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S1 p < n main results

Throughout this section , let 3" be the true regression parameters vector with A = {j :
B; # 0}, |A] = s,, and B4 the sub-vector and of a vector 3 corresponding to the indices
in A and X 4 the sub-matrix of X with columns corresponding to the set A.

S1.1 The technical conditions
(C1) n — oo, p = pym may vary with n, and p/n — 0.
(C2) There exists a positive constant R such that

Amin (Am)a /\mm(ﬂm)a Amin (nileX)y
Am,am (Am,) ) )\ma:c (Qm)a )\maa: (Tli ! XTX)

where A\pin(B) and Apq.(B) are the smallest and largest eigenvalues of a matrix
B.

(C3) Let p = p, =min{|B;|; j € A}. p//p/n — 00

(C4) max n~" [l |l2 = 0 (where [[z,27 |z = |13 )

0<1/R< <R < o0

(C5) There exists a § such that E(e?j%) <oo,i=1,..,n,j=1,..,m.

(C6) The function Py is concave on [0,00) and differentiable on (0, 00). Furthermore,
PA(0) =0, Pr(6) = Po(~0) and Jim PA(9) < %

(C7) If r,/+/p/n — o0, then Pj(r,) = o(1/\/np).

(C8) If r,, = O(y/p/n), then nl;rrgo( n/ max(p, k,)) P (rn) — oo

(C9) pm,m?/n — 0

(C10) SQIE)E(eijeik)Hé <oo,t=1,...,n, jk=1,...,m.
Js

(C11) If r,/\/(m + p)m/n — oo, then mP, (r,) = O(1).
(C12) If r,, = O(+/(m + p)m/n), then nh_)rr;o vV (m +p)m/nP§(rn) = 0o0.

S1.2 Proof of Theorem 1

part (a) (Consistency)

Fix ¢ > 0 and let M be a positive constant. We will show that if M is sufficiently large,
then

P{ It Q" + MV rulA ) - QB IAR) > 0 21

llull=1
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for n sufficiently large. This suffices to prove the (a).

Let
D(u) B + Vp/nulAn) = Q(B%Am) = J1 + Jo + Js,
where ||u|| = M and J;(u) = —2\/p/neTAXu Jo(u) = (p/n)u? XTAXu and

J3(u) = Zan: [P,\ 187 + «/p/nu] — P\(185 |)} We bound the terms Jy, Jo, and J3
separately. First,

1] < 2¢/p/nnlln”" " AX||||ul] = 2Mny/p/nOy(V/p/1) = Oy(p)-

For Jo(u), we have that Jo(u) > R™2M?p.

Notice that there exist Ny, K; such that for n > N; J; < Kip and Jo > R2M?p .
Therefore, Jo — J; > p(R™2M? — K;). Since M is arbitrary, for large enough M such
that Jo — J; > K'p with probability tending to 1, for some constant K'.

Decompose J3(u) = QnZ [P)\ 187 + v/p/nu|) — P(155]) }—&—271 Z P\(]v/p/nuj;)
JeEA JEAcC
Using the mean value theorem, and conditions (C7) and (C8), one can see that for some
0<tj<l,jed

20 )" [PA(B; + Vo) = PABID] = 2n/p/n Y s PA1B] + 45/ )

JjEA jJEA
< 2ymp|lul[10(1//np) = o(1),
while

20 ) Pa(Ivpo/nul) = 20(p = 5.)0(v/p/n) = 2(p — $)0(/p/n)

jeAe
It follows that P(D(u) > 0) — 1 as n — oo for M large enough.

To show that the global minimum of Q(8|A.,,) satisfies |3 — B%|| = O,(y/p/n),
let B = B* + u, where ||u|| = ©(y/p/n). In this case we have J; = —2eT AXu, Jy =
u'XTAXwu and J3 = 2n Py [PA(18; + ui]) — P(18;D)]. J2 and Jy satisfy (using
Lemma 2, condition (C2) and Cauchy-Schwartz inequality)

Ja

Y

1
nl|w|* Amin <XTAX) > n|ju||*R™?
n
1 T 1 T
il = 2n{ e AX, u ) < 2nf[—e” AX||||ul| = 20,(vrp)||ull

Since \/np < n, J dominates J;. Further, by (C6) the negative part of the penalty term
satisfies: .
QnZPA 1B71) < anP)\(max(W ) < Qns— < 2s.
jEA
From these, it follows that Q(8|A.,)—Q(8"|Am) > 0 as n — oo with probability tending
to 1, implying that the penalized maximum likelihood function is not maximized outside

the ball of radius /p/n. |
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part (b) (Sparsistency)

Let B be a consistent estimator of the true 8%, such that ||,?3' - B%|| < My/p/n. We
will show that for all j such that 37 = 0, the derivative of the penalized likelihood is

maximized at 0, so that Bj = 0. We do it be showing that the sign of the penalized
likelihood is dominated by the sign of the penalty P/’\(Bj), which is the sign of Bj.

consider:

p
%Q(ﬁ) = —2XTAy+2XTAXﬁ+2nZPg(ﬁj)

j=1
p
= —2X"Ae+2X"AX(B—-B) +2n)_ P{(B))
j=1

The derivative by ;, where the true 8* = 0 satisfies:

57 Q8 = —2alAe+ 22T AX(B — B) + 2usign(5)P(5,]) =+ T + I
J

Consider I;. By Lemma 3 (part (2))

1
L] = 2|x] Ae| <2vn xl Ae

sup |—— =0 (\/nkn).
i=1,..p ‘ Vn Y

Consider now I.

L =22 AX(B-8") < 2[XTAX(B- 3%l

< 2n)\ (iXTAX> [|1B — B*|| < 2Rn+/p/n =2R.\/pn

A

Finally, using condition (C8),
Iy = 2nsign(8;) P} (16;1) = sign(8)0(y/max(p, k).

We get that for all 5; such that g7 =0, Bj will be estimated as 0 with probability tending
to 1. |

part (c) (Asymptotic normality)

Let 3 be a sequence of local minima of Q(B|A) satisfying HB — B%|| = Op(y/p/n). The
existence of such 3 is guaranteed by part (a).

Let u € R® be some vector where s = s, . We will show that

1/2

uTBY (B, - 8% B N0,uTGu)
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and if [|[Ay — Q|| — 0, then uT BY 23, — 8%) 3 N(0,u Gu).
Notice that basic calculus implies that on the event {j; B]- #0} = A,
Ba=XEAX ) 'XTAY — n(XTAX )" '1P 4, (S1.1)

where P = P, (8) = (P} (51), .. PL(B,)T-

1/2

Since )\mw(TVﬁ ), )\maw(T_l/Q) = Op(\/ﬁ), we have

1/2

nu’ BY T(XEAX ) 'Pa, nuT BY V2(XEAX L) 'PA = op(1), (S1.2)

where we have made use of (C2), (C4), and (C8).

Now consider

uTBY P(XEAX4) T IXEAY = o BY V28 + T BY A (XTAX 4) XS Ae.

(51.3)
We use the Lindeberg-Feller central limit theorem to show that

VAXEAX )T XA = S w0,

i=1

u!' BY

. ~—1/2 . . . .
with w;, = uTBY / (XEAXA)*XAJ-Amei, converges in distribution to a normal

random variable. Fix ¢ > 0 and let

1/2

Nim = uTBY (X EAX L) X 4 A B A X5 (XEAX 1)1 B .

