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The following sections detail the calculation of the asymptotic standard errors given
for the parameter estimates, provide a simulation study of the I-likelihood estimator, and
give plots of the OMI data used in the application. Construction of the model used in the
application is discussed in more detail, and a more in-depth description of the blocking
and interpolation strategies used in the I-likelihood in the application is given. The intri-
cacies of the optimizations used in the application are also described. Results comparing
standard errors calculated with and without the computational shortcut presented in
Section 2.4 in the paper are shown.

S1 Inference

This section discusses the substitution presented in Section 2.4 used in calculating the
inverse of the Godambe information matrix. This calculation is again

G−1 = Eθ(Ġ)−1Eθ
(
GGT

)
Eθ(Ġ)−1. (S1.1)

After θ̂ is plugged in for θ, the central expectation term involves calculations of the
variance of several quadratic forms of the general form

Y TFY + X̂TDX̂, (S1.2)

where X̂ = AY and A is the matrix that produces the interpolated points X̂ from the true
observations, Y . The matrices F and D are matrices obtained from taking derivatives of
the Gaussian likelihood with respect to a covariance parameter. For many interpolation
methods, A, D and F will depend on interpolation parameters determined by the data,
but we treat these matrices as fixed in our calculations. Through simulations in Section
S2, we show ignoring this dependency does not appear to substantially bias uncertainty
estimates.

In calculating the variance of (S1.2), if X̂ is treated more accurately as a linear
combination of Y , the variance calculation is

2tr(FΣY FΣY ) + 2tr(DAΣYATDAΣYAT ) + 4tr(FΣYATDAΣY ). (S1.3)
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Note the dependence of the covariance matrix ΣY on the parameter estimate, θ̂, is
dropped in this notation. This dependence is left implicit below as well.

If X̂ is used as pseudo-observations with covariance matrix ΣX̂ and cross-covariance
matrix ΣY X̂ with Y , the calculation is

2tr(FΣY FΣY ) + 2tr(DΣX̂DΣX̂) + 4tr(FΣY X̂DΣT
Y X̂

). (S1.4)

Thus in this expression, the covariance of X̂ and cross-covariance of Y and X̂ (when treat-
ing X̂ as a linear combination of actual observations) are replaced by the approximations
ΣX̂ and ΣY X̂ respectively. We use (S1.4) to approximate G since this substitution cre-
ates substantial computational savings. The savings comes from fewer uses of the full
covariance matrix, ΣY , in (S1.4) than occur in (S1.3).

S2 Simulation Study

We numerically investigated the properties of the I-likelihood by simulating data with
structure similar to data collected by a polar-orbiting satellite. With these simulations,
we focused on determining how different first tier and second tier adjustments to an I-
likelihood affect point estimates and the measures of efficiency given in Section 2.4. Using
several different simulation schemes, we showed the estimates produced using I-likelihood
methods to depend predictably on the formations of the first tier and the higher level
tiers of an I-likelihood. Primarily, we found two patterns: More interpolated points used
in higher level tiers can lead to better estimations especially when the higher tiers are
capturing important relationships thrown out in the lower tiers; I-likelihood estimations
are robust to the use of incorrect models used for interpolation and moderately robust
to the use of poorly chosen interpolation locations. Performance of the I-likelihood was
less reliable when points were interpolated to locations outside the approximate domain
of the observed data points, and more generally, we found that I-likelihood performance
drops when the interpolated points are distributed severely differently from what they
are assumed to be in the I-likelihood calculation.

