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This online supplement provides a brief overview of the model formulation, full-
conditional distributions for the MCMC sampling algorithm, model choices, sensitivity
analysis, and simulation study in support of Yang et al. (2014). As described in the
paper, modeling choices and hyperparameter specification are application specific.

S1 Model Formulation

Recall that the data model for the functional response variables is given by

Ỹ = H(y)WAΨ + Eỹ,

where Eỹ ∼ Nnr,nd
(0,Σy,nr ,Σy,nd

) with Σy,nr = diag(τ y,nr ) and Σy,nd
= diag(τ y,nd

).
Note, we also specify inverse gamma priors for τy,r, r = 1, . . . , nr, and τy,d, d =
1, . . . , nd, where {κy,r}, {νy,r}, {κy,d}, and {νy,d} are hyperparameters. That is, τy,r ∼
IG(κy,r, νy,r), r = 1, . . . , nr, and τy,d ∼ IG(κy,d, νy,d), d = 1, . . . , nd, with associated
hyperparameters {κy,r}, {νy,r}, {κy,d}, and {νy,d}.

Additionally, recall that the data model for the functional image covariates is spec-
ified as

X̃j = H(x)WFjΦ + Ex̃j
, j = 1, . . . , J,

where Ex̃j
∼ Nnr,nu

(0,Σxj ,nr
,Σxj ,nu

), with Σxj ,nr
= diag(τxj ,nr

) and Σxj ,nu
= diag(τxj ,nu

).
Further, we specify inverse gamma priors for τxj ,r, r = 1, . . . , nr, and τxj ,u, u = 1, . . . , nu,
where {κxj ,r}, {νxj ,r}, {κxj ,u}, and {νxj ,u} are hyperparameters. That is, τxj ,r ∼
IG(κxj ,r, νxj ,r), r = 1, . . . , nr, and τxj ,u ∼ IG(κxj ,u, νxj ,d), u = 1, . . . , nu, with asso-
ciated hyperparameters {κxj ,r}, {νxj ,r}, {κxj ,u}, and {νxj ,u}.

Next, recall the data model of covariate matrix is given by,

Z̃ = H(z)WQ + Ez̃,
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where Ez̃ ∼ Nnr,np
(0,Σz,nr

,Σz,np
), with Σz,nr

= diag(τ z,nr
) and Σz,np

= diag(τ z,np
).

Further, for r = 1, . . . , nr and p = 1, . . . , np, we specify τz,r ∼ IG(κz,r, νz,r) and τz,p ∼
IG(κz,p, νz,p), where {κz,r}, {νz,r}, {κz,p}, and {νz,p} are associated hyperparameters.

Lastly, we recall the process model is given by

A =

J∑
j=1

FjBj + QH + G,

where G ∼ Nn`,ni
(0,Σn`

,Σni
). We specify matrix normal priors for Fj and Q, given

by Fj ∼ Nn`,nkj
(µFj

,ΣFj ,n`
,ΣFj ,nkj

) and Q ∼ Nn`,np(µQ,ΣQ,n`
,ΣQ,np). More-

over, we also specify Wishart priors for various precision matrices. That is, Σ−1
Fj ,n`

∼
Wn`

(VFj ,n`
, vFj ,n`

), Σ−1
Fj ,nkj

∼ Wnkj
(VFj ,nkj

, vFj ,nkj
), Σ−1

Q,n`
∼ Wn`

(VQ,n`
, vQ,n`

),

and Σ−1
Q,np

∼ Wnp(VQ,np , vQ,np), where VFj ,n`
, VFj ,nkj

, VQ,n`
and VQ,np are given

scale matrices and vFj ,n`
, vFj ,nkj

, vQ,n`
, and vQ,np are associated values for the de-

grees of freedom. For notational simplicity, we denote χ = [F1, . . . ,FJ ,Q] and B =
[B′1, . . . ,B

′
J ,H

′]′ and represent the above equation as follows

A = χB + G.

Typically, B is specified as a matrix normal distribution; i.e., B ∼ NP,ni(0,ΣB,Σni),
where ΣB = τBIP with τB an associated hyperparameter and IP a P -dimensional
identity matrix. Again, we specify Wishart priors for various precision matrices; i.e.,
Σ−1

n`
∼ Wn`

(VG,n`
, vG,n`

) and Σ−1
ni
∼ Wni

(VG,ni
, vG,ni

), where VG,n`
and VG,ni

are
given scale matrices and vG,n`

and vG,ni are associated values for the degrees of freedom.