Then for § = 2,
Bl w?,>c) < {Bw) P w2, > )
< 177_1+5/(2+6) {E (6?2—16i)(2+5)/2}2/(2+6) -

c ln

Since maxi<i<n Nin < R3n\|(X£AXA)_1Y71/2

by (C7), it follows that

ZE(wzz,n; wi2,n > C) S E {E (6?2 161) } Z;ni,n 121?%”771‘,71

1 2/(2+9)
== {E (6?2,161)(2%)/2} uT BB w max 7, — 0
c 1<i<n

Bul[> max; <i<n +||X: X7 || = 0,

Thus, {w; »}1, satisfy the Lindeberg condition and it follows that

1/2

u"BY T (XEAX L) s iAme; S N(0,u" Gu).

Combining this with (S1.1)-(S1.3) proves the theorem. |

S7
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S1.3 Proof of Lemma 1

Part (a) (Rate of covariance matrix estimation under 3)

We have £, = K; + K» + K3, where
1 n
Ky = - = X8 (y; — X, - = ;
1 - ;Zl(yl B") iB") E €€
1 — -
K, = - [i *_B)TXT 4 X,(8" — T}
2 - ;:1 €(8" —B) X +X;(B" — Be;

Ky = > X(8 - B)@ —B)'X].

i=1

We bound ||K;1 — 2,,||F, ||Kz||F, and ||Ks]||F. Since

1 n
— E €€l — %,
n-

i=1

2 2

>c
F

IN

1 n
— E €€l — %,
n <

i=1

F
m n 2
= LS B e —opmp =0m?/m)
€ k=1 [t o ’

it follows that ||K; — X,,||F = Op(y/m?/n). Notice that

IKs|lr < —XQHX B-8B-8)X]|lr=(B-p) ( ZXTX> (B-8")
< (;Z mn?) 1B - 8°I = O(R)O(p/n)
and
Kollr < *leezﬁ BT = 2 Ztr(e e (B-B)XIX,(B-p) "
< szmgxzxi)lﬂnein = AB=BN 5 e
3 2

n

n 1/2 1/2
~ 1 1
< 2||ﬂ—5*||(n2||ei||2) (anHZ) = Op(v/pm/n).
i=1

i=1

The first transition is from the triangle inequality. The one before last is Cauchy-
Schwartz inequality, and the last equality uses the rate of consistency of the 3 estimate
and condition (C4). The result follows from combining the bounds on ||K; — X, ||r, K2
and Kg. [ |
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Part (b) (Consistency)

Assuming that 3, = ,, + O, (w/(m —|—p)m/n> we will show that the estimator of €,
that minimizes Q(€2|3) (where ||8 — 8*|| = O,(y/p/n)) is consistent and sparsistent.

Define U a symmetric matrix of size m, «,, = y/(m + p)m/n, and A,, = «,,U. Let
M be a constant.

P ( inf QR+ A,B) > Q(ma)) —1

Ul p=M

For sufficiently large constant M. This will imply that there is a local minimizer in the
ball of radius M a,, around 2.

Let
QL + AUB) — Q(nlB) = (B (R + AY)) — t2(Zn Qi) + log det(£2,,,)
—logdet(Qn + Ay) + > (Py(|wij + 8i]) — Py (|lwis )
i<j

= tr((Zy — Tn)Ay) + vec(A,)T {/01 g(v, ,)(1 — v)dv} vee(Ay)

+ 3 (Py(Jwij + 8i31) = Py (|wig)
i<y
=Ly + Lo + Ly

Where we used the taylor expansion of logdet(2,, + A,) around €2, with the integral
form of the remainder (see Rothman et al (2008)), and €, = Q,,, +vA,, and g(v,Q,) =
Q' ® Q! Examining the various terms:

L=t (®0-204) < (0 -207®,-5,) u(ala,)”

180 = SullpllAulle = O, (v/m + pim/n) Ofan)

= Op((m+p)m/n)

Y

1
vec(U)” {/ g(v, ) (1 — v)dv} vec(U) M2/201<nir<11/\min (' Q;l)
0 <v<

Y

2 : ) -2
M=/ 201%151311Amm(ﬂv )

vV

M?/2(R+ a,M)"?

and this term is positive, so that

Ly = a2vec(U)T {/01 g(v, Q) (1 — v)dv} vec(U) = O((m + p)m/n).
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Note that in the last inequality we used the fact that Apax(A) = Amin (A1) for a positive
definite matrix A, and Amax(A) < ||A]|F.

Finally, for Ls:
> (Pyllwis +6i51) = Py(lwis)) = D (Py(lwij + 6i5]) — Py(Jwig)))
i<y i<j0i; 20
+ Y (Py(|wis + 8))

1<j,w;;=0

Where the right term satisfies Z (Py(|wij +6i5]) > 0. The left term is bounded by:

1<j,w;;=0
— Y PUlwi+05DI0y1 = —anPi(r/2) > |6yl
1<j,wij 70 i<j,wi; 740
> =t P(1/2) > —may, P(1/2)

Where t,, is the number of non-zero elements in {2 and we used the relation between the
L; and Ly norms. From condition (C11), it follows that Ls, as well as Ly, is dominated
by L2, and It follows that M may be chosen large enough so that the required probability
is close to 1, whenever n is sufficiently large. The result follows. |

Part (C) (Uniform sparsity)

We examine the derivative of Q(2|3) at w;; = 0, and show that it is dominated by
the sign of the penalty term for all such terms. That will imply that the likelihood is
maximized when @;; = 0.

9Q(Q[)

o = 2(6‘@‘ — 045 +P4(|®ij|)81gn(wij))
€]

From part (a), we have that || — ||z = O,(y/(m + p)m/n). Therefore,
m_a_%(&ij —0ij) = O,(\/(m + pym/n). At the same time, since w;; = 0, and ||Q2— Q|| =

Op((m+p)m/n), &;; = Op(v/(m + p)m/n). From condition (C12), the result hold. W

S1.4 Proof of Theorem 2
Preliminaries

First, we note that from Lemma 4, if ||A,, — Q.|| — 0 then BY Y28, — 8%) 1
N(0,G), where ¥ = (X40X 4)~! and B is a sequence defined in Theorem 1.
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Proof of the theorem

At the first stage of Algorithm 1, a regularized estimator, or MLE (if feasible by sample

~(1
size) for B3, namely 5( ) is found under working independence assumption. According to
Theorems 1, under conditions (C1)-(C8), this estimator is \/p/n consistent. Then, an

A ~(1
estimator of €2, namely Q(l) is found by minimizing Q(Q|6( )). According to Lemma 1,
if conditions (C9)-(C12) also hold, this estimator is 1/(m + p)m/n consistent. Next, an

~(2 A A
estimator ﬂ( ) is found be minimizing Q(,6'|Q(l)), and Q(Z) is estimated by minimizing

Q(|8%).

(2
(i) If conditions (C1)-(C8) hold, according to Theorem 1 ﬁ( ) is consistent, sparsistent,
and asymptotically normal.