S2.1 Simulated Data and the Model

To mirror a simplified version of polar-orbiting satellite data collected in a single latitu-
dinal band, we simulated data on a subset of the circle × time. The data were simulated
in discrete time chunks or orbits, and within each orbit 100 observations were spaced
evenly across 30◦ longitude, each occurring at 0◦ latitude. The rough structure of the
orbits can be seen in the plot of OMI data in Figure 1.1(b), but in this simulation there
are fewer observations per orbit, and again the observations occur at a single latitude
as opposed to within a 1◦ latitude band. Consecutive orbits are spaced one time unit
apart; hence an orbit can also be thought of as a time unit. The longitudinal distance
from the end of one orbit to the beginning of the next is −3◦ longitude. This gives slight
spatial (but not temporal) overlap of observations in consecutive orbits. More complete
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spatial overlap occurs every 13.3 orbits; thus a day in these simulations may be defined
by this number of orbits. For the first set of simulations, we produced 25 consecutive
orbits of mean zero data, yielding data sets of size n = 2,500. To further investigate the
calibration of standard errors, we also simulated data sets with 100 consecutive orbits,
giving n = 10,000.

The model we used to simulate and interpolate data points is a simpler version of
the model used in the application in Section 3. If we denote li and ti as the longitude
and time points of the i-th observation, the covariance function of the process Y was.

Cov(Y (li, ti), Y (lj , tj)) = σ2 exp

(
−

√
chord(li − ωti, lj − ωtj)2

α2
+

(ti − tj)2
β2

)
,

where the function chord gives the chordal distance between two longitudinal points on a
ring with the same radius as the earth. Note there is no nugget in this model. For some
simulations we interpolated points to a non-zero latitude. To accommodate different
latitudinal locations, the chord function is extended to give chordal distance on a sphere
with the same radius as the earth. The parameters σ, α and β are standard deviation
and range parameters respectively. The parameter ω is a drift parameter controlling
how quickly the process rotates on the circle. General discussion of this parameter is
in Section S4. For all simulations, we set the true values σ = 36.69, α = 4.24 1000s of
Km , β = 8 orbits or 0.6 days, and ω = 10/14.5 = 0.69◦ longitude per orbit. These
values were chosen to be similar to those estimated in the application in Section 3, but
the values are not immediately comparable. In particular, we used a temporal range
markedly smaller than that estimated in the application because there are a smaller
number of orbits present in the simulated data. We expect parameters σ and α to be
reasonably estimated using within orbit information. Parameters β and ω, however, will
only be estimable using cross-orbit comparisons. We expect increased use of cross-orbit
information to improve estimation of these parameters.

S2.2 Notation

For each simulation, we varied the first tier composite likelihoods, the number of in-
terpolated observations, the interpolating models, and the interpolation locations. To
consolidate this information in our notation, we represent the I-likelihoods considered
in this section by letters denoting the base composite likelihood together with three
subscripts.

The I-likelihoods considered have the form of either a B·,·,·, HB·,·,· or an R·,·,·. An
I-likelihood with letter B has a block independent composite likelihood where the blocks
are equivalent to the orbits. An I-likelihood with letters HB has a block independent
composite likelihood where the blocks are made up of two half orbits. Blocks in this case
are made of the last 50 points in one orbit combined with the first 50 points of the next
orbit. A blocking scheme of this type has temporal variability present in the first tier
composite likelihood, while the B blocking scheme does not. An I-likelihood with letter
R denotes a random blocking scheme using a block independent composite likelihood.
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Here, observations are partitioned via simple random sampling into 25 blocks each with
100 observations.

The subscripts control different properties of the interpolation method. All interpo-
lations in this section are made using the general block interpolation method presented
in Section 2.2 where each Yi used to interpolate X̂i(Yi) is a vector of observations from
a single orbit. The first subscript in the notation indicates the number of interpolated
points at the second tier. We use values 1 and 10. The second subscript indicates the
model used for interpolation. Either the true model using correct values is used, indi-
cated by a 0, or a false model is used, indicated by a 1. The false model used has the
same structure as the true model, but an incorrect parameter value is used. I-likelihoods
under the false model use a simple parameter adjustment, setting α = 1 for interpolation.
Since each Yi is data from a single orbit, only the parameter α affects interpolations.
The fourth subscript indicates at what latitude the interpolated points are interpolated
to. The latitudes used are 0, 1, 2, 5 and 40 degrees north. Most simulations used the
proper latitude locations at 0◦.