S2 MCMC: Full Conditional Distributions

The implementation of the Bayesian hierarchical model given here is fairly straightfor-
ward given that many of the modeling choices concerning rank reductions and prior
distribution forms were selected to facilitate computation in a “big data” environment.
The associated Gibbs sampling algorithm full conditional distributions is presented here.
Implementation is application specific, with decisions having to be made concerning the
measurement uncertainty of the responses and covariates, choice of basis functions for
the various decompositions, choice of basis function truncation, and the specification
of specific forms for the prior means and variance/covariance matrices, as well as the
associated hyperparameters.

The full conditional distribution of B is a matrix variate normal distribution given
by

B|· ∼ NP,ni
(KM,K,Σni

),

with

K =
(
χ′Σ−1

n`
χ + Σ−1

B

)−1
,

M = χ′Σ−1
n`

A,
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where ΣB is a diagonal matrix with elements equal to τB.

The full conditional distribution of Σ−1
n`

is

Σ−1
n`
|· ∼Wn`

({
(A− χB)Σ−1

ni
(A− χB)′ + V−1

G,n`

}−1

, ni + vG,n`

)
.

The full conditional distribution of Σ−1
ni

is

Σ−1
ni
|· ∼Wni

({
(A− χB)′Σ−1

n`
(A− χB) + B′Σ−1

B B + V−1
G,ni

}−1

, n` + P + vG,ni

)
.

The full conditional distribution of vec(A) is given by

vec(A)|· ∼MVN(KM,K),

with

K =
{

(Ini
⊗H(y)W)′(Σy,ni

⊗Σy,nr
)−1(Ini

⊗H(y)W) + (Σni
⊗Σn`

)−1
}−1

,

M = (Ini
⊗H(y)W)′(Σy,ni

⊗Σy,nr
)−1vec(ỸΨ) + (Σni

⊗Σn`
)−1vec(χB),

where ỸΨ = ỸΨ′ and Σy,ni
= ΨΣy,nd

Ψ′.

For r = 1, . . . , nr, the full conditional distribution of the element τy,r of diag(τ y,nr ) is

τy,r|· ∼ IG

(
nd + 2κy,r

2
,

tr(Σ−1
y,nd

(Ỹ −H(y)WAΨ)′Or(Ỹ −H(y)WA)Ψ) + 2νy,r

2

)
,

where κy,r and νy,r are hyperparameters and Or is an nr × nr matrix with the rth
diagonal element equal to one and the rest of the elements equal to zero.

For d = 1, . . . , nd, the full conditional distribution of the element τy,d of diag(τ y,nd
) is

τy,d|· ∼ IG

(
nr + 2κy,d

2
,

tr(Σ−1
y,nr

(Ỹ −H(y)WAΨ)Od(Ỹ −H(y)WA)Ψ)′ + 2νy,d

2

)
,

where κy,d and νy,d are hyperparameters and Od is an nd × nd matrix with the dth
diagonal element equal to one and the rest of the elements equal to zero.

The full conditional distribution of vec(Fj) is

vec(Fj)|· ∼MVN(KM,K),
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with

K =
{

L′(Σxj ,nkj
⊗Σxj ,nr )−1L + (B′j ⊗ In`

)′(Σni ⊗Σn`
)−1(B′j ⊗ In`

) + (ΣFj ,nkj
⊗ΣFj ,n`

)−1
}−1

,

M = L′(Σxj ,nkj
⊗Σxj ,nr )−1vec(X̃j,Φ) + (B′j ⊗ In`

)′(Σni ⊗Σn`
)−1vec(A− χ−jB−j)

+ (ΣFj ,nkj
⊗ΣFj ,n`

)−1vec(µFj
),

L = (Inkj
⊗H(x)W),

where X̃j,Φ = X̃jΦ
′, Σxj ,nkj

= ΦΣxj ,nu
Φ′, and χ−j and B−j exclude the components

corresponding to X̃j and µFj
, ΣFj ,nkj

, and ΣFj ,n`
are hyperparameters.

For r = 1, . . . , nr, the full conditional distribution of the element τxj ,r of diag(τxj ,nr
) is

τxj ,r|· ∼ IG

nkj
+ 2κxj ,r

2
,

tr(Σ−1
xj ,nkj

(X̃j,Φ −H(x)WFj)
′Or(X̃j,Φ −H(x)WFj) + 2νxj ,r

2

 ,

where κxj ,r and νxj ,r are hyperparameters and Or is an nr × nr matrix with the rth
diagonal element equal to one and the rest of the elements equal to zero.

For u = 1, . . . , nu, the full conditional distribution of the element τx,u of diag(τ y,nu
) is

τy,u|· ∼ IG

(
nr + 2κx,u

2
,

tr(Σ−1
x,nr

(X̃−H(x)WFjΦ)Ou(X̃−H(x)WFj)Φ)′ + 2νx,u

2

)
,

where κx,u and νx,u are hyperparameters and Ou is an nu × nu matrix with the uth
diagonal element equal to one and the rest of the elements equal to zero.