(ii) If in addition conditions (C9)-(C11) hold, then according to Theorem 1 and Lemma
4, this estimator is consistent, sparsistent, asymptotically normally distributed and

~ (2
efficient. By Lemma 1 Q( ) is consistent and sparsistent. |

S11
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S2 Consistency of the BIC

Before proceeding, note that a penalized estimator of 3 with working/estimated preci-
sion matrix € and with non-zero entries on the set A is given by

~

B = (XTOX )7 'XLQY — n(XE0X )71 P(B,)

S2.1 Proof of Theorem 3
part (a) (fixed precision matrix)

We first show that the probability of selection of any overfitting model (a model with at
least one “false positive” selection) tends to 0. A C A:

Consider
BIC(3,) - BIC(Bs) =+ (Y = XBTACY = XBa) - (¥ = XBo)TALY - X5,)
-ch(s—é)}

the penalized estimator satisﬁes.@A = (XEAXA)_lngY + n(XgAXA)_ng(ﬁA).
Therefore by using the decomposition Y = X484 + € and since

{I—A'2X (XTAX ) 7IXEAY?)
is a projection matrix on the null space of X 4, it is easy to verify that
(Y - X,8)TAY - X8, =
= TAV2{I - AV2X (XEAX )T XTAY2IAY e+ n? Py (B )T (XEAX ) "L PL(B 4)
= (Y = XB4 1) MY = XBj ) +n°PU(B) T (XGAX )7 PL(B4)
Claim: the terms involving the penalty are negligible. Using conditions (C2) and Lemma
5 for bounding the eigenvalues of (n(X4AX ,)™') and (n(XﬁAXA)_l), condition (C7)

to bound the penalty on term belonging to the true model, and condition (C8) for false
positive terms, we get that for the true model:

n*Py, (Ba)" (XAAX,) P, (B.) n|| P, (B)IPA (n(XEAX 1))

IN

IN

Rso,(—=) = oy(1)

while for the overfitted model:
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WP (BT (XTAX ) B (Br) > nllP (Bl PAmn (n(X5AX ;)7

> R 'nO© ( max(;;J@J) =0 ( nmax(p, kn)> .

Therefore, asymptotically, the difference between the BIC’s satisfies:

0(BIC(BL) ~BICB) < (Y~ XBaaun) AY - XB 01
~(Y = XB4 0,) " AY = XBj 1) + bin(s — 8)
Denote the projection of a vector @ on the column space of a matrix A by Pa(x), and

Px (z) the projection on the sparse orthogonal to the column space of A. One can see
that

(Y =XBa ) AY =XB ) = €"AVHI-AYPX (XEAX ) ' XEAV2 1A e
= IPfuay (AP,

(Y = XBanrr)"AY =XBaprr) = € AVHI-AVEX,(XEAX,) ' XEA A e
= IIP[LAWXA] (A o)
= IIP[LAl/zXA] (A 2e)|]” + IIP[XA\A] (A o)

Where XA\A =P+ (X 4), a matrix of rank § — s. Therefore,

[AI/QXA]

(Y - XBA,ML)TA<Y - X/BA,ML) - (Y - XBA,ML)TA(Y - XﬁA,ML)

_ i 1/2 7112
1Pre, @l (52.)
where
”P[XA\A}(AUQG)HQ - GTAUQ{AUZXA\A(XZ{\AAXA\A)_lxz\AAlm}AUQG

-1

_ —1 T A 15T > T

= n eAXA\A<n XA\AAXA\A) XA\AAe
1 -~

< Rn||EX£\AAe||2

Where we used condition (C2) and Lemma 5 for the inequality. According to Lemma 3,
we have the uniform bound:

1
P —||P i AP >k, | =0
(:Iél,)aié - 3” [Al/zXA\A]( ol =
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Therefore, using (S2.1) and (S2.2):

P <sup A” (BIC(BA) - BIC(Z;A)> > o)

AcAS — 8

n A~ ~
< P| sup= ((Y - XﬂA,ML)TA(Y —XBamr)
AcCAS — S

—(Y - XBA,]V[L)TA(Y - XBA,ML) + kn) > 0)

1 1/2
< P | sup - Pryi/2. A% 2>k, | =0
< (,45&5—3” eIk )|l >

The probability of selection of an underfitting model tends to 0 (Here “underfitting”
model is a model with at least one true parameter set as zero, i.e. false negative).
A\/l # : First, as before, we claim that the penalty terms are negligible. It was shown
in the previous part,

n?Py, (B4)" (XAAX )7 P, (Ba) = 0p(1) (52.2)
and therefore could be seen to be dominated by other terms in the BIC. Also:
P} (B)"(XAX )P (B,) > 0. (52.3)

Denote the sub-vector of a vector u corresponding to the indices in a set B by up]. Write
Y =XuBy +e= Xf}mAﬁZ[AmA] + X\ aBhpaa) T € = XaBha + XaaBapaa) T €
(since the 37 for j € A\A is zero). Then:
(Y — XA/@A,ML)TA(Y —XaBamrL) =
=(XaB4 +e— XA5A7ML)TA(XA52 +€—XaB4mrL)
= € Ae+ (B} — ﬁA,ML)TXEAXA(IBZ —Banr) +2(8% — 5A,ML)TX£A€
Similarly:
(XaBapa + XaaBaaa t€— XABA,]WL)TA(XAﬂ:[A] + X4\ aBapana +€— XA/aA,ML)
= €'Ae+ (Bara) — BA,ML)TXEAXA(/BZ[A] —Bi L)
*T T * * 3 T~T *
+'8A[A\A]XA\AAXA\A'6A[A\A] + Q(ﬁA[A] - IGA,ML) XAAXA\AIBA[A\A]
* 2 T~T «T T

F2(B%pa) — Baan) XiAe + 2874 4 X 1€

from the consistency and identifiability assumptions, condition (C2) and lemma 5, the

following hold:
n(By — BA,ML)T(nilngXA)(IBZ - BA,ML) = Op(np/n) = O,(p)
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By Lemma 2 part 2, 2(8% — Ba )" X5 Ae = " AX 4 (X5AX4) ™ X Ae = O, (p).

. *T —1 *
ﬁIéfA (n'BA[A\A] (n XA\AAXA\A)'BA[A\A])

> inf (n]|8% . . i 1IPAmin (n 71X AX .\ ) S2.4
AcA( ||,3A[A\AH\ ( A\A A\A) ( )

> nR2|A\A| _énAi?A,B? = R%A\A|©(max(p, k) (S2.5)
J

We will now show that the “cross product” terms are dominated by the other terms,
uniformly over all models with at least one false negative variable. We first show it for

(ﬁA[A ﬁA ML) X AXA\AIBA[A\A than for 2(/8A A] /BA ML)TX A6+2,3A A\A]XA\AAE

From Lemma 6, 2(52[,4] — BA,ML)TXEAXA\AIBZ[A\A] is dominated by

max (nIBA [A\A] ( 71XA\AAXA\A)IBA [A\A]> (IBA IBA,ML)T(HAXZ;AXA)(IBZ[A] - 5A,ML)> :

From Lemma 7, we have that

* 5 T
Q(ﬂA[A] _ﬁA,ML) xXT Ae+2,6A[A\AXA\AAe<
_1/4 (5AA BA,ML)TXEAXA(/@ZA - ﬁA,ML)
[A] [A]

T~T T *
(ﬁA[A] /BA IWL) X3 AXA\A’BA [A\A] +’3A A\A]XA\AAXA\AﬁA[A\A:]

with probability tending to 1 uniformly over all sets A such that A\A # .