S2.3 Blocking Type and Interpolation Number Simulation

We compared B, HB and R blocking styles for the first tier composite likelihood using
1 and 10 interpolated observations for each blocking style. For each of the simulations in
this section, we used the true model for interpolation and interpolated to the 0◦ latitude.
The blocks in B were used as the Yi to generate the interpolated points for each of the
estimating equations in this section.

With these six I-likelihoods, we performed 1000 independent simulations, calculated
the root mean square error (RMSE) of the estimates compared to the true values and
found 95% coverage probabilities using the square roots of the diagonals of G−1 in Section
2.4 as standard errors and a normal approximation. The RMSE comparisons are in
Table S2.1. The coverage proportions are in Table S2.2. To further examine standard
error calibration, we also compare standard errors to the sample standard deviations
of the estimates obtained in these simulations in Table S2.3. Bias of the estimations is
considered using density plots of the estimates using the B10,0,0, HB10,0,0 and R10,0,0

estimating equations. The plot of these density estimates is in Figure S2.1.

Simulation RMSE

Estimating Equation
Parameter B1,0,0 B10,0,0 HB1,0,0 HB10,0,0 R1,0,0 R10,0,0

Spatial Range 1.40 1.37 1.39 1.47 1.54 1.59
Temporal Range 172.84 5.37 17.15 3.62 6.82 6.55
SD 5.82 5.76 5.87 6.10 6.09 6.18
Drift 11.13 1.93 1.50 1.40 2.55 2.33

Table S2.1: RMSE of estimates found using simulations of 1000 independent realizations of
data on the circle × time.
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The RMSE calculations in Table S2.1 show an increasing number of interpolated
observations at the second tier of the I-likelihood adds significantly to the B and HB
type estimating equations, especially in the estimation of the temporal range parameter.
For the B estimating equations, this is to be expected since unlike the HB estimating
equations, the first tier composite likelihoods of the B type estimating equations do not
contain any temporal information. Interestingly, the changes in efficiency in estimating
the temporal range from HB1,0,0 to HB10,0,0 show further that significant efficiency
gains can be made by using a more informative second tier even when g1 does not clearly
ignore either spatial or temporal relationships. Comparing the remaining parameters for
HB1,0,0 to HB10,0,0, we do not see these efficiency gains.

The R estimating equations show no improvement when using additional interpo-
lated points for g2. The random blocks formed for the R type I-likelihoods naturally
contain large scale spatial and temporal relationships; hence, addition of g2 which is
meant to include large scale relationships does not significantly increase efficiency. Table
S2.1 shows that the R·,0,0 estimating equations are moderately efficient at estimating all
parameters but are less efficient than the other two methods when using 10 interpolated
points per orbit, especially HB10,0,0.

95% Confidence Interval Coverage Proportion

Estimating Equation
Parameter B1,0,0 B10,0,0 HB1,0,0 HB10,0,0 R1,0,0 R10,0,0

Spatial Range 0.891 0.879 0.883 0.871 0.863 0.881
Temporal Range 0.744 0.926 0.918 0.899 0.922 0.928
SD 0.907 0.893 0.898 0.884 0.903 0.905
Drift 0.425 0.877 0.916 0.898 0.780 0.800

Table S2.2: 95% coverage proportions on simulations of 1000 independent realizations of data
on the ring × time.

The coverage proportion calculations in Table S2.2 indicate standard errors may
possibly be too small; however, considering the density plots in Figure S2.1, it is also
possible that our simulation is not quite large enough to properly trust the asymptotic
normality assumptions entering the coverage proportion calculations. We compared the
average standard error calculations to the sample standard deviations of the estimates by
computing their ratios. Results are in Table S2.3. Here, we see standard errors become a
better measure of the standard deviation when more interpolated locations are added to
base composite likelihoods B and HB. Improvement is not seen using the R composite
likelihood. In contrast to the coverage proportions in Table S2.2, standard errors for
B10,0,0, and especially HB10,0,0, appear to be slightly larger than the true standard
deviation. We therefore attribute much of the low coverage proportions in Table S2.2 to
a non-normal distribution of θ̂ for the data sets of size 2,500 used in these simulations.

