1}{2}tr\left(\Sigma^{-1}B\right) + \frac{1}{2}\mathbf{d}^T\Sigma^{-1}B\Sigma^{-1}\mathbf{d} \right\}. \end{split}$$

We claim that

$$[tr\{(\Sigma^{-1}B)^2\}]^{-1}\{tr(\Sigma^{-1}B) - \mathbf{d}^T\Sigma^{-1}B\Sigma^{-1}\mathbf{d}\} = O_p(n^{-(1+2\alpha)/2})$$

in probability as $n \to \infty$. Since

$$E\left([tr\{(\Sigma^{-1}B)^2\}]^{-1}\{tr(\Sigma^{-1}B)-\mathbf{d}^T\Sigma^{-1}B\Sigma^{-1}\mathbf{d}\}\right)=0$$

and

$$\begin{split} &Var\left([tr\{(\Sigma^{-1}B)^2\}]^{-1}\{tr(\Sigma^{-1}B)-\mathbf{d}^T\Sigma^{-1}B\Sigma^{-1}\mathbf{d}\}\right)\\ =&[tr\{(\Sigma^{-1}B)^2\}]^{-2}Var\left(\mathbf{d}\Sigma^{-1}B\Sigma^{-1}\mathbf{d}\right)\\ =&[tr\{(\Sigma^{-1}B)^2\}]^{-2}tr\left\{(\Sigma^{-1}B)^2\right\}\\ =&[tr\{(\Sigma^{-1}B)^2\}]^{-1}\\ =&O(n^{-(1+2\alpha)}). \end{split}$$

Thus

$$\hat{\sigma}_{\epsilon}^2 - \sigma_{\epsilon,0}^2 = O_p(n^{-(1+2\alpha)/2}).$$

S4 Proof of Theorem 4

Recall

$$p(x_0) = C(\sigma)^T \{V(\sigma)\}^{-1} \mathbf{z},$$

where $\sigma = (\sigma_1, \dots, \sigma_n, \sigma_0, \sigma_\epsilon), \ \sigma_0 = \sigma(x_0),$

$$C(\sigma) = \begin{pmatrix} \sigma_1 \sigma_0 \min(x_1, x_0) \\ \sigma_2 \sigma_0 \min(x_2, x_0) \\ \vdots \\ \sigma_n \sigma_0 \min(x_n, x_0) \end{pmatrix}, \ \mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix},$$

and

$$V(\sigma) = \begin{pmatrix} \sigma_1^2 x_1 + \sigma_{\epsilon}^2 & \sigma_1 \sigma_2 x_1 & \cdots & \sigma_1 \sigma_n x_1 \\ \sigma_1 \sigma_2 x_1 & \sigma_2^2 x_2 + \sigma_{\epsilon}^2 & \cdots & \sigma_2 \sigma_n x_2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_1 \sigma_n x_1 & \sigma_2 \sigma_n x_2 & \cdots & \sigma_n^2 x_n + \sigma_{\epsilon}^2 \end{pmatrix}.$$

The plug-in kriging predictor is given by

$$\hat{p}(x_0) = C(\hat{\sigma})^T \{V(\hat{\sigma})\}^{-1} \mathbf{z},$$

where $\hat{\sigma} = (\hat{\sigma}_1, \dots, \hat{\sigma}_n, \hat{\sigma}_0, \hat{\sigma}_\epsilon)$. Using Taylor expansion technique, we have

$$C(\hat{\sigma}) \cong C(\sigma) + \sigma_0 \begin{pmatrix} \min(x_1, x_0)(\hat{\sigma}_1 - \sigma_1) \\ \min(x_2, x_0)(\hat{\sigma}_2 - \sigma_2) \\ \vdots \\ \min(x_n, x_0)(\hat{\sigma}_n - \sigma_n) \end{pmatrix} + \begin{pmatrix} \sigma_1 \min(x_1, x_0) \\ \sigma_2 \min(x_2, x_0) \\ \vdots \\ \sigma_n \min(x_n, x_0) \end{pmatrix} (\hat{\sigma}_0 - \sigma_0)$$

