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S1 Simulation Studies

In this section, we use simulation studies to illustrate the performance of the proposed
SRR, in comparison with three competing methods: K-SVD (Aharon, Elad, and Bruck-
stein (2006)), FastICA with spatial concatenation (Hyvärinen and Oja (2000)), and
GIFT for group spatial ICA (Calhoun et al. (2001b)). We compare the methods from
the following four aspects; (i) estimation of model rank, (ii) identification of frequencies
of interest, (iii) estimation of frequency bases and spatial maps, and (iv) detection of
group difference.

S1.1 Simulation Setup

We assume that there are two groups (e.g., disease and control groups), with fifty subjects
in each group, indexed by s = 1, . . . , 50 and g = 1, 2. For subject s of group g, we simulate
the 200× 400 image data Zs

g according to

Zs
g = As

gS
s
g + Es

g, (S1.1)

where the temporal matrix As
g is 200 × 5 containing five time courses across 200 time

points and the spatial matrix Ss
g is 5 × 400 with five 20 × 20 two-dimensional spatial

maps. See Figure 1 for a graphical illustration. We consider two scenarios of signal-to-
noise ratio (SNR) as described below, and repeat the simulation 50 times under each
scenario.

Simulating As
g. For subject s of group g, the ith time course (i = 1, . . . , 5) is

generated as follows:

as,g
ti = τs,gi1 cos(2πwit) + τs,gi2 sin(2πwit) for time t = 1, . . . , 200,
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Figure 1: Exemplary time courses of simulation studies: power spectra and spatial maps.
Components 1-5 are ordered from top to bottom.

where as,g
ti is the (t, i)th entry of As

g in (S1.1), τs,g11 , . . . , τ
s,g
52 are i.i.d. N(0, 1), and the

frequency parameters are (w1, . . . , w5) = (0.02, 0.05, 0.07, 0.03, 0.06). The random τ ’s
enable subject-specific amplitude and phase for the time courses. The frequencies are
chosen within the range of (0.009, 0.08), that is widely used in a band-pass filter for
preprocessing resting-state fMRI data (Biswal (1995)). As an example, five time courses
corresponding to one subject along with the corresponding power spectra are shown in
the first two columns of Figure 1.

Simulating Ss
g. The last two columns of Figure 1 depict the five 20-by-20 spatial

maps for two groups, respectively. We code the activated regions as 1 (colored as black)
and the non-activated regions as 0 (colored as white). We comment that: for group
1, the first four spatial maps remain the same across all 50 subjects, while for the fifth
spatial map, we randomly select 6% of the entries as activated for each subject; for group
2, a similar subject-to-subject variation is introduced to the fourth spatial map, with
the other four spatial maps shared by all 50 subjects in the group. For each subject, we
then vectorize the five 20-by-20 image maps into the 5 × 400 spatial map matrix Ss

g in
(S1.1).

Simulating Es
g. We then simulate the noise terms Es

g under two scenarios of SNR:
SNR=1 or 4. SNR is defined as the ratio of σS to σN , where σS is the standard deviation
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(SD) of the true signal, computed according to Allen et al. (2012), and σN is the SD of
the noise. We then generate the noise terms from a zero-mean normal distribution with
the SD being σN = σS/SNR.

S1.2 Competing Methods

We now describe how the four competing methods are implemented. Note that our SRR
is performed in the frequency domain, while the other three methods, K-SVD/FastICA/GIFT,
are carried out in the time domain.

For SRR, we first convert the simulated data matrices Zs
g into the frequency domain,

and compute the scaled periodogram (Shumway and Stoffer (2011)). To focus on low
frequency fluctuations, we extract the power spectra corresponding to the frequency
range of (0.009, 0.08), which results in the 29× 400 data matrices, Ys

g, as in (2.1). SRR

is then applied to Ys
g to obtain the estimates Û and M̂s

g.

To apply K-SVD and FastICA, we first concatenate Zs
g along the spatial direction

to obtain the concatenated matrix Z. Both methods can decompose Z into a common

temporal signal matrix Â and a concatenated spatial map matrix M̂. We can then

compute the power spectra matrix Û from the estimate Â, and divide M̂ into the

subject-specific spatial maps M̂s
g.