To explore whether or not approximate normality of θ̂ may better apply for larger
data sets, we performed estimations on 400 independent simulations using a B10,0,0 I-
likelihood with 100 orbits or 10,000 observations total. The coverage proportions for
these 400 simulations were 0.935, 0.925, 0.94 and 0.94 for the spatial range, temporal
range, standard deviation, and drift parameters, respectively, and the corresponding
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Average Standard Error / Standard Deviation of Estimates

Estimating Equation
Parameter B1,0,0 B10,0,0 HB1,0,0 HB10,0,0 R1,0,0 R10,0,0

Spatial Range 1.23 1.14 1.15 1.07 1.10 1.11
Temporal Range 0.42 0.92 0.29 1.09 0.98 1.10
SD 1.23 1.14 1.14 1.08 1.10 1.01
Drift 0.84 0.96 0.94 1.02 0.93 0.86

Table S2.3: Comparison of standard error calculations to the sample standard deviation of the
estimates from 1000 independent simulations.

ratios of the standard errors to the standard deviations of the estimates were 1.11, 1.13
1.12 and 0.99. These calculations show standard errors may be slightly large, but the
better coverage of 95% confidence intervals indicate this θ̂ may be close to normally
distributed when using larger data sets.

Overall G−1 appears to contain estimating efficiency information, and the square
roots of its diagonals may be treated as reasonably close estimates of the component
standard deviations of θ̂. From Figure S2.1, we also see that there is no clear bias in the
estimation of parameters using these I-likelihoods.
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Figure S2.1: Density plots of the estimates obtained from 1000 simulations. Each of the
estimating equations uses 10 interpolated values at 0◦ latitude for the second tier calculation.
Vertical lines indicate the true value of the parameter being estimated. The bold line corresponds
to B10,0,0; the light solid line is HB10,0,0; and the dashed line is R10,0,0.

S2.4 Interpolation Using an Incorrect Model

We investigated how sensitive estimations are when interpolations are made using an
incorrect model. From Table S2.1, the I-likelihood appears to be most affected by the
second tier when using the B type I-likelihoods. Therefore, we compared the estimations
from the B10,0,0 estimating equations to those using this flawed interpolation strategy.
The estimating equations compared in this section are B10,0,0 and B10,1,0. In these
estimating equations, the interpolation models are different, but the locations are the
same. We consider the consequences of poorly chosen interpolation locations in Section
S2.5. The coverage proportions and RMSE of these incorrectly interpolated estimating
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equations are in Table S2.4. The B10,0,0 columns are the same as the B10,0,0 columns in
Tables S2.1 and S2.2.

Simulation Results Comparing I-likelihood Estimations Using
Correct and Incorrect Models for Interpolation Step

RMSE Coverage Proportion
Parameter B10,0,0 B10,1,0 B10,0,0 B10,1,0

Spatial Range 1.37 1.37 0.879 0.879
Temporal Range 5.37 5.35 0.926 0.922
SD 5.76 5.77 0.893 0.897
Drift 1.93 1.93 0.877 0.877

Table S2.4: RMSE and coverage proportion comparisons on 1000 simulations and estimations
when the interpolation step in the I-likelihood is made using an incorrect model. The simulation
realizations are the same between both the B10,0,0 and B10,1,0 estimating equations.

There is strong agreement between the two estimation methods B10,0,0 and B10,1,0

in Table S2.4, indicating that estimations carried out using interpolation methods that
are not perfect will be robust to this imperfection as long as the interpolation locations
are close to the actual observation locations.