The full conditional distribution of vec(Q) is given by

vec(Q)|· ∼MVN(KM,K),

with

K =
{
L′(Σz,np ⊗Σz,nr )−1L + (H′ ⊗ In`

)′(Σni ⊗Σn`
)−1(H′ ⊗ In`

) + (ΣQ,np ⊗ΣQ,n`
)−1
}−1

,

M = L′(Σz,np ⊗Σz,nr )−1vec(Z̃) + (H′ ⊗ In`
)′(Σni ⊗Σn`

)−1vec(A− χ−QB−Q)

+ (ΣQ,np ⊗ΣQ,n`
)−1vec(µQ),

L = (Inp ⊗H(z)W),

where χ−Q and B−Q exclude the components corresponding to Q̃ and µQ, ΣQ,np , and
ΣQ,n`

are associated hyperparameters.
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For r = 1, . . . , nr, the full conditional distribution of the element τz,r of diag(τ z,nr
) is

given by

τz,r|· ∼ IG

(
np + 2κz,r

2
,

tr(Σ−1
z,nr

(Z̃−H(z)WQ)′Or(Z̃−H(z)WQ) + 2νz,r

2

)
,

where κz,r and νz,r are hyperparameters and Or is an nr × nr matrix with the rth di-
agonal element equal to one and the rest of the elements equal to zero.

For p = 1, . . . , np, the full conditional of the element τz,p of diag(τ z,np) is

τz,p|· ∼ IG

(
nr + 2κz,p

2
,

tr(Σ−1
z,nr

(Z̃−H(z)WQ)Op(Z̃−H(z)WQ)′ + 2νz,p

2

)
,

where κz,p and νz,p are hyperparameters and Op is an np × np matrix with the pth
diagonal element equal to one and the rest of the elements equal to zero.

The full conditional of Σ−1
Fj ,n`

is given by

Σ−1
Fj ,n`

|· ∼Wn`

({
(Fj − µFj

)Σ−1
Fj ,nkj

(Fj − µFj
)′ + V−1

Fj ,n`

}−1

, nkj + vFj ,n`

)
.

The full conditional of Σ−1
Fj ,nkj

is given by

Σ−1
Fj ,nkj

|· ∼Wnkj

({
(Fj − µFj

)′Σ−1
Fj ,n`

(Fj − µFj
) + V−1

Fj ,nkj

}−1

, n` + vFj ,nkj

)
.

The full conditional of Σ−1
Q,n`

is given by

Σ−1
Q,n`
|· ∼Wn`

({
(Q− µQ)Σ−1

Q,np
(Q− µQ)′ + V−1

Q,n`

}−1

, np + vQ,n`

)
.

The full conditional of Σ−1
Q,np

is given by

Σ−1
Q,np
|· ∼Wnp

({
(Q− µQ)′Σ−1

Q,n`
(Q− µQ) + V−1

Q,np

}−1

, n` + vQ,np

)
.

S3 Model Choices and Sensitivity Analysis

This section describes how the basis function and the specific hyperparameters used
in our application were chosen. Many sensitivity analyses were run to facilitate these
decisions as indicated below.
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S3.1 Choice of Basis Functions

The major model choices in this framework are concerned with the basis functions – both
the form and the number of functions. We chose the Karhunen-Loève decomposition
for the image and ECp depth functions because of their efficiency in representing a
large amount of variation using a relatively small number of functions. This is the
basis for functional principal components analysis, which is common in functional data
analysis (Ramsay and Silverman, 2005), as well as the basis for empirical orthogonal
function (EOF) analysis in spatial and spatio-temporal statistics (see Cressie and Wikle
(2011)). In practice we can calculate eigenvalues and eigenfunctions (i.e., EOFs) from
the symmetric decomposition of the empirical covariance matrix of the ECp profiles as
well as the depth/wavelength VNIR images. In our application, the first 5, 10 and 15
EOFs associated with the image covariates account for approximately 81.1%, 93.8% and
97.2% of the total variation, respectively. Additionally, the first 5, 10 and 15 EOFs of
the ECp depth profiles account for approximately 98.7%, 98.8% and 99.9% of the total
variation, respectively.