Finally, we use the results on the penalty terms (S2.2) and (S2.3) in combining the above
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results:
~ ~ 1 ~ ~
Sup (BIC(ﬁA) - BIC(ﬁA)) = sup ({(Y - XABAML)TA(Y - XA/@A,ML)
AcA Aca\T

+n2Pi(BA)T(XﬁAXA)*IPA(BA)
~(Y = X184 1) AY = X484 1)
BB (KEAX ) BB + (s - 6) )
< sup (LU0 = XaBaun) ACY = XaBaaar) + (1)
Y = X )TACY - X ) + a4V
1

— n{Op(p) + jrclf;q (k‘n|A\fl| — nﬂzT\A(n—lxz\AAXA\A),BZ\A) }

= 1o, + 14\l b, ~ m0max(r )]}

thus, as n — oo BIC(,@A) - BIC(BA) < 0 uniformly for every underfitted model A. W

part (b) (estimated precision matrix)

Let A be an estimator of 2, based on some initial y/p/n-consistent estimator of 3. Then,

by Lemma 1, we have that ||A — Q||r = O,(y/m(m + p)/n).

Let A = Q be a \/m(m + p)/n-consistent estimator of . We want to show that
with probability tending to 1 the eigenvalues of A are uniformly bounded. It is given

that [|[A — Q||r = [|A]|r = Op(y/m(m + p)/n). Since the operator norm of a matrix
is bounded by its Frobenius norm, we have that A\;(A) = O,(y/m(m + p)/n). Invoking
the result from matrix perturbation theory (Stewart and Sun (1990)): if A is an m x m
squared positive definite matrix and E is a perturbation matrix, then forall k =1,...,m

Ae(A) + A1 (E) > Ae(A + E) > A(A) + A (E). (S2.6)

and take €2 to be the positive definite matrix, and A to be the perturbation matrix. With
probability tending to 1, there exists an N € N so that for all n > N, /m(m + p)/n <
R~'/2. Then, for n > N:

MA) S M) +M(A) = R+0,(v/m(m+p)/n) <R+ R /2 and,
An(A) > An(Q) =M (A) = R—-0,(v/m(m+p)/n)>R*'~R'/2=R""/2

With probability tending to 1. Therefore, the BIC is valid and consistent for model
selection with the consistent estimator A. |
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S3 Large p main results

S3.1 Modified technical conditions

(C1’) Let p > n at a sub-exponential rate, so that log(p)/n — 0. The number of outcomes
is still smaller than the sample size m < n. In addition, the true model size s = | A|
satisfies s < n and — 0.

log( )

(C2’) The eigenvalues of the positive definite matrices XX, LX%X 4 satisfy

’'n
_ 1 1 1 1
0< R < Amin <5X£XA> » Amin (;XXT> < Amax (EX£XA> » Amax (EXXT> < R< o0

B;

(C3") Identifiability condition: min ————= — o0
3:;70/log(p)/n
(C7’) If r, is such that lim L — 0o, then ny/log(p)/nPs(rn) = o(1)
n /log(p)/n
(C8’) If r, is such that lim ST — <¢, then Pj(r,)/m — oo

n /log(p)/n

(C10’) The errors are normally distributed, i.e. € ~ A(0,X)

S3.2 Proof of Theorem 4
Part (a) (consistency)

As in the proof of theorem 1, we decompose the difference between the penalized likeli-
hood functions to D(u) = J1+J2+J3, where ||u|| = M and J; (u) = —2/log(p) /nel AXu,
M@-@MWMWﬂmwmhw—%{Fﬁm@+bmW%DRWM-

Consider the presentation u = (u’, u’.)T, X = (X 4|X 4¢). Then:

|Ji] = 2v/log(p)/ne’ AX sus + 2+/log(p)/ne’ AX qerupe = Jia + Jiac
Jo = log(p)/n <u£X£AX aug +ul XL AX geuae

+ul XTAX qewwge + uACXACAXA'u,A>

2n| 3 P15} + V@) = 5D + 20| 5 Pl ToRtan )

JEA JEAC
= Jsa+ J34e

J3

Note that since M = ||u|| < ||ua||+]||wac||, at least one of ||u4ll, ||uac]| # 0. Therefore,
if ||luae|| — 0, there exists a bound B and Np such that forn > Ng, M > ||lual|| > B > 0.
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We first show that if ||u4<|| is bounded from below, then J34. dominates the rest of the
terms. We then show that if ||wac|| — 0, then J; dominates the sum J; + J + Js.

Suppose first that ||wc|| is bounded. Let z,,/+/log(p)/n — oo,

limy, 00 |yn/+/log(p)/n| < c. Then

1 1
Sl < log(p)/nn(NGTﬁ)1/2(EUTXTA2XU)1/2 < Oy(y/mnlog(p))||ul| R?
Jo > nlog(p)/n||u|[*Amin(n ' XTAX) >0
Jsa = 2n:/log(p)/n Y u; PA(B; + t;\/log(p)/nu;)
jeA
< 20y/log)/nvEllulb P () = 21/5Moy(1)

Jsae = 2ny/log(p)/n Y |u;| P4 (|t;\/log(p) /nu,])

jga
> 2n4/log(p)/n > |u;| P (lynl) = 20> u;])n+/log(p) /nO, (m
jgA iga

= 2[[uac[[1©p(m+/nlog(p))

and we can see that indeed the sum J; + Js 4 J3 is positive with probability tending to
1. Suppose now that ||uwac|] — 0 as n — oo. Then ||u4|| is bounded. We use Lemma 2
and get:

Jia < 24/nlog(p Hf TAX 4l|[lual| < 2M\/nlog(p)O,(v/s/n) = O,(/log(p)s)
Jiae < 2y/nlog(p)Oy(m)||wacl|( uAcXTLA X peuqe)t/?

= Op(m+/nlog(p) HUAcllz

Therefore, if ||uac|| — 0, but ||uac|| # 0, we have that Jiac = 0p(J34<). Further, if
[luac|| =0, then

1
J2 > (log(p) /n)us X{AX qua > log(P)\IUAIIQ/\min(ﬁxﬂAXA) = O(log(p))

and J1 = 0,(J2). That proves part (a).

Part (b) (Uniform sparsity)

We proceed as in theorem 1 part (b), and show that if ||B — B%|| < M+/log(p)/n. then
for each j such that 57 = 0, the derivative of the penalized likelihood is maximized at 0.
As in Theorem 1, we see that the derivative by 8;, where the true 8* = 0, uniformly
for all j =1,...,p, satisfies:
0 . .
Q) = —2XTAet 2XTAX(8 - 8°) + 2nsign(3,) 4 15
j

< Li+1+13
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Consider I;. Let eé\ = Ae; ~ N(0,AXA). Since X; = I ® x;, there is some
k=1,...,m such that

I & A ;& N
‘Ill = 2\/5 (ﬁ i_zlxijeik> S \/ﬁjzl).“7g§7al;le,“'7m (\/ﬁ ;wijeik

According to Lyapunov CLT, for each pair of indices j, k we have that (using Lemma 5)

n n
2 _ 2 AN _ 2 2 _ 2
sik = g Q:ijvar(eik) =0} E Ty = noy
=1 i=1

then . .
ik ;xwezk \/ﬁ;xljezk (0,0%)

Therefore, let maxo?,...,02, < B (this bound exists, since we assume least 24§ bounded
moments of the errors, and A has bounded eigenvalues), and denote by w; the j, k
normal random variable with mean 0 and variance B. then a uniform bound for all
j=1,...,pis given by:

Jj=1,...,po,k=1,....m =1,...,p0,k=1,...,

1 n
Vn max <\/ﬁ Z%j#}c) < \/ﬁj max - Ujk < BvVnO,(v/1og(p))
i=1

The bound for the maximum of normal variables with diminishing correlation is given
in Arias-Castro et al (2011), and note that correlations between the errors may only
decrease this bound. Therefore, I; < 2B+/nO,(log(p)) uniformly for all coordinates
j=1,...pof B. Therefore:

[h| < max (—2X7 Ae) < Bv/nO,(y/log(p))
j=1,..p
L < max (2X7AX(8-8") < 2|XTAX(B - 4|

J=4...p

< onn (;xTAx) 18— || = 20RO(v/Tog(p) /)

I = 2nsign(B;)P4(18;1) = 200 (mlog(p)/v)sign(8;) = 20(mlog(p)v/n)sign(5;)

It is easy to see that Bj = 0 maximizes the penalized likelihood for all j # A.