S2.5 Interpolating Outside the Domain of the Data

We considered how I-likelihood performance is affected by use of interpolation locations
outside the domain of the actual observations. Until now, the interpolation locations
have been at the 0◦ N latitude. Here we considered interpolations at 1◦ N, 2◦ N and
5◦ N latitudes. We compared the B10,0,0 estimations given in Section S2.3 to B10,0,1,
B10,0,2 and B10,0,5. The most informative comparisons are the density plots of the
estimates arising from 1000 estimation simulations using these estimating equations.
The density plots are in Figure S2.2. The bold line corresponds to the estimates from
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Figure S2.2: Density plots comparing estimating equations when interpolations are made out-
side the cloud of points formed by the actual observations. The thick line corresponds to the
B10,0,0 estimating equation. The thin solid line corresponds to the B10,0,1 estimating equation.
The dashed line is B10,0,2 and the dotted line is B10,0,5. Note the same data set realizations
were used for each estimating equation.
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the B10,0,0 estimating equation. For both the standard deviation and spatial range
parameters, we see little deviation from the bold line. In contrast, the temporal range
and the drift parameters exhibit slightly higher deviations. In both the temporal range
and the drift cases, the deviation gets worse as the interpolations move farther from 0◦

latitude; moreover, bias appears to arise but not to a great degree. Despite interpolating
points to locations outside of the domain of the observations, the I-likelihood estimator
exhibits robustness to these poor interpolation locations. To test this in the extreme case,
we performed 1000 estimations using a B10,0,40 estimating equation. Here, bias was
a substantial problem for the temporal range and drift parameters, but the standard
deviation and spatial range parameters appeared to still be estimated reasonably. A
density plot of these estimations is in Figure S2.3.
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Figure S2.3: Density plots comparing distribution of estimates on 1000 simulations using the
B10,0,0 estimating equation (the thick line) and the B10,0,40 estimating equation (the thin line).

Figure S2.3 indicates using interpolation locations very far from the domain of the
actual observations will lead to substantial bias in an I-likelihood estimation. Though
it seems quite unreasonable for a practitioner to put interpolated points so far from the
true observations, it shows that bias can result if the interpolated points have a severely
different distribution than they are assumed to have in the I-likelihood calculation.

More generally, bias will likely be worst when the interpolated observations have a
significantly different distribution than is assumed in the I-likelihood calculations. To
guard against this type of bias, comparison of the distribution of the interpolated points
as linear combinations of the actual observations to the distribution of these points as
pseudo-observations should be performed. One such comparison is in Section S7.

S3 Ozone Data Plots

We give plots of subsets of the data used in the application in Section 3. Figure S3.4
shows a plot of the first two consecutive days of ozone data. Note the data are plotted
by longitude only, but the different latitudes present in the data can be seen in this
plot. Multiple latitudes can be seen in the vertical thicknesses of certain parts of the
red or black points. At a given longitude, a thicker red or black stripe roughly indicates
a greater degree of latitudinal variability in the one degree latitude band in the data.
In Figure S3.4, we see loosely how drift of the ozone process appears in the data. The
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points from December 28 are close to an eastward rotation of the points from December
27. To avoid breaking up orbits occurring on either side of the International Date Line
(IDL), we simply extend these orbits on the right side of the Figure S3.4; hence, some
observations occur at longitudes larger than 180◦ E. Figure S3.5 gives a close up view of
data from December 28 at longitudes west of 140◦ W without this extension. In Figure
S3.5 orbital structure and the discontinuities in the observations made near the IDL are
clearer.
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Figure S3.4: Two days of the ozone data considered in the application in Section 3. The plot
is of ozone collected between the 38.5◦ N and 39.5◦ N latitudes. Orbits of data that cross the
IDL are extended on the right side of this figure (giving some observational longitudes larger
than 180◦ E) to maintain continuity. This data is collected by the OMI on December 27, 2006
and December 28, 2006.

Figure S3.5 shows both the ozone variation that occurs across orbits and across
days. Though all observations are collected in the same calendar day defined in the
OMI OMDOAO3G product, the observations in orbit 15 are collected nearly 24 hours
apart from the observations in orbit 29; hence, there is a clear difference in ozone levels
between observations in these orbits despite being close in space. The time difference
between orbits 28 and 29 is also apparent in this plot since there appears to be a lesser
difference between observations in these orbits at roughly the same spatial locations.
The multiple latitudes in the data can be seen more clearly in this plot as local vertical
variation, indicating ozone changes across latitudes.
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Figure S3.5: A close up view of the data from December 28 at latitudes west of 140◦ W
longitude. Separate orbits of data are given different colors.

