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S1 Suppenmentary Material for Computational De-
tails

In this section, we provide the technical details of the proof about our main asymptotic
theorems, and the computational details about the proposed BEL method, including
the the MCMC algorithm we used to draw the posterior chain, the prior choices, the
proposal distribution, and the staring values in the MCMC chain.

S1.1 Proof of Theorem 1 and Corollary 2

In this section, we provide the proof of our main results Theorem 1 and Corollary 2 in
Section 3.

Proof of Theorem 1

As in Yang and He (2012), we have the following quadratic expansion on the log of
the empirical likelihood:
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for ||β(τ, sl)− β0(τ, sl)|| = O(n
−1/2
l ), where β̂(sl) is the MELE of β0(sl) for station sl,

and J (l) is defined in Section 3. The expression in (S1.1) is equivalent to
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In the prior p0(β̃), the prior mode is β̃p,0 = βp,0 ⊗ 1KL. Assuming that
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Combining (S1.3) and (S1.2), we have
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,

where Jn = Jp,0 + JEL, β̃post = J−1n (Jp,0β̃p,0 + JELβ̃EL), Rn = op(L).

Proof of Corollary 2

We will first show (i) in which n||V ar(β̃|D)− J−1n || = op(1). Denote γ̃ = J
1/2
n (β̃ −

β̃post). Following (3.1), we have
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2
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Note that
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The second term goes to 0 as n→∞. The first item can be sufficiently small for a small
δ and large n. It follows that E(γ̃|D) = op(1) and similarly, V ar(γ̃|D) = I + ∆(D) for
∆(D) = op(1).

Noting that β̃ = β̃post + J
−1/2
n γ̃ and β̃post is a constant given D, we have

V ar(β̃|D) = J−1/2n V ar(γ̃)J−1/2n = J−1n +J−1/2n ∆(D)J−1/2n with ||∆D|| = op(1), (S1.4)

which leads to n||V ar(β̃|D)− J−1n || = op(1).

To prove (ii), we will first show that ||β̃BEL − β̃post|| = op(n−1/2), and then

Avar(β̃post) = J−1n − J−1n Jp,0J
−1
n .



Bayesian Empirical Likelihood for Quantile Regression with Spatially Correlated Data S3

By γ̃ = J
1/2
n (β̃− β̃post), we have β̃BEL = β̃post +J

−1/2
n E(γ̃|D). Because E(γ̃|D) =

op(1), we have ||β̃BEL − β̃post|| = op(n−1/2).

Now we note that

β̃post = J−1n (Jp,0β̃p,0 + JELβ̃EL) = J−1n Jp,0β̃p,0 + (I − J−1n Jp,0)β̃EL,

we have asymptotically

Avar(β̃post) = J−1n JELJ
−1
n = J−1n − J−1n Jp,0J

−1
n .

Therefore, we have (ii), that is, V ar(β̃BEL) = J−1n − J−1n Jp,0J
−1
n + op(n−1).

S1.2 The Block Metroplis-Hasting Algorithm

As in Yang and He (2012), we can use the Metroplis-Hasting algorithm to facilitate
the Bayesian computation. The convergence of the Metroplis-Hasting algorithm given
the data follows from the standard results in Gilks et al. (1996). Considering the large
dimension of parameters involved in the joint modeling of multiple locations, we use the
block Methoplis-Hasting algorithm proposed in Chib and Greenberg (1995) to update
β(sl) seperately at each l. Let

β(s−l) = {β(sl′), l
′ 6= l}.

Using a normal distribution as the proposal distribution, the probability of moving from
β(s1) to β∗(s1) is
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)
p
(
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) , 1};

and for 2 ≤ l ≤ L,
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×
∏K

d=2 gd,l(Ω
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, 1
}
.

In both the simulation study and the real data example, we took the same strategy as
in Section 2 of Yang and He (2012) to adjust the intercept parameter estimates of the
BEL.

S1.3 Computation Details in the Simulation Study

In this section, we provide the computation details for the simulation study in Section
4.
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Table 1: The table gives the conditional standard deviations of the multivariate normal
priors used in the simulation study for BEL. The row with rowname s1 in the left table
(Stations) provides the standard deviation (100) in the normal prior for each parameter
in β(τ1, s1),respectively; The other rows provide the conditional standard deviation of
each parameter in β(0.9, si) given β(0.9, s1), respectively, for i = 2, .., 5. The right table
(Quantiles) provides the conditional standard deviation of each parameter in β(0.95, si)
given β(0.9, si), respectively, for i = 1, ..., 5.