Finally, GIFT is applied on the temporally concatenated matrix to obtain subject-
specific temporal signal matrices and a common spatial map. Through the built-in back-

reconstruction step, GIFT also provides subject-specific spatial maps M̂s
g. The estimated

temporal signal matrices Âs
g are transformed to the frequency domain in order to derive

Ûs
g.

For all the methods, we match and sort the resulting components using the correla-
tions between true and estimated power spectra. Below we only report the results under
SNR=4 because similar performances are observed when SNR=1.

S1.3 Results when the model rank is estimated

Performance of Estimating Model Rank. We first assess the performance of our
data-driven BICR statistic (2.18) for estimating the model rank. For comparison, we
consider the minimum description length (MDL) criterion implemented in GIFT (Li,
Adali, and Calhoun (2007)). Both K-SVD and FastICA do not have the capability for
estimating model rank.

Table 1 reports the estimated ranks, along with standard errors in parenthesis,
under SNR=∞, 1, and 4. SNR=∞ corresponds to the noise-less cases, i.e. setting
Es

g = 0 in (S1.1) and no subject-specific activation in the fifth spatial map for group 1
and the fourth spatial map for group 2 in Figure 1. In all the 50 simulation replications,
BICR and MDL consistently choose the rank as 6 and 3, respectively. MDL for GIFT
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Table 1: Performance of model rank estimation.
SNR=∞ SNR=1 SNR=4

True Rank 5 5 5
SRR (BICR) 5 6 (0) 6 (0)
GIFT (MDL) 1 3 (0) 3 (0)

underestimates the model rank under all SNRs. Our BICR works quite well, only slightly
overestimating the rank for noisy data with no variability. Unshown results suggest that
the additional component obtained by SRR is the overall average.

Influence of Misspecifying Model Rank. First, we compare the reconstructed
images for each group by calculating the correlations between the true images and the
corresponding estimates. Figure 2 compares the boxplots of such correlations given by
SRR and GIFT for each group, respectively. SRR shows much higher correlations than
those by GIFT for both groups with less variability. As described in Section S1.1, there
are five frequencies of interest: 0.02, 0.05, 0.07, 0.03, and 0.06 (in order of the tempo-
ral components). We next compare the spatial maps corresponding to each frequency
of interest. For each simulation replication, we first compute the average of the recon-
structed images within each group, and then extract the resulting average spatial map
corresponding to each of the five frequencies, which are further averaged over all repli-
cations. Figure 3 compares the true spatial maps with the estimates from SRR and
GIFT for the five frequencies of interest from top to bottom. The results suggest that
SRR gives clear spatial maps that are close to the true image maps, whereas GIFT only
performs well when there is no group difference (at frequency 0.02, first row).

S1.4 Results using the True Model Rank

From now on, we assume that the true model rank 5 is known. We apply all methods
to estimate the rank-5 model, and compare the performance of estimation from various
perspectives.

Figure 2: Correlation between reconstructed and true images when the model rank is
estimated.
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Figure 3: Spatial maps at frequencies of interest when the model rank is esti-
mated (left panels: Group1, right panels: Group2, from top to bottom: f =
0.02, 0.05, 0.07, 0.03, 0.06)

Identification of Frequencies of Interest. We first evaluate how well the four
methods can detect the five frequencies of interest. Figure 4 displays the average power
spectra matrices as images in gray scale, along with the truth. The y-axis highlights the
five frequencies of interest from top to bottom, while the x-axis indexes the five extracted
frequency components, i.e. the columns in Û. As one can see, SRR performs the best.
Note that the 4th and 5th components are mixed, which makes sense as the frequencies
0.03 and 0.06 are aliasing. K-SVD fails to detect the first component (f = 0.02) and also
shows some noise on the other components. GIFT and FastICA perform comparably
well, but many components are confounded with each other.

Accuracy of Estimating Frequency Bases and Spatial Maps. The first
panel of Figure 5 compares the boxplots of correlations between the true power spectra

Figure 4: Average power spectra matrices.