Although it is common to use EOFs from the singular value decomposition (SVD)
in spatial statistics applications, it can be important in functional applications to con-
sider the robustness of these estimates, since they are empirically derived (e.g., Bali et al.
(2011)). Thus, we did a sensitivity analysis whereby we considered the SVD-based EOFs
as well as those easily obtained from robust methods in the literature. Specifically, for
ECp depth profiles, we used the “fast covariance estimation” (FACE) procedure and a
two-step estimation procedure (SVDS) (Xiao et al. (2013b)). Both methods were im-
plemented via bivariate P-splines, sometimes called a sandwich smoother (Xiao et al.
(2013a)). In essence, FACE smooths both the observed curves and the corresponding
sample covariance function to regularize the eigenvector estimates, whereas SVDS uses
singular value decomposition to decompose the data matrix and then smooths the cor-
responding eigenvectors. These analyses (not shown) suggested very little difference in
the first 10 eigenvectors obtained via basic SVD (EOFs), FACE, and SVDS.

For the image covariates, the FACE procedure is problematic since it is designed
for one-dimensional functions, and the images are vectorized, leading to discontinuities
in the vectorized “curve” that are over smoothed by the FACE procedure. Thus, we
replaced this with population value decomposition (PVD) (Crainiceanu et al. (2011)),
which can obtain the associated eigenvectors for the images directly (without vectoriza-
tion). This procedure produces dominant eigenvectors for the image covariates that are
nearly identical to the unregularized SVD (i.e., EOFs) and SVDS procedures. Although
there is very little visual difference between the eigenvector basis functions obtained by
these various procedures, we conducted an analysis to ensure that the spatial predictions
were not sensitive to these choices. In particular, we considered five scenarios: (1) the
basis functions for the image covariates and depth profiles are both EOFs; (2) the basis
functions of image covariates and depth profile are obtained both obtained via SVDS;
(3) the basis functions of image covariates and depth profiles are obtained via PVD and
SVDS, respectively; (4) the basis functions of image covariates and depth profiles are
obtained via SVDS and FACE, respectively; (5) the basis functions of image covariates
and depth profiles are obtained via PVD and FACE, respectively. These results (not
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shown) suggested no discernible difference in the spatial predictions obtained from our
methodology. Consequently, we used the simpler EOF basis functions for the results
presented herein. The number of EOF basis functions used in the analysis is selected
based on sensitivity analysis as described in S3.3.

To predict the entire field for a given depth (including unobserved sites), we used
reduced-rank spatial basis functions to facilitate prediction on large spatial domains.
We considered a discrete kernel convolution approach (e.g., Berry and Ver Hoef (1996);
Higdon (1998)) using bivariate Gaussian kernels. In general, we considered a bivariate
Gaussian kernel with a diagonal covariance matrix σ2

gI2, where I2 is a two-dimensional
identity matrix giving an equal weight to all direction since we had no priori knowledge
that there is anisotropy in the ECp profiles. However, if one has scientific knowledge
supporting an anisotropic spatial dependence, a non-diagonal Gaussian kernel covariate
matrix can be considered. Typically, it is more important to choose the number of
support points (i.e., knots) n` in the discrete kernel convolution approach. We consider
the criteria suggested in Ruppert et al. (2003) for splines,

n` = max{20,min(nr/4, 150)}.

In particular, since nr = 26 in our application, we took n` = 20. Further, we placed
the knots in the domain by using a space filling design (Nychka and Saltzman (1998))
to select knots from a candidate set given by our 26 observed locations as shown in the
paper. We note that other basis functions could be chosen, such as thin-plate splines
(Ruppert et al. (2003, Chapter 13)) or a predictive process (Banerjee et al. (2008)).
Typically, these various methods give similar results when used for spatial prediction. In
the implementation, we standardized both easting and northing coordinates to facilitate
numerical stability. The average distance between knot locations was then about 1.8
scaled units. The choice of the Gaussian kernel width (given by σ2

g) was determined by
sensitivity analysis (as described in S3.3 below).

S3.2 Covariance Matrix Hyperparameters

Data Model Parameters

Consider the specification of the hyperparameters associated with the data model mea-
surement error and truncation covariance matrices. For empirical basis expansions, the
truncation error can be fairly well-identified by prior data analysis given the specific
choice of basis functions and the number of components in the expansion, which are ulti-
mately chosen by sensitivity analysis as given below. Further, the measurement/nugget
uncertainty is in some cases well known from knowledge of the instruments used to
collect the data, or by preliminary variogram analysis to identify nugget effects. It is
often reasonable in spatial analyses to assume these data model error processes to be
uncorrelated, especially when factoring in the computational cost associated with the
non-parsimonious alternative, so we assume Σy,nr = diag(τ y,nr ), Σy,nd