S4 The Model

This section provides more details and intuition about the covariance model in (3.1). We
start with two independent Gaussian spatio-temporal Matérn processes in R4, denoted
as Z1 and Z2, and we restrict these processes to the sphere×time. We apply a rotational
transformation to both processes to create the drift component and apply a differential
transformation described in Jun and Stein (2007) to Z1 to create spatial anisotropies ori-
ented in the same direction at different longitudes. Adding these transformed processes
together along with a nugget process gives the model in the paper.

For a given spatio-temporal lag, h, the covariance model for either Z1 or Z2 is given
by

Cov(h) = hκKκ(h)

where Kκ(h) is a modified Bessel function of the second kind (Olver et al. (2010)),
and κ controls the smoothness or mean square differentiability of the resulting Gaussian
random field. The process Z1 has smoothness κ = ν + 1 and Z2 has smoothness κ = ν.

We define squared distance, h2, between two points observed at specific latitudes
(L1,L2), longitudes (l1, l2) and times (t1, t2), given respectively by Z1(L1, l1, t1) and
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Z1(L2, l2, t2) or Z2(L1, l1, t1) and Z2(L2, l2, t2) as follows:

h2(Z1(L1, l1, t1), Z1(L2, l2, t2)) =
chord(L1, L2, l1, l2)2

α2
+

(t1 − t2)2

β2
(S4.1)

where the chord function gives the chordal distance between the two points on a sphere
described by the two sets of latitude and longitude coordinates. Equivalently this is the
R3 euclidean distance between these points in 3-space. The parameters α and β are the
spatial and temporal range parameters, respectively.

The drift component is constructed through a rotation of the process on the sphere
about earth’s rotational axis. We consider drift only along longitudes because it is easily
detected in the small latitudinal band of data being analyzed. To input the drift into
both Z1 and Z2, we generate new longitude values for each observational point based on
the time the observation was recorded. Let l0 represent the original longitudinal value.
The adjusted longitudinal value that enters into (S4.1) is given by

lω = l0 −
ω

24
t.

Thus for positive ω, we have eastward drift, and for negative ω, we have westward drift.
Scaling ω by 1/24 produces an interpretation of ω as the number of degrees longitude of
rotation observed per day. Drift of ozone on the globe has been considered in a similar
manner by Stein, Chen, and Anitescu (2013).

Using both modified processes, Z1(L, lω, t) and Z2(L, lω, t) we generate a new pro-
cess, Y , from which the model covariance function is derived. Repeating (4.1) this
process takes the following form:

Y (L, l, t|α, β, φ, λ, ω, σ, η, ν) = φ

(
sin(λ)

∂

∂L
+ cos(λ)

∂

∂l

)
Z1(L, lω, t)

+ σZ2(L, lω, t) + ηW (L, l, t) (S4.2)

where ηW (L, l, t) is the nugget effect. The parameters φ and λ control the spatial
anisotropy of Y . A closed form expression for the covariance function of Y can be
obtained (see Jun and Stein (2007)).

S5 The Blocking and Interpolation Step for the I-
likelihood

We determined blocks for the application in Section 3 by assigning each orbit of data to a
separate block. The Aura satellite makes about 14.5 orbits per day, and thus crosses the
39◦N latitude on the sunlit side of the Earth 14-15 times per day. For a single latitudinal
band of data, the orbits individually are computationally manageable with an average
size of 506 observations. The average time difference between orbits is 99 minutes.