S6 MIHYE AHN, HAIPENG SHEN, WEILI LIN AND HONGTU ZHU

Figure 5: Power spectra and spatial maps: correlation between estimates and truth.

matrix U and the estimate Û obtained from each method. SRR performs the best, with
the correlations ranging from 0.9 to 1.0. FastICA gives very variable results with the
lowest median correlation value. K-SVD yields the second smallest correlations with
large variation. GIFT gives quite stable performance, but the median correlation is only
around 0.8. Note that GIFT does not estimate common temporal factors, hence we
instead compute the correlation between the true power spectra and Ûs

g for all subjects,
which explains its small variability.

The middle and right panels of Figure 5 compare the boxplots of the correlation

between the true spatial maps and the corresponding estimates M̂g for each group g,
respectively. K-SVD and FastICA are inferior to SRR and GIFT in terms of variation
and accuracy. SRR outperforms GIFT, although both methods have small variability.

Figure 6 compares each component of the spatial maps. For each method, the

displayed M̂g’s are averaged over all replications. Again, SRR is the winner, although
there is some slight confounding between the last two components, due to the aliasing
of the corresponding frequencies (0.03 and 0.06). For most of the components, K-SVD
fails to identify the signals in both groups. The results of FastICA show some noise.
GIFT shows weak signals and some noise, especially in the second and fifth components
in group 2.

Testing Group Difference Finally, we conduct hypothesis testing for group dif-

ference based on the estimated spatial maps M̂s
g, according to Model (2.4). We adjust

the entry-wise p-values using the Bonferroni correction for multiple comparisons, before
computing the average over all replications. Figure 7 shows the true spatial group differ-
ence maps, along with the maps of − log10(p-value) for GIFT and SRR. Note that the
p-value maps are thresholded at α = .0001. Both K-SVD and FastICA yield very large
p-values for all of five components, which means no significant difference between two
groups, so we omit their p-value maps here.

According to the first row of Figure 7, there is no group difference in the first
component, while the other components show some differences between two groups. The
p-values maps in the 2nd and 3rd rows suggest that SRR performs much better than
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GIFT, and correctly detects the spatial regions in which activation is different between
two groups.

S2 Proof of Equations (2.10), (2.12), and (2.13)

Minimizing (2.11) is equivalent to minimizing

Lij = ‖ki,j − m̂iuji‖2 + λi|uji| for i = 1, . . . , q and j = 1, . . . , T.

When λi = 0, we have the OLS estimate of uji, given by ûOLS
ji = < ki,j , m̂i >/‖m̂i‖22.

It then follows that

Lij = ‖ki,j‖22 − 2ûOLS
ji ‖m̂i‖22uji + ‖m̂i‖22u2ji + λi|uji|.

Taking derivative with respect to uji, we have −2ûOLS
ji ‖m̂i‖22+2‖m̂i‖22uji+λisgn(uji) =

0. When ûOLS
ji > 0, we have uji ≥ 0. Also, when ûOLS

ji ≤ 0, we have uji ≤ 0. Thus, it
follows that

uji = ûOLS
ji − λisgn(uji)

2‖m̂i‖22
.

The minimizer of (2.11) is achieved at ũji = sgn(ûOLS
ji )(|ûOLS

ji | − λi/2‖m̂i‖22)+ for i =
1, . . . , q and j = 1, . . . , T .

Equation (2.10) is a special case of Equation (2.13) when i = 1.
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Figure 6: Group-level spatial maps. Components 1-5 are ordered from top to bottom.

Figure 7: Testing group difference: true difference maps and the − log10(p-value) maps
of SRR and GIFT.
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Figure 8: BICR curve for rank determination.

Figure 9: Heat maps of the estimated U matrices. Left: Û before penalization, Right:
Ũ after penalization. The red square shows the final estimate of the U matrix of rank
14 determined by BICR.
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Figure 10: Pairwise comparison among three groups. Top: TDC vs ADHD combined
subtype, Middle: TDC vs ADHD inattentive subtype, Bottom: ADHD combined vs
inattentive subtypes. (scale=− log10(p-value))
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Figure 11: Boxplots of ũim̃
g,s
ij when the jth ROI shows significant group differences at

the ith frequency component. We present the ith frequency component on the x-axis
of each plot. The horizontal line is drawn at zero. Small triangles are added to show

the (i, j)th component of ŨM̃g for each group g. (Red=TDC, Green=ADHD combined,
Blue=ADHD inattentive)