Stations Quantiles
a bx bz a bx bz

s1 100 100 100 100 0.63 0.52
s2 0.72 0.60 0.50 100 0.43 0.45
s3 0.78 0.53 0.48 100 0.60 0.59
s4 0.69 0.47 0.58 100 0.45 0.47
s5 0.85 0.72 0.47 100 0.54 0.55

For BEL at τ = 0.9, 0.95, the priors are chosen based on the posterior chains ob-
tained for several randomly generated data sets. The MCMC chain is of length 100, 000
including a burning period 40, 000 at τ1 = 0.9, τ2 = 0.95 jointly, with starting values as
the usual quantile regression estimates. The MCMC chain uses normal priors with mean
zero and standard deviation 100 on each parameter, respectively. We run the MCMC
chain on just three random data sets, to save computation time in the simulation. Then
we calculate the conditional standard deviations using the covariance matrix estimated
from the MCMC chain. The average of these conditional standard deviations across the
three data sets for each parameter, respectively, are used as the priors in the BEL for
the simulation, as listed in Table 1.

For each simulated data sets, we run a MCMC chain starting from the usual quantile
regression estimates, with a total length of 120, 000 containing a burning period of length
40000. To determine the variances of the proposal distributions, we adopt the strategy of
running a preliminary chain first and then a primary chain (second run) initiated from the
parameter vale that maximizes the posterior in the preliminary chain. We use a common
convenient value 0.3 as the proposal standard deviations for all the parameters in the
preliminary run, and update the proposal standard deviations for the second chain. The
latter are calculated by multiply the sample standard deviation of the draws from the
preliminary chain by a “shrinkage factor”, which is 1.4 multiplied by the corresponding
acceptance rate for each site. We also control the acceptance rate between 0.1 and 0.3,
i.e., if the acceptance rate is below 0.1, we treat it as 0.1; if the acceptance rate is
above 0.3, we treat it as 0.3. In general, we use a larger proposal standard deviation
in the preliminary run than in the second run. The average acceptance rates of the
Metroplis-Hasting algorithm in our simulation is 52%.

In the simulation study of BEL at τ = 0.25, 0.5, 0.75, we consider the following
priors with the reference site (s1) chosen as the site whose site index is the median,
and τ1 = 0.5. We assume normal priors with mean zero and standard deviation 100 on
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Table 2: The table presents the proposal standard deviations used in the preliminary
run for the simulation study. The same proposal distributions are used at τ = 0.9, 0.95.

a bx bz
s1 0.4 0.4 0.4

si : i > 1 0.3 0.3 0.3

a(0.5, s1), bx(0.5, s1), and bz(0.5, s1). Given a(0.5, s1), bx(0.5, s1), and bz(0.5, s1), the
prior across stations assumes

a(0.5, sl)|a(0.5, s1) ∼ N(0, exp(−0.01/||sl − s1||)),

bx(0.5, sl)|bx(0.5, s1) ∼ N(0, exp(−0.05/||sl − s1||)),
and bz(0.5, sl)|bz(0.5, s1) ∼ N(0, exp(−0.01/||sl − s1||)).

The prior across quantiles assumes that

a(τ, sl)|a(0.5, sl) ∼ N(a(0.5, sl), 1002),

bx(τ, sl)|bx(0.5, sl) ∼ N(bx(0.5, sl), 0.3
2),

for τ = 0.25, 0.75;

and bz(0.25, sl)|bz(0.5, sl) ∼ N(bz(0.5, sl), 0.3
2), bz(0.75, sl)|bz(0.5, sl) ∼ N(bz(0.5, sl), 0.6

2).

In both simulation studies, the ASQR used the same priors as in Reich et al. (2011).

S2 Computational Details in the Real Data Example

To give an example of how to construct informative priors using external data informa-
tion, e.g., neighboring stations, we constructed the priors using a MCMC chain on data
from Joliet and Park Forest, which are in the south of the five other stations. Among
the remaining five stations, we chose the Midway station as the reference station s1 and
let β(τd, si) = (a(τd, si), b1(τd, si), b2(τd, si), b3(τd, si)), for d = 1, 2 and i = 1, ..., 5.

For the MCMC chain on two stations, Park Forest (as i = 6) and Joliet (as i = 7),
we use normal priors with mean zero and standard deviation 100 on each parameter.
We use the posterior chain on the two stations, Park Forest and Joilet, to update the
prior variances, and use them for the primary analysis of the first five stations. Table
3 contains the prior standard deviations to be used. We note that no shrinking priors
are used for the intercept parameters and for the coefficients of τ1 = 0.9 at the reference
station Midway (as i = 1), but the shrinking priors across stations and across quantile
levels are being used.

The MCMC chain used in the primary analysis is of a total length 100, 000 with a
burning period of 5000. The starting values are the usual quantile regression estimates for
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Table 3: The table gives the conditional standard deviations of the multivariate normal
priors used in BEL for the real data example; the first row in the left columns (Stations)
provides the standard deviations of each parameter in β(τ1, s1); the second row provides
the conditional standard deviation of each parameter in β(τ1, si) given β(τ1, s1) for i =
2, .., 5. The right columns (Quantiles) provides the conditional standard deviation of
each parameter in β(τ2, si) given β(τ1, si) for i = 1, ..., 5.