The spatial and temporal locations we interpolated to were determined by the av-
erage longitudinal shift and average temporal shift of observations from one orbit to the
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Subset of OMI Observation Locations
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Figure S5.6: Plot of interpolated locations with observation locations. The locations
interpolated to are restricted to each data block and are spread out within each block.
An offset by block is applied to the y-axis to avoid overlap of points in different orbits.

next, and we interpolated to 39◦ N latitude. With this interpolation strategy and us-
ing the interpolated points as pseudo-observations, Block-Toeplitz (and Toeplitz block)
structure of the covariance matrix of the interpolated points results. Figure S5.6 gives a
visual of this interpolation strategy. The interpolated locations are evenly spaced within
a block and in a more subjective sense, they may be seen to represent longitudinal
variations at about a 3◦ resolution.

To generate the interpolated values within a block, we first fit a model to 10 days
worth of data using a form of the I-likelihood. The model was a simplified version of
(S4.2): we fixed ν = 0.5, ω = 0, and φ = λ = 0 and estimated the remaining parameters.
For this preliminary estimation note that interpolated points, X̂, did not yet exist; hence,
the interpolation step to form g2 was made at each iteration of the numerical optimizer
to match the parameter value being considered. The parameter estimates and resulting
model obtained were then used to calculate each X̂i(Yi) for i = 1, . . . , 436 via kriging.
These interpolated values were used for each of the full 30-day I-likelihood estimations.

S6 Optimization

The optimizations are carried out in MATLAB using the fminunc function and its trust
region minimizer. Analytic gradients are calculated for each parameter except for the
smoothness parameter ν. We use finite differences to obtain the gradient of g with respect
to ν. The optimization strategy for estimating equations (B, I), (C,N) and (C, I) is a
three stage process. First, starting values for the full 30 day estimation are obtained
through an estimation on 2 days of data. Second, preliminary estimates are given by
fixing the spatial range parameter, α, at the 2-day optimum values and optimizing the
other parameters on 30 days of data. Third, final estimates are obtained by letting all
parameters vary using 30 days of data, starting at the preliminary estimates. Preliminary
estimates seemed unreasonable for (B,S); therefore, the full estimates for this estimating
equation are obtained from an optimization across all parameters starting at the 2-day
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optimum values. Optimizing (B,N) follows the same strategy as (B,S), except here the
temporal range, β, and the drift parameter, ω, are fixed.

The Block-Toeplitz structure for the second tier is utilized in both the (B, I) and
(C, I) estimating equations. Akaike (1973) describes an O(n2) algorithm, similar to the
Durbin-Levinson algorithm to calculate a solve and to obtain the log-determinant for
Block-Toeplitz matrices. In the application, we adapt a solver written in MATLAB by
Pepper (2007). Comparing (B, I) to (B,S) in Table 3.1, we show this solver produces
memory savings, however, this comparison also shows there are no savings produced in
terms of function computing times. Though the algorithm given by Pepper (2007) has
complexity O(n2), we attribute the faster function evaluations of (B,S) to the overhead
produced by using a function written in MATLAB and to the extremely well optimized
matrix calculation implementations in MATLAB. For larger Block-Toeplitz matrices, we
expect the Block-Toeplitz solver in (B, I) to outperform the unstructured solve used in
(B,S).

To save time in finding the (C, S) estimates, optimization of this estimating equa-
tion is started at the parameter estimates for (C, I). Hence, fewer function evaluations
are used to find the estimates using (C, S). The discrepancy between the memory use
figures for (C, S) and (B,S) can be explained by different second tier function evaluation
algorithms. The equation (B,S) uses a more memory intensive algorithm so that the
Isotropic SD parameter, σ, can be found analytically given the other parameters. This
algorithm was also used in the (B, I) estimating equations; hence, the memory savings
made using Block-Toeplitz structure at the second tier comparing the (B, I) and (B,S)
are still valid.