S3.3 Proof of corollary

Similar to Theorem 2.
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S4 Secondary lemmas
Lemma 2: Let conditions (C1)-(C10) hold. Then

L [|12XTAe]| = O,(v/p/n).

2. €'AX 4 (XEAXA)f1 X7 Ae = O,(p) for an indices set A C {1,...,p}.

Proof: 1. Let Q = e/ A(n~'XX”)Ae be a quadratic form with the positive semidefinite
matrix of rank p A(n"!XXT)A, and denote € ~ F(0,X) for some distribution F' and a
block diagonal covariance matrix 3. Then

Q = 'E12R2AMTIXXTARY2n"Y2e = 2TAz = 27 UDU” z = (Uz)"D(Uz)

where z ~ F(0,I) and UTDU is the spectral decomposition of the positive semidefinite
matrix A. Uz ~ F(0,I) since U is orthogonal. Denote Uz = (uy,...,uyn)?, where
u; ~ F(0,1)fori=1,...,N. Then Q = Zf\; \iuZ, where A\, ..., Ay are the eigenvalues
of BY2A(n1XXT)AXY? and only p of them are different than zero and are bounded
positive numbers from (C2). Fix M and let e = y/p/n. Since the fourth moments of €
are bounded, there exists a B such that E((u; —1)*) < B,i =1,..., N. By Chebyshev’s
inequality:
N

1 1
P(nQ—n;Ai

Therefore 2@ is of the same order of %Zfil Ai = Op(p/n). We conclude that there

exists M large enough and ||2XT Ae|| = \/Q/n = O,(y/p/n).
For 2., notice that

N
2 270(,2
n E A E(u; — 1)
i=1 pR2B
<

2Me>_ 7p2n2M2 §p2M2—>Oasn—>oo

e’ AX (XQAXA)”XQAE < [€"AX PN (XEAXA]TY)

1 1
- EHGTAXA||2>\1 <[nX£AXA]1>

IN

1 1
n||—eT AX A||*\ ([XTAX]_1>
n n

IN

1
nR2||EeTAXH2 = 0,(p) [

2445

Lemma 3 Let conditions (C1)-(C10) hold, and let k,, be such that p/kn,> — 0.

1. Let A be a set of indices such that A D A, and let XA\A = P[/L\l/QXA](XA), where
PJ_

AL2X ) (X 4) is the projection of X ; on col([AY2X 4])+. This is a matrix of rank
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(8 —s), where § = |A| and s = |A|. Then

1
P <SUR 5 _ || [XA\A](Al/Qe)H2 < kn) — 1

ACAS

jAe

P( sup < n) —1
P

Proof: First, we claim that ||Z;||2 = ||z; — Par(;)||2 < ||zj||2. This is straight forward
from the Pythagorean theorem. Next, we bound

f

1 1 1
EHEI/?A@H% = —2TAZAG; < ~ Tain (A?) Al(Z)gRSﬁtr(mja:?)

n J
R\, ( ) < R3)\; ( XXT) < R*

where for we used the eigenvalue bound from condition (C2) a few times, and Lemma
6 for the fifth transition. Presented differently, we have that

H ~TA21/2||2 < R4.

f
In the following steps we will use Lemma 3 in Dicker et al (2012), that says that there
exists a constant K such that sup)jq -1 £ |'u,Té‘2+(S < K for € iid with bounded 2 + ¢

moments. Let € = £71/2¢, so that cov(é) = L

P | su 1 1/2 .\ |2 Rn
P— A > < P
(S ~5— g || [XA\ ]( 6)” > ky, sup —

ACA ACA

= sup - )(A\AAzl/?~||2 > ky,

ACAS
2
< (8—5) NTAElME >k,
JEL 7175
2
< sup R’ ~»TA21/2E >k, | <pP (R5 sup |u€él” > k )
; (]El \/ﬁ u | |

25 uTe)  pRIH2 [
_ pP <R5(2+5)/2S%p|UE|2+6 > k2 ) < pR5(2+5)/2 kz;r(; D p k2+5 =0

which proves part 1. Part 2 follows similarly:

> \/E) < pRQP (|uTek| > \/E) :pR2P ((uTé)}HS > k;%s) —0

1
—zl AX!/%e

P(sw | x

j=1,...p
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|
Lemma 4 Suppose that ||A,;, — Q|| = 0 holds. Then
B(Y '? - x) vy - x)" VBT Lo
Proof: From the above expression, it is clear that, in fact, it suffices to show
1 .
T o2 o (S4.1)

Vn
Now, since ||A — Q]| — 0, (C2) and some basic matrix manipulations imply that

l’r_l — l‘r*l
n n

— 0.

The convergence (S4.1) and part (ii) of the theorem follow from Theorem VII.2.12 of
(Bhatia, 1997). |

Lemma 5. Let X be a n X p matrix, let A be a subset of the indices {1,...,p}, and let
X 4 be the matrix whose columns are the subset of columns of X corresponding to A.
Then:

(1) Umin(x) < Omin(XA) < Umaw(XA) < Umax(x)
(i) Amin(XTAX) < Anin(XEAX 4) < Mgz (XEAX 4) < Moo (XTAX) where A is a

symmetric positive definite matrix.

Where 0mazs Omin, Amazs Amin are the largest and smallest singular values of a matrix,
and the largest and smallest eigenvalues of a matrix.

Proof.

1. By definition, 0,,4.(X4) = Hszlx [|Xauallz. Let u¥ be the vector with the
Uall=1

indices corresponding to A equal to w4 and the rest are zero. Then 0,,4.(X) =
max ||[Xullz > max [||Xwu’]||2. Similarly it can be shown for the minimum

[lwl|=1 s [l=1
singular value.

2. From the Cholesky decomposition A = LL? where L is a lower diagonal matrix.
Then Apar(XTAX) = 02,,,(LX). Since (LX4) = (LX) 4, the inequalities follow
from part (i).

Lemma 6. Let A be a positive definite symmetric matrix, u, v vectors. Then

1 1
|uT Av| < VuT AuvoTAv < iuTAu + §’UTA’U
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Proof. Notice that f(z,y) = T Ay is an inner product of  and y. Therefore we can
use the Cauchy-Schwartz inequality and the averages inequality to get:

1 1
[u? Av| < VuT AuvoT Av = VuT Au - vTAv < §uTAu + i'uTAv [

Lemma 7: Under the regularity conditions (C1)-(C10), and the identifiability condition
in Theorem 3, the following hold:

P(A sup (B — B agn) " XG A+ B X sAe] >
A:A\A#D

p [(ﬁlm] ~Bann) XGAX 5 (B%4) — Barr)
2854 — Ba) XGAX 4 4B 4y
+ﬂA[A\A A\AAXA\A'B*A[A\A]:|) —0
Proof: To simplify, note that we want to show that for some vectors u;,us we have
that |ulAY%e + ul AY%€| > n'/4||u; + us|[2. We are going to bring the expression

to a form easier to work with. First, let us stack the two terms together, by having
XA/GZ[AUA] instead of the two XA\Aﬁz[A\Ap X ;8% A] We can do it by stacking X 4 on

X 4 as X4, and similarly setting /GZ[AUA] = (87 A],BA A\A]) . Denote B4.5/10 =

~T ~ ~
Bi v, 00 )T the stacked vector of 3 ; and zeros corresponding to A\ A.
AML ‘A\A| AML

We want to show:

P( _sup ’(ﬁ;[AUA] —Banro) Xiale| >
A:A\A#D

p71/4(ﬁf4[AuA] - ﬁA:ML,O)TX?;UAAXAUA('BZ[AUA] - BA:JV[L,O)> — 0.