BEL Stations (si|s1) Quantiles (τ2|τ1)
a b1 b2 b3 a b1 b2 b3

s1 100 100 100 100 100 0.161 0.082 0.111
si(i = 2, .., 5) 0.031 0.047 0.024 0.038 100 0.161 0.082 0.111

Table 4: The table gives the conditional standard deviations of the multivariate normal
proposal distribution used in BEL for the real data example; the first row in the left
columns (Stations) provides the standard deviations of each parameter in β(τ1, s1); the
second row provides the conditional standard deviation of each parameter in β(τ1, si)
given β(τ1, s1) for l = 2, .., 5. The right columns (Quantiles) provides the conditional
standard deviation of each parameter in β(τ2, si) given β(τ1, si) for l = 1, ..., 5.

BEL Stations (si|s1) Quantiles (τ2|τ1)
a b1 b2 b3 a b1 b2 b3

s1 0.010 0.007 0.007 0.009 0.001 0.007 0.007 0.009
s2 0.015 0.010 0.010 0.012 0.015 0.010 0.010 0.012
s3 0.015 0.010 0.010 0.012 0.015 0.010 0.010 0.012
s4 0.020 0.013 0.010 0.015 0.020 0.013 0.010 0.015
s5 0.015 0.010 0.010 0.012 0.015 0.010 0.010 0.012

each site separately. The proposal distribution is normal distribution with the conditional
standard deviations given in Table 4. The ASQR uses the same prior as in Reich et al.
(2011), with a joint estimation of τ = 0.95, 0.99. The station index used for ASQR are
(0.21, 0.5), (0.3, 0.5), (0.61, 0.5), (0.79, 0.5), (0.9, 0.5).

The quantile regression coefficients obtained from the BEL, RQ and ASQR for each
site at τ = 0.95, 0.99 are listed in Table 5. The coefficients are calculated using the
self-standarized covariates ( transformed to be of mean 0 and variance 1), instead of
the data in its original scale. Compared to the RQ estimates, we can see the BEL
estimates of each coefficient at different quantile levels/sites are always shrinked towards
some common parameters, and the magnitudes of the shrinkage are distinct for different
coefficients. The corresponding standard errors of the coefficients estimates for BEL and
RQ are listed in Table 6, which suggests the BEL estimates are more efficient.
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Table 5: The table provides the coefficients estimates of the BEL and RQ for each site
at τ = 0.95, 0.99, respectively.

BEL τ = 0.95 τ = 0.99
a b1 b2 b3 a b1 b2 b3

s1 0.999 0.331 0.037 0.393 1.626 0.352 0.115 0.495
s2 0.945 0.319 0.045 0.390 1.554 0.359 0.135 0.563
s3 1.003 0.336 0.032 0.377 1.601 0.419 0.087 0.466
s4 1.026 0.325 0.024 0.374 1.579 0.370 0.060 0.483
s5 1.004 0.359 0.031 0.389 1.532 0.383 0.116 0.514
RQ τ = 0.95 τ = 0.99

a b1 b2 b3 a b1 b2 b3
s1 0.989 0.329 0.054 0.364 1.667 0.412 0.190 0.535
s2 0.916 0.312 0.085 0.294 1.563 0.266 0.140 0.606
s3 1.022 0.360 0.024 0.401 1.602 0.406 0.084 0.620
s4 1.042 0.306 -0.011 0.433 1.585 0.376 0.056 0.489
s5 1.014 0.397 0.021 0.386 1.536 0.414 0.151 0.492

ASQR τ = 0.95 τ = 0.99
a b1 b2 b3 a b1 b2 b3

s1 0.989 0.344 0.084 0.298 1.276 0.366 0.115 0.355
s2 0.978 0.338 0.091 0.304 1.263 0.358 0.125 0.362
s3 1.040 0.361 0.067 0.343 1.327 0.383 0.095 0.406
s4 1.057 0.353 0.025 0.358 1.347 0.373 0.047 0.421
s5 1.033 0.385 0.055 0.358 1.323 0.411 0.082 0.424

Table 6: The table provides the standard errors of the coefficients estimates given in
Tabel 5.

BEL τ = 0.95 τ = 0.99
a b1 b2 b3 a b1 b2 b3

s1 0.023 0.024 0.020 0.035 0.064 0.043 0.054 0.050
s2 0.035 0.029 0.024 0.048 0.091 0.094 0.060 0.079
s3 0.025 0.036 0.025 0.038 0.101 0.078 0.070 0.087
s4 0.029 0.031 0.026 0.041 0.061 0.061 0.051 0.060
s5 0.029 0.032 0.025 0.041 0.057 0.040 0.062 0.086
RQ τ = 0.95 τ = 0.99

a b1 b2 b3 a b1 b2 b3
s1 0.038 0.041 0.031 0.054 0.080 0.057 0.121 0.149
s2 0.026 0.028 0.032 0.045 0.120 0.116 0.118 0.201
s3 0.038 0.059 0.034 0.050 0.084 0.082 0.120 0.145
s4 0.049 0.065 0.061 0.078 0.073 0.064 0.117 0.140
s5 0.042 0.045 0.051 0.074 1.536 0.414 0.151 0.492
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