S7 Evaluation of the Standard Errors in Table 3.1
And a Kullback-Leibler Divergence Comparison

The assessments of the estimating equations in Table 3.1 are valid provided the stated
standard errors are approximately correct. Two issues need to be considered: the non-
zero expectation of the gradient of the I-likelihood and the validity of the shortcut in
calculating G−1 proposed in Section 2.4. Though the I-likelihood is not an unbiased
estimating equation, following the results of the simulation study in Section S2, its bias
should be quite small when interpolations are performed within the domain of the actual
observed data and when the number of interpolated points is small compared to the
number of observations. The interpolation steps for all estimating equations used in
Section 3 satisfy these criteria; hence we believe bias to be quite small in the application.
As further evidence of small bias using the I-likelihood estimating equations in Table
3.1, we see agreement among the estimates in Table 3.1 that have been estimated using
both the I-likelihood and the corresponding unbiased composite likelihoods.

In calculating G−1, as mentioned in Section 2.4 and Section S1, using the shortcut
of substituting ΣX̂(θ) and cross-covariance ΣY X̂(θ) in for AΣ(θ)AT and Σ(θ)AT respec-
tively may produce standard errors that are too small. To consider this problem, we
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fit the model using (B, I) to one day of data to obtain θ̂1 and Σ(1)(θ̂1) and X̂(1). The
subscript (1) indicates these values correspond to the single day data set. We calculated
the standard errors of θ̂1 with and without these substitutions. The standard errors are
given in Table S7.5. Column SE corresponds to the (S1.3) type calculation, and column
SE Approx. corresponds to (S1.4). The difference between these two sets of standard

Standard Error Comparisons on 1 Day (B, I) Estimation
Parameter Estimate SE SE Approx. Percent Difference
Spatial Range α 4.19 12.06 12.10 0.3%
Temporal Range β 146.68 370.01 371.29 0.3%
Isotropic SD σ 27.27 21.04 21.09 0.2%
Anisotropic SD φ 17.34 63.71 63.90 0.3%
Anisotropy Angle λ 0.099 0.080 0.080 0.003%
Nugget SD η 2.470 0.342 0.343 0.4%
Drift term ω 11.46 9.82 10.02 2.0%
Smoothness ν 0.591 0.229 0.230 0.4%

Table S7.5: Standard error comparisons

errors was extremely small. All pairs of standard errors except those for ω̂1 differed by
less than 0.5% (in comparison to the non-substitution standard errors). The standard
errors on ω̂1 differed by 2.0%. Applying this type of small difference to Table 3.1, we
see that the conclusions involving the efficiency of the I-likelihood methods still hold.
As a curiosity, the standard errors calculated using this substitution are larger than
those calculated not using the substitution. This indicates the standard errors on the
I-likelihood estimates in Table 3.1 may be slightly conservative. This point is echoed in
the simulation results of Section S2, but more work would be needed before one could
say this pattern holds more generally.

A point of secondary interest is the estimate λ̂ = 0.099 on 1 day of data. This
estimate conflicts with the estimates of λ given in Table 3.1. We fit the model to
multiple single days of data, and find the estimate of λ changes much more than the
standard error 0.080 indicates. We therefore attribute the conflicting estimates of λ to
non-stationarities across time in the ozone process that will not be explicitly captured
in a multiple-day estimation without use of a more complex model.

As a final overall approximation evaluation, we considered the Kullback-Leibler
divergence of a Gaussian random vector that uses ΣX̂(1)

(θ̂) as a covariance matrix to

one that uses the more accurate covariance matrix, A(1)Σ(1)(θ̂)AT(1). Using the 1 day

estimates, θ̂1 with ν̂1 = 0.59, we found the Kullback-Leibler divergence between these
two Gaussian processes to be 0.47 on 7,103 observations. By comparison, if we fit a
model fixing ν2 = 0.5 (an exponential model) to the same data to obtain θ̂2, the Kullback-
Leibler divergence between Gaussian processes with covariance matrices A(1)Σ(1)(θ̂1)AT(1)
and A(1)Σ(1)(θ̂2)AT(1) was 1.97. The approximation using covariance matrix ΣX̂(θ̂) is
therefore a better approximation to the true process than is an exponential covariance
process, an often used approximation in many spatial models and a rather small deviation
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from ν̂1 = 0.59.
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