First we bound the right term from below. We use Lemma 5 and condition (C2):
* 3 T T 3
(Bapava) — Bamro) XauadXaviBhjaova —Bimroe) =
* 2 2 T
Z B aua) — Banr ol Am < XAUAAXAUA>
. -~ 1
Z nHﬁA[AuA] N IBA:ML,OHZ)‘m <nXTAX>

—2 3 2
2 nit Hﬁ*A[AUA] - 5A:ML,()H

523
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and note that, from the identifiability condition in Theorem 3
(infjeA 1851 =O( max(kn,p)/n), we have that

(A:jgﬂ”ﬁZ[AuA] - BA:ML,O|> = O(vmax(kn,p)/n).
Using similar arguments to before:
1B paua) — Banrno) X ;A1
= (ﬁZ[AUA] - ﬁA:ML,O) XiUAAEAXAUA(/BA AuAa] T BA‘ML 0)
< 1l )~ Barroll P (2X5,ABAX 45

= n”'B*A[AuA] - ﬁA:ML,oHQ)\l (nXTAZAX>

< nR4||/6T4[AuA] -

Consider the required probability. Let € = »/2¢ be a vector of iid random variables

with bounded 2 4+ § moments. Let u be the vector of norm 1:
* 2 T~T 1/2 - T~T 1/2
= (BA[AUA] B ﬂA:ML,O) Xqualx / /H('@A [AuA] — BA:ML,O) X uaA® / Il

Then:

P( ~ sup ‘(ﬁZ[AuA] 5,4 ML o)TXAuAAE‘
A:A\A#D

p71/4(52[,4u,4] - /@A:ML,O)TXEAXA(ﬁZ[AuA] o 'GA:ML,O)>

< P< sup R® ||ﬂA[AuA] BAMLOH‘U‘ €| > np~ VAR 2||[).A[AUA ﬂA=ML70|2>
A:A\A#0

< P| sup |uTE>apTVRTY inf ||}
<UIIUII 1’ ’ A:A\A# || AJAuA] —
2448
AL —1/dp—4 - « -~
= su u’ n R inf N
(u|up| 1 [\fp A:A\A;ﬁ@HBA[AUA] ﬁA.ML,o|]
246
S P Sup {uTé|2+6 > [\/ﬁp_l/4R_4 maX(/ﬂn»p)/n}
wiljuf|=1
sup E‘uT |2+6
- s u)|=1
o 2496
[R’4p*1/4 max(kn,p)}
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From Lemma 3 in Dicker et al (2012) we have that supq, |y =1 £ {uTE|2+6 < K for some
constant K. Therefore:

* 2 T~T
P(A sup ’(ﬁA[AUA]_IBA:ML,O) X uilel >
A:A\A#D

p_1/4('82[AUA] - ﬂA:ML,O)TxiuAAXAUA(ﬂ;[AUA] - IBA:ML,O)> —0

uniformly over all A such that A\A # 0. |

S5 Additional small-p simulations results

The following tables summarize three simulation studies. In all simulation studies, the
settings are exactly the same as in the paper. However, we consider two alternatives to
the estimation procedure:

1. Working correlation structure - identity matrix. We consider using the identity
matrix as the working correlation structure. We use both BIC and data validation
for tuning parameter selection. Table 1 provides variable selection results and
Table 2 provides the estimated and empirical standard errors of the regression
parameter estimates.

2. Iterative algorithm in which the regression parameters are estimated and a penalty
parameter is selected using either BIC or data validation, then precision matrix
is estimated and penalty parameter is selected, then regression parameters are
estimated, etc. Table 3 provides variable selection results and Table 4 provides the
estimated and empirical standard errors of the regression parameter estimators.

In addition, Table 5 provides variable selection results in the (unrealistic) scenario when
the true correlation structure is known, and the precision matrix is estimated paramet-
rically accordingly.
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Simulation Method size T™ FP FN ME PE
LASSO - BIC 4.95 0.17 210 0.15 1.60 10.57
Adaptive LASSO - BIC 494 0.08 232 0.38 162 10.36
SCAD - BIC 475 0.16 199 024 153 10.34
AR cov. n = 50 SELO - BIC 3.89 0.33 1.17 0.28 142 10.56
’ LASSO - validation 1044 0.01 747 0.04 131 10.49
Adaptive LASSO - validation 8.10 0.03 529 0.19 133 10.39
SCAD - validation 777 006 4.86 0.10 1.15 10.38
SELO - validation 3.75 046 092 0.18 097 1045
LASSO - BIC 492 0.19 194 0.03 091 1049
Adaptive LASSO - BIC 495 0.12 2.01 0.06 066 10.36
SCAD- BIC 430 0.32 134 0.04 0.60 10.37
AR cov. 1 = 100 SELO - BIC 3.59 0.62 062 0.04 043 10.46
’ LASSO - validation 11.08 0.01 8.09 0.01 0.71 10.46
Adaptive LASSO - validation 8.01 0.03 5.03 0.02 054 10.39
SCAD - validation 729 0.09 430 0.01 043 10.40
SELO - validation 3.84 056 085 0.01 034 1043
LASSO - BIC 5.02 0.15 217 0.15 155 10.22
Adaptive LASSO - BIC 493 0.11 230 037 1.61 10.19
SCAD - BIC 495 0.19 219 0.23 166 10.22
EX cov. n = 50 SELO - BIC 394 037 120 0.26 1.39 10.35
’ LASSO - validation 10.86 0.01 7.89 0.03 1.30 10.26
Adaptive LASSO - validation 8.16 0.03 534 0.18 130 10.24
SCAD - validation 7.82 0.06 492 0.10 1.13 10.22
SELO - validation 3.64 051 083 0.19 091 10.23
LASSO - BIC 486 0.21 1.88 0.02 092 10.19
Adaptive LASSO - BIC 477 0.16 184 0.07 0.70 10.17
SCAD - BIC 4.08 0.42 1.13 0.06 0.63 10.16
EX cov. n = 100 SELO - BIC 349 0.67 054 0.05 044 10.24
’ LASSO - validation 11.48 0.01 849 0.01 0.74 10.22
Adaptive LASSO - validation 828 0.04 530 0.02 058 10.21
SCAD - validation 7.40 0.12 4.40 0.01 045 10.21
SELO - validation 3.87 0.60 089 0.02 0.36 10.19