= diag(τ y,nd
),

Σx,nr = diag(τx,nr ), Σx,nu = diag(τx,nu), Σz,nr = diag(τ z,nr ) and Σz,np = diag(τ z,np).
Critically, in each of these cases, the matrix normal distribution implies that the error
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Figure 1: Measurement error variances used as prior information in the data analysis
as discussed in the sensitivity analysis. Top panel: ECp measurement error variance
(σ2

y,nd
, measured in milliSiemens per meter squared) as a function of depth; Bottom

panel: VNIR measurement error variance (σ2
x,nu

, measured in nanometers squared) as a
function of wavelength index, u.

covariance for each element of the random matrix arises from the Kronecker product
of two diagonal matrices, so that each variance corresponds to the product of two vari-
ances (e.g., two τ values here). This makes identifiability problematic unless strong prior
information is available.

In our application, we have strong prior information available about instrument
measurement error corresponding to the ECp responses and the VNIR image covariates.
Figure 1 shows the instrument measurement errors for the ECp responses as a function
of depth (denote by σ2

y,nd
), as well as the VNIR measurement errors as a function of

wavelength (u) (denoted by σ2
x,nu

). In both cases, expert opinion from subject matter
experts suggested that these measurement errors are reasonable for the entire horizontal
spatial domain considered in our application. Although this is useful information, we also
have truncation error from the basis expansions so we included a common multiplicative
variance parameter to scale these values; this parameter is assumed to be random and
is estimated in the Bayesian framework. In addition, since the matrix normal diagonal
covariance assumption prevents the estimation of two variance components, we specified
one of the diagonal matrices to be the identity matrix. Specifically, Σy,nr

= Inr
and

Σy,nd
= τy,nd

diag(σ2
y,nd

), where {σ2
y,nd
} are the known measurement error variances

discussed above. Then, τy,nd
was specified to have a conjugate inverse gamma prior;

that is, τy,nd
∼ IG(κy,nd

, νy,nd
). Similarly, Σx,nr = Inr and Σx,nu = τx,nudiag(σ2

x,nu
),

where {σ2
x,nu
} are known measurement error variances described previously. Again,

τx,nu
was specified to have an inverse gamma prior such that τx,nu

∼ IG(κx,nu
, νx,nu

).
Finally, Σz,p = Ip and Σz,nr

= τz,nr
Inr

, respectively where τz,nr
was specified to have

an inverse gamma prior, τz,nr ∼ IG(κz,nr , νx,nr ).

The choice of the hyperparameters associated with the κ = κy,nd
= κx,nu

= κz,nr

and ν = νy,nd
= νx,nu

= νz,nr
parameters were chosen based on a sensitivity analysis.
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Specifically, we considered two combination of hyperparameters for κ and ν: (κ, ν)= (1,1)
and (2.001, 1.001). An inverse-gamma prior with (κ, ν) = (1, 1) is vague and the prior
with (κ, ν) = (2.001, 1.001) has mean one and variance 1000. The posterior distributions
corresponding to these parameters showed very small differences for these two priors,
and therefore we took the most non-informative (i.e., (κ, ν) = (1, 1)) for the analyses
presented here.

We also considered a sensitivity analysis in which we did not make use of the prior
measurement error variance information. That is, we assumed Σy,nr

= Inr
, Σy,nd

=
τy,nd

Ind
, Σx,nr = Inr , Σx,nu = τx,nuInu , Σz,p = Ip and Σz,nr = τz,nrInr , with the

same inverse gamma prior distributions on the τ parameters as described above. These
results (not shown) gave very similar predictive mean fields as when including the known
prior measurement error variances, but not surprisingly, the predictive variances were
less. We feel that the prior information should be used if it is available, and that slightly
larger posterior prediction variances are probably more realistic. Thus, we considered
the model with the prior measurement error variances for the analyses presented here.

Process Model Parameters

Recall that we specified Wishart prior distributions for all of the precision matrices as-
sociated with the random effects in the process model. These require a specification of
hyperparameters associated with the scale matrices and degrees of freedom (e.g., V and
v in our notation, respectively). To increase model flexibility, we specified the degree
of freedom values to equal the dimension of the associated covariance matrices so that
the Wishart distribution is relatively non-informative. For scale matrices, if prior or
subjective knowledge is available, we may indicate a specific structure and values. For
example, if the columns of Fj are composed of EOFs, VFj ,nkj

may be specified as a

diagonal matrix with elements equal to the associated reciprocal eigenvalues. However,
in most cases we may have no such information, and so we generally assume naive spec-
ifications such as VFj ,n`

= τFj ,n`
In`

, VFj ,nkj
= τFj ,nkj

Inkj
, VQ,n`

= τQ,n`
In`

, and

VQ,np = τQ,npInp , where the variance parameter can be chosen via sensitivity analy-
sis. In our application, we conducted a sensitivity analysis for specification of diagonal
structures for the hyperparameter scale matrices compared to this simpler constant for-
mulation for precision matrices associated with coefficients from empirical (EOF) basis
functions. These results (not shown) gave essentially indistinguishable predictions in the
ECp fields, suggesting that the posterior predictions are not sensitive to this hyperpa-
rameter specification. Thus, we utilized the simpler constant structures for the results
presented here.