$$= C(\sigma) + O(n^{-p})E,$$

Similarly, we can have

$$V(\hat{\sigma}) \cong V(\sigma) + O(n^{-q})F,$$

where p is the convergent rate of $\hat{\sigma}$, in the case when $\alpha \geqslant 1$, $p = \beta/(1+2\beta)$, and in the case when $1/2 < \alpha < 1$, $p = (2\alpha - 1)/(1+2\beta)$, q is the minimum convergent rate of $\hat{\sigma}$ and $\hat{\sigma}_{\epsilon}$, i.e. $q = \min\{p, 2\alpha\} = p$ considering $2\alpha \geqslant p$ always holds, E and F are constant matrices. Using the property of matrix inverse, if ϵ is a small number then

$$(V + \epsilon F)^{-1} = V^{-1} - \epsilon V^{-1} F V^{-1} + O(\epsilon^2),$$

We have

$$(V(\hat{\sigma}))^{-1} = V(\sigma)^{-1} + O(n^{-q})V(\sigma)^{-1}FV(\sigma)^{-1}.$$

So

$$\hat{p}(x_0) = \{C(\sigma) + O(n^{-p})E\}^{-T} \{V(\sigma) + O(n^{-q})F\}^{-1}\mathbf{z}
= C(\sigma)^T V(\sigma)^{-1}\mathbf{z} + O(\max(n^{-p}, n^{-q}))
= p(x_0) + O(n^{-p}).$$

Furthermore, we know the simply kriging predictor $p(x_0)$ is consistent to $\sigma(x_0)W(x_0)$ with convergence rate $O(n^{-1/2})$. Combine the above two facts, we have

$$\hat{p}(x_0) = \sigma(x_0)W(x_0) + O(\max\{n^{-p}, n^{-1/2}\}).$$

In our consideration, p < 1/2 always holds. So the convergence rate is $O(n^{-p})$. Theorem 4 follows.

S5 Figures from the Simulation Study

Kriging vs Nonp kernel prediction with variable bandwidth, n=200 True Kriging Madaptive smoothing Smoothing On Smoothing

Figure 1: Plot of prediction and smoothing with $\sigma_{\epsilon}^2 = 0.1/n$; grey= true process $\sigma(x)W(x)$, red=kriging, blue=ALPRE, and green=LPRE.

Kriging vs Nonp kernel prediction with variable bandwidth, n=200

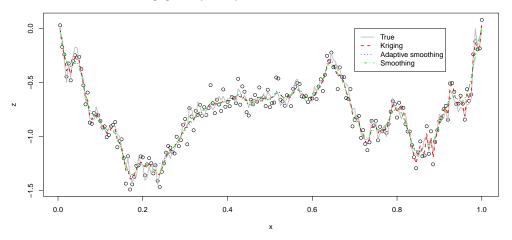


Figure 2: Plot of prediction and smoothing with $\sigma_{\epsilon}^2=1/n$, grey=true process $\sigma(x)W(x)$, red=kriging, blue=ALPRE, and green=LPRE.

Kriging vs Nonp kernel prediction with variable bandwidth, n=200

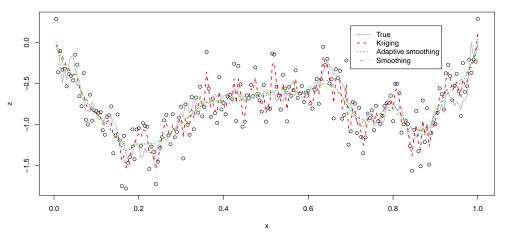


Figure 3: Plot of prediction and smoothing with $\sigma_{\epsilon}^2=10/n$, grey= true process $\sigma(x)W(x)$, red=kriging, blue=ALPRE, and green=LPRE.