Table 1: Small-p simulation results for the 4 scenarios, by outcome correlation matrix
and sample size, when using the two stage algorithm with the identity as the working
correlation matrix.
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Simulation Method B1=3 B2 = 1.5, B3 = 2,
se_est(se_emp) es_est(se_emp) es_est(se_emp)
LASSO - BIC 0.26(0.29) 0.14(0.27) 0.17(0.34)
Adaptive LASSO - BIC 0.41(0.3) 0.06(0.47) 0.11(0.43)
SCAD - BIC 0.31(0.3) 0.17(0.45) 0.21(0.58)
SELO - BIC 0.42(0.3 0.42(0.34 0.41(0.47
AR cov, =50 1 x990 - validation 0.3((03)) 0.2((0.28)) 0. 24E0 353
Adaptive LASSO - validation 0.41(0.3) 0.1(0.34) 0.13(0.4)
SCAD - validation 0.34(0.31) 0.19(0.38) 0.24(0.45)
SELO - validation 0.42(0.3) 0.42(0.28) 0.41(0.43)
LASSO - BIC 0.19(0.21) 0.11(0.22) 0.13(0.23)
Adaptive LASSO - BIC 0.29(0.21) 0.06(0.29) 0.07(0.24)
SCAD - BIC 0.22(0.2) 0.13(0.33) 0.16(0.33)
SELO - BIC 0.3(0.21 0.3(0.25 0.3(0.22
AR cov, n =100 1'A550 _ validation 0.22((0.19)) 0.16((0.22)) 0.18((0.25))
Adaptive LASSO - validation 0.3(0.21) 0.1(0.22) 0.1(0.24)
SCAD - validation 0.24(0.21) 0.15(0.23) 0.18(0.23)
SELO - validation 0.3(0.21) 0.3(0.23) 0.3(0.23)
LASSO - BIC 0.26(0.28) 0.15(0.29) 0.18(0.34)
Adaptive LASSO - BIC 0.41(0.28) 0.07(0.47) 0.11(0.44)
SCAD - BIC 0.32(0.31) 0.17(0.51) 0.22(0.58)
SELO - BIC 0.41(0.28 0.42(0.34 0.41(0.46
EX cov,n =50 1 xS0 - validation 0.31((0.3)) 0.2120 29% 0. 24E0 333
Adaptive LASSO - validation 0.4(0.28) 0.11(0.39) 0.13(0.39)
SCAD - validation 0.34(0.31) 0.2(0.31) 0.24(0.46)
SELO - validation 0.42(0.3) 0.42(0.28) 0.41(0.43)
LASSO - BIC 0.19(0.23) 0.11(0.22) 0.13(0.24)
Adaptive LASSO - BIC 0.29(0.23) 0.06(0.28) 0.07(0.28)
SCAD - BIC 0.21(0.23) 0.12(0.31) 0.16(0.33)
SELO - BIC 0.3(0.23 0.3(0.22 0.3(0.23
EX cov, n =100 1 x550 - validation 0.2&(0.23 0.16((0.19)) 0.18((0.26))
Adaptive LASSO - validation 0.29(0.23) 0.09(0.21) 0.1(0.25)
SCAD - validation 0.24(0.23) 0.16(0.23) 0.18(0.24)
SELO - VALIDATION 0.3(0.23) 0.3(0.21) 0.3(0.26)

Table 2: Small-p simulation results.

regression parameter estimators provided in Table 1.

Estimated and empirical standard errors for the
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Simulation Method size ™ FP FN ME PE
LASSO - BIC 448 0.24 157 0.08 1.88 9.23

Adaptive LASSO - BIC 349 031 090 0.41 1.61 9.10

SCAD - BIC 3.53 0.15 1.15 0.61 1.90 9.09

AR cov. n = 50 SELO - BIC 3.31 036 0.78 0.47 152 9.04
’ LASSO - validation 993 0.05 698 0.05 1.63 9.15
Adaptive LASSO - validation 7.10 0.09 435 024 164 9.11

SCAD - validation 6.69 0.07 4.04 0.34 1.63 9.05

SELO - validation 5.10 0.31 249 0.40 1.49 9.04

LASSO - BIC 422 035 1.22 0.00 0.84 9.02

Adaptive LASSO - BIC 3.36  0.59 0.50 0.13 0.57 8.89

SCAD - BIC 3.39 041 066 026 0.65 8.86

AR cov. n = 100 SELO - BIC 3.0 0.70 024 0.19 049 8.85
’ LASSO - validation 9.14 0.05 6.14 0.00 0.68 8.95
Adaptive LASSO - validation 6.30 0.20 3.35 0.06 0.58 8.89

SCAD - validation 6.14 0.22 3.19 0.06 0.58 8.86

SELO - validation 5.35 0.47 242 0.07 055 8.87

LASSO - BIC 467 021 1.73 0.06 1.81 9.25

Adaptive LASSO - BIC 3.65 0.28 1.02 0.37 146 9.28

SCAD - BIC 3.62 0.12 123 0.61 173 9.37

EX cov. n = 50 SELO - BIC 3.24 032 0.73 049 1.28 9.28
’ LASSO - validation 10.24 0.06 7.27 0.03 1.60 9.26
Adaptive LASSO - validation 7.20 0.12 4.43 0.23 1.54 9.28

SCAD - validation 6.79 0.09 4.06 0.27 143 9.31

SELO - validation 5.03 024 246 043 135 9.29

LASSO - BIC 4.28 0.33 1.28 0.00 0.82 9.12

Adaptive LASSO - BIC 3.37 0.61 047 0.09 052 09.14

SCAD - BIC 3.47 041 068 0.21 055 9.17

EX cov. n = 100 SELO - BIC 3.20 0.66 0.34 0.14 040 9.12
’ LASSO - validation 980 0.05 6.80 0.00 0.68 9.13
Adaptive LASSO - validation 6.67 0.21 3.73 0.06 0.58 9.16

SCAD - validation 6.16 0.23 3.22 0.05 0.52 9.16

SELO - validation 579 037 288 0.09 0.52 9.16

Table 3: Small-p simulations results for the 4 scenarios, by outcome correlation matrix
and sample size, when using an iterative algorithm in which the regression parameters
and the precision matrix are alternately estimated, and tuning parameters are selected
at each iteration.
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Simulation Method B1=3 B2 = 1.5, B3 = 2,
se_est(se_emp) es_est(se_emp) es_est(se_emp)
LASSO - BIC 0.35(0.39) 0.29(0.43) 0.27(0.3)
Adaptive LASSO - BIC 0.39(0.49) 0.22(0.9) 0.3(0.34)
SCAD - BIC 0.36(0.58) 0(0.77) 0.28(0.48)
SELO - BIC 0.38(0.54 0.33(1.07 0.33(0.3
AR cov, n =50 1'A450 - validation 0.38%0435; 0.3220‘46% 0.31((0.29))
Adaptive LASSO - validation ~ 0.41(0.44) 0.32(0.64) 0.37(0.38)
SCAD - validation 0.38(0.57) 0.28(0.93) 0.3(0.36)
SELO - validation 0.41(0.52) 0.35(0.94) 0.34(0.32)
LASSO - BIC 0.27(0.3) 0.23(0.27) 0.22(0.19)
Adaptive LASSO - BIC 0.28(0.38) 0.24(0.41) 0.23(0.2)
SCAD - BIC 0.27(0.51) 0.23(0.68) 0.22(0.2)
SELO - BIC 0.28(0.39 0.26(0.4 0.24(0.17
AR cov, n =100 1 xa50  validation 0.29((0.3)) 0.25((0.27)) 0.24((0.2))
Adaptive LASSO - validation 0.3(0.35) 0.3(0.38) 0.25(0.2)
SCAD - validation 0.28(0.39) 0.24(0.43) 0.23(0.19)
SELO - validation 0.3(0.34) 0.27(0.32) 0.25(0.19)
LASSO - BIC 0.31(0.34) 0.26(0.37) 0.27(0.3)
Adaptive LASSO - BIC 0.33(0.47) 0.22(0.75) 0.3(0.36)
SCAD - BIC 0.32(0.61) 0(0.73) 0.28(0.44)
SELO - BIC 0.33(0.53 0.27(0.89 0.32(0.28
EX cov,n =50 1 xS0 - validation 0.3320.313 0.3((0.41)) 0.31&0.28;
Adaptive LASSO - validation 0.35(0.42) 0.34(0.59) 0.36(0.3)
SCAD - validation 0.32(0.51) 0.26(0.84) 0.3(0.29)
SELO - validation 0.34(0.48) 0.3(0.93) 0.33(0.26)
LASSO - BIC 0.23(0.2) 0.21(0.27) 0.21(0.2)
Adaptive LASSO - BIC 0.24(0.23) 0.21(0.31) 0.23(0.22)
SCAD - BIC 0.23(0.36) 0.21(0.57) 0.22(0.19)
SELO - BIC 0.24(0.25 0.23(0.31 0.23(0.19
EX cov, n =100 1 x550 - validation 0.2520.26; 0.2420.243 0.24((0.2))
Adaptive LASSO - validation  0.25(0.33) 0.28(0.3) 0.25(0.19)
SCAD - validation 0.24(0.32) 0.22(0.33) 0.23(0.18)
SELO - validation 0.25(0.32) 0.24(0.32) 0.24(0.19)