S3.3 Additional Sensitivity Analysis

We conducted a sensitivity analysis to help select the number of image and depth profile
EOFs, the Gaussian kernel width, and the variance hyperparameters. We consider six-
teen scenarios corresponding to the combination of the number of image EOFs (nk),
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depth profile EOFs (ni), and Gaussian kernel widths (σ2
g): (nk, ni, σ

2
g) = (10, 5, 1),

(10, 5, 1.5), (10, 5, 1.8), (10, 5, 2), (10, 10, 1), (10, 10, 1.5), (10, 10, 1.8), (10, 10, 2), (15, 5, 1),
(15, 5, 1.5), (15, 5, 1.8), (15, 5, 2), (15, 10, 1), (15, 10, 1.5), (15, 10, 1.8), and (15, 10, 2). In
addition, each scenario considered τB = {102, 104, 106}. Recall that when τB becomes
larger, the matrix normal prior of B becomes less informative. Since we have only
one set of image covariates and one spatial covariate (elevation) in this data anal-
ysis application, we let B ≡ {B1,H} and Fj = F1 ≡ F. For simplicity, we as-
sumed τ = τF,n`

= τF,nk
= τQ,n`

= τQ,np
= τG,n`

= τG,ni
and consider a range

τ = {10−5, 10−6, 10−7, 10−8}. The degree of freedom parameters for the Wishart priors
were specified to be equal to the dimension of the associated covariance matrix, to make
the priors as vague as possible. As we had no a priori scientific prior mean for the F
and Q matrices, we specified µF and µQ to be zero matrices.

Model performance was evaluated by MSPE (as described in S4) averaged across
depths and spatial locations, with posterior predictive distributions of fitted ECp curves
obtained from an MCMC analysis based on 15,000 iterations and 5,000 burn-in. Conver-
gence was evaluated through visual inspection of the trace plots of the sample chains for
a wide-array of randomly selected parameters, with no evidence of lack of convergence
detected.

Table 1 shows that, in general, the model is not sensitive to the covariance ma-
trix hyperparameters (τB, τ) since the MSPEs show little variation within a given sce-
nario. Regarding the EOF truncation and Gaussian kernel width parameters, scenarios
(nk, ni, σ

2
g) = (10, 10, 1) and (nk, ni, σ

2
g) = (15, 10, 1) have the smallest MSPEs. Al-

though the smallest MSE (54.8211) occurs when using scenario (nk, ni, σ
2
g) = (15, 10, 1),

including five extra image EOFs in the model provides only a minimal improvement in
MSPE relative to the (nk, ni, σ

2
g) = (10, 10, 1) case, at the cost of many more parame-

ters. Therefore, we considered the more parsimonious model (i.e., scenario (nk, ni, σ
2
g) =

(10, 10, 1)) for our ECp field predictions.

.

S4 Simulation Study

In order to evaluate the spatial predictive properties of our model, we design a simulation
study to resemble the data analysis presented in the paper. Specifically, the simulation
study mimics the soil science application and uses the bivariate Gaussian kernel matrix,
W, the first 10 empirical orthogonal functions (EOFs) of the image covariates, Φ, and
the first 5 EOFs from the depth profiles, Ψ. In the soil science application, 10 image
EOFs and 5 depth EOFs correspond to 93.8% and 98.7% of the variation explained,
respectively, whereas in the simulation these constitute the full basis set. Using these
basis functions, we simulate a response matrix, Ỹ, an image covariate matrix, X̃, and
a spatial covariate vector, Z̃, on a grid of size 1680, where 1680 is the same grid size
used to predict the ECp field in our data analysis. Additionally, at a given location si
(i = 1, . . . , 1680), the dimensions of Y(si), X(si), and Z(si) are 37 × 1, 74037 × 1 =
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Table 1: The sensitivity analysis for MSPEs of the model predictions of ECp profiles,
including image covariates and elevation. Note that nk and ni denote the number of
image and depth EOFs, respectively, and σ2

g refers to the Gaussian kernel width.

(nk, ni, σ
2
g)

(τB, τ) (10,5,1) (10,5,1.5) (10,5,1.8) (10,5,2) (10,10,1) (10,10,1.5) (10,10,1.8) (10,10,2)
(102, 10−5) 55.8850 57.4957 58.0602 58.2970 54.8231 56.4096 56.9565 57.2095
(102, 10−6) 55.8838 57.4901 58.0620 58.3113 54.8221 56.4046 56.9637 57.2102
(102, 10−7) 55.8817 57.4904 58.0588 58.3077 54.8228 56.4029 56.9657 57.2121
(102, 10−8) 55.8842 57.4885 58.0574 58.3083 54.8260 56.4039 56.9711 57.2158
(104, 10−5) 55.8880 57.4882 58.0571 58.2887 54.8217 56.3967 56.9771 57.1772
(104, 10−6) 55.8864 57.4908 58.0576 58.3080 54.8273 56.4041 56.9656 57.2164
(104, 10−7) 55.8832 57.4925 58.0590 58.3092 54.8234 56.4023 56.9679 57.2156
(104, 10−8) 55.8852 57.4918 58.0573 58.3096 54.8233 56.4042 56.9647 57.2174
(106, 10−5) 55.8865 57.4910 58.0577 58.3107 54.8238 56.3974 56.9716 57.2211
(106, 10−6) 55.8863 57.4908 58.0576 58.3085 54.8232 56.4029 56.9708 57.2155
(106, 10−7) 55.8847 57.4887 58.0604 58.3078 54.8241 56.4080 56.9673 57.2118
(106, 10−8) 55.8848 57.4894 58.0578 58.3091 54.8253 56.4067 56.9657 57.2106

(nk, ni, σ
2
g)

(τB, τ) (15,5,1) (15,5,1.5) (15,5,2) (15,5,2) (15,10,1) (15,10,1.5) (15,10,1.8) (15,10,2)
(102, 10−5) 55.8835 57.4866 58.0602 58.3054 54.8229 56.3987 56.9606 57.2308
(102, 10−6) 55.8832 57.4893 58.0585 58.3108 54.8221 56.4018 56.9662 57.2135
(102, 10−7) 55.8835 57.4887 58.0585 58.3100 54.8240 56.4035 56.9660 57.2133
(102, 10−8) 55.8843 57.4900 58.0594 58.3091 54.8244 56.4063 56.9636 57.2115
(104, 10−5) 55.8823 57.4944 58.0659 58.3124 54.8196 56.4054 56.9674 57.1958
(104, 10−6) 55.8831 57.4883 58.0586 58.3082 54.8256 56.4057 56.9668 57.2125
(104, 10−7) 55.8852 57.4929 58.0586 58.3077 54.8217 56.4049 56.9642 57.2108
(104, 10−8) 55.8848 57.4903 58.0601 58.3071 54.8236 56.4057 56.9666 57.2152
(106, 10−5) 55.8854 57.4940 58.0537 58.3130 54.8211 56.4036 56.9723 57.2036
(106, 10−6) 55.8852 57.4880 58.0596 58.3085 54.8254 56.4041 56.9660 57.2130
(106, 10−7) 55.8833 57.4903 58.0617 58.3092 54.8234 56.4020 56.9673 57.2144
(106, 10−8) 55.8857 57.4899 58.0618 58.3041 54.8244 56.4042 56.9654 57.2108

(37 ∗ 2001)× 1, and 1× 1, respectively, where 37 corresponds to the maximum number
of usable depth segments and 2001 corresponds to the number of wavelengths.

The noisy response matrix Ỹ was generated as Ỹ = Y + Eỹ, where Y denotes the
true response matrix and Eỹ ∼ N1680,37(0, I1680, 10 I37). Now, Y can be represented as
follows Y = WAΨ, where W is a 1680×20 spatial basis composed of bivariate Gaussian
kernels with covariance equal to the identity matrix (i.e., variances equal to one). It is
important to emphasize that the choice of identity covariance in this context reflects an
assumption of isotropy and that the 20 knots are selected using a space filling design
from the 26 observed locations of the ECp response data (see the online supplement for
details). Finally, A corresponds to a low-rank coefficient matrix that is a combination
of F1, B1, Q, H and G; i.e., A = F1B1 + QH + G.

In this simulation, F1 and Q were taken as the estimated values of F̂1 and Q̂ from
the fitted model corresponding to an analysis of the ECp data using one image covariate
and one spatial covariate. For i = 1, 3, 5, 9, we set the rows B1,(i,:) = B̂1,(i,:), otherwise
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row i is set equal to the zero vector. The specific values used were: B1,(1,:) =( -8.2687,
-6.1593, -8.7686, 4.8659, 0.6453); B1,(3,:) = (7.0458, -1.6005, 30.6569, -57.2508, -24.5970);
B1,(5,:) = (19.3338, -34.9112, 62.6131, 9.5348, 17.8897); B1,(9,:) = (-13.1880, -41.6825,

67.7879, 44.5034, 34.3638). Lastly, we specified H′ = Ĥ′ =(-0.9343, 0.0144, 3.0850,
-7.2958, -2.4153) and let G ∼ N20,5(0, I20, I5).

Given F1 = F̂1, we simulated noisy X̃ as X̃ = WF1Φ + Ex̃, where we specify
Ex̃ ∼ N1680,74037(0, I1680, (4 ∗ 10−5)I74037). Similarly, given Q = Q̂, we simulated noisy

Z̃ as Z̃ = WQ + Ez̃, where Ez̃ ∼ N1680,1(0, I1680, 0.04). Accordingly, we simulated 100
noisy datasets.

For each dataset, we considered eight scenarios consisting of various numbers of
sample points (ns) and knots (ks): (ns, ks) = (26,13), (26,26), (52,13), (52,26), (52,39),
(78,13), (78, 26), and (78, 39). For each number of sample points, ns, five sets of observed
locations were randomly generated from the 1680 grid points and, subsequently, knots
were selected using a space filling design. This gave a total of 500 “observed” data sets for
spatial prediction. For each, four combinations of the number of image EOFs and depth
EOFs were considered: (nk, ni) = (5,3), (5,5), (10,3) and (10,5). To construct a spatial
basis given κs, we used bivariate Gaussian kernels with the covariance matrix equal to
σ2
gI, where the value of σ2

g varies according to ks as follows: for ks = 13, σ2
g = {1, 1.5, 2};

for ks = 26, σ2
g = {0.5, 0.6, 0.7}; for ks = 39, σ2

g = {0.3, 0.4, 0.5}. Importantly, σ2
g was

chosen to be the largest value practicable, relative to the scale of the distance between
locations, in order to ensure that the covariance matrix remains positive definite.

To evaluate model performance, we examined the mean squared prediction error

(MSPE) given by MSPE = {1/(ns × 37)}
∑37

j=1

∑ns

i=1

{
Ŷ (si, dj)− Y (si, dj)

}2

, where

Ŷ (si, dj) denotes posterior predicted values of Y (si, dj) at location si and depth dj . Fur-
ther, we fixed the hyperparameters µF = 0, µQ = 0, τB = 104 (ΣB = τBIP ), and speci-

fied the following Wishart distributions: Σ−1
n`
∼Wn`

(10−6I, n`), Σ−1
ni
∼Wni

(10−6I, ni),

Σ−1
F,n`
∼Wn`

(10−6I, n`), Σ−1
F,nk

∼Wnk
(10−6I, nk), Σ−1

Q,n`
∼Wn`

(10−6I, n`), and finally

Σ−1
Q,np

∼ Wnp
(10−6I, np). These hyperparameters were selected to be consistent with

the sensitivity analysis detailed in Section S3.

The MCMC algorithm results were based on 15,000 iterations with a 5,000 iteration
burn-in. Convergence was evaluated through visual inspection of the trace plots of the
sample chains for a wide-array of randomly selected parameters, with no evidence of
lack of convergence detected. For each scenario, Table 2 presents the optimal model
performance based on MSPE from the pool of σ2

g . From Table 2 it can be seen that
there is a reduction in MSPE as the sample size increases, and, for a given sample size,
the MSPE decreases as the number of knots increases. In addition, holding nk fixed and
increasing ni results in reduced MSPE, as does holding ni fixed and increasing nk (note
that ties in the table are resolved by additional significant digits). In summary, this
simulation demonstrates good predictive properties for the models under consideration.
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Table 2: Model performance based on MSPE for the simulation study presented in
Section S4. Here ns and ks denote the number of sample locations and number of knots,
respectively, while, nk and ni denote the number of image and depth EOFs considered,
respectively. For each of the n = 100 generated datasets, the simulation consists of five
sets of observed locations that are randomly generated from the 1680 grid points and,
subsequently, knots are selected using a space filling design.

(nk, ni)
(ns, ks) (5,3) (5,5) (10,3) (10,5)
(26,13) 1837.12 1837.08 1837.14 1837.12
(26,26) 1305.30 1313.25 1349.11 1339.86
(52,13) 1197.26 1197.26 1197.28 1197.27
(52,26) 549.12 549.08 549.13 549.13
(52,39) 524.65 524.55 527.95 528.10
(78,13) 1004.19 1004.19 1004.21 1004.18
(78,26) 364.85 364.85 364.85 364.86
(78,39) 332.58 332.57 332.64 332.65
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