Table 4: Small-p simulations results. Estimated and empirical standard errors for the
regression parameter estimators provided in Table 3.
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Simulation Method size True model false pos false neg ME  pred err
LASSO - BIC 5.22 0.08 2.29 0.07 1.64 9.52
Adaptive LASSO - BIC 3.82 0.29 1.17 0.34 1.46 9.57
SCAD - BIC 4.08 0.20 1.53 0.45 1.79 9.67
AR cov, n = 50 SELO - BIC 3.72 0.40 1.00 0.28 1.52 9.62
LASSO - validation 9.51 0.02 6.54 0.03 1.49 9.52
Adaptive LASSO - validation 7.04 0.10 4.25 0.21 1.46 9.58
SCAD - validation 5.82 0.10 3.21 0.39 1.69 9.65
SELO - validation 4.52 0.41 1.84 0.32 1.52 9.61
LASSO - BIC 5.21 0.14 2.21 0.00 0.88 9.42
Adaptive LASSO - BIC 3.73 0.46 0.88 0.14 0.61 9.44
SCAD - BIC 3.71 0.51 0.90 0.19 0.63 9.47
AR cov, n = 100 SELO - BIC 3.60 0.56 0.68 0.08 0.54 9.45
LASSO - validation 10.62 0.02 7.62 0.00 0.80 9.43
Adaptive LASSO - validation 6.82 0.16 3.87 0.04 0.63 9.45
SCAD - validation 5.66 0.28 2.78 0.12 0.63 9.47
SELO - validation 4.30 0.59 1.40 0.10 0.53 9.45
LASSO - BIC 5.32 0.14 2.38 0.06 1.46 9.35
Adaptive LASSO - BIC 4.08 0.29 1.36 0.28 1.26 9.26
SCAD - BIC 3.84 0.34 1.20 0.36 1.34 9.30
EX cov, n = 50 SELO - BIC 3.94 0.44 1.16 0.22 1.35 9.24
LASSO - validation 9.81 0.02 6.82 0.00 1.32 9.31
Adaptive LASSO - validation 6.92 0.12 4.09 0.16 1.28 9.27
SCAD - validation 4.93 0.22 2.23 0.30 1.17 9.29
SELO - validation 3.92 0.48 1.19 0.27 1.13 9.25
LASSO - BIC 4.99 0.18 1.99 0.00 0.80 9.10
Adaptive LASSO - BIC 3.84 0.49 0.91 0.08 0.50 9.12
SCAD - BIC 3.44 0.66 0.52 0.08 0.39 9.11
EX cov, n = 100 SELO - BIC 3.57 0.62 0.60 0.03 0.40 9.10
LASSO - validation 10.39 0.02 7.39 0.00 0.67 9.11
Adaptive LASSO - validation 6.76 0.16 3.80 0.03  0.50 9.11
SCAD - validation 5.04 0.39 2.08 0.04 0.40 9.11
SELO - validation 4.23 0.72 1.28 0.05 0.38 9.11

Table 5: Small-p simulation results for the 4 scenarios, by outcome correlation matrix
and sample size, when using the two stage algorithm with the true correlation structures
as the working correlation matrix.
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S6 Additional large-p simulations results

In the following simulations, we provide additional simulation results, in which we apply
the two-stage procedure on the same scenarios as in the large-p simulations section in the
main manuscript, but use different estimators of the precision matrix. Table 6 provides
results when the working correlation matrix is the true outcome correlation matrix, and
Table 7 provides results when the working correlation matrix is the identity. In all
simulations we had n = 50 subjects.

S7 Data set and code: description and instructions

The data set that was used in the data analysis section in the manuscript is supplied, as
well as code for analysis, in the journal website. Three files are given:

1. diabetes_data_set.tzt is a text file with the data set. For conveniency, only the
probes used in the data analysis are supplied (i.e. non expressed probes that were
filtered are not supplied) and the expression values are already log transformed.

2. TSofer_sparse_mult_reg_code.R in as R code supplying implementations of all the
algorithm and functions needed in order to analysis the data set.

3. TSofer_analysis_code.R is the R code that reads the data, calls the algorithms, and
performs the analysis.
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penalty mean T mean FP mean FN mean ME
AR cov
po=95, m=>5
LASSO 0.00 9.57 0 0.61
Adaptive LASSO 0.08 4.46 0 0.42
SCAD 0.18 3.56 0 0.26
SELO 0.68 0.74 0 0.20
po =20, m=5
LASSO 0.00 15.37 0.00 0.82
Adaptive LASSO 0.01 6.06 0.00 0.51
SCAD 0.02 717 0.00 0.29
SELO 0.68 0.64 0.00 0.24
po =25, m=20
LASSO 0.00 29.19 0.00 1.22
Adaptive LASSO 0.00 10.12 0.00 0.70
SCAD 0.03 9.06 0.00 0.29
SELO 0.39 2.62 0.00 0.30
po =20, m=20
LASSO 0.00 29.19 0.00 1.22
Adaptive LASSO 0.00 13.55 0.00 0.80
SCAD 0.00 19.41 0.00 0.42
SELO 0.44 2.64 0.00 0.38
EX cov
po=5 m=2>5
LASSO 0.00 10.07 0 0.57
Adaptive LASSO 0.06 4.72 0 0.39
SCAD 0.20 3.93 0 0.27
SELO 0.70 0.66 0 0.18
Po = 207 m=2>5
LASSO 0.00 15.70 0.00 0.72
Adaptive LASSO 0.01 7.76 0.02 1.10
SCAD 0.03 6.90 0.00 0.25
SELO 0.68 0.70 0.00 0.22
po =5, m=20
LASSO 0.00 19.25 0.00 0.72
Adaptive LASSO 0.00 12.06 0.00 1.31
SCAD 0.08 7.38 0.00 0.22
SELO 0.40 2.77 0.00 0.24
po =20, m =20
LASSO 0.00 29.09 0.00 0.89
Adaptive LASSO 0.00 16.61 0.00 1.50
SCAD 0.00 18.34 0.00 0.35
SELO 0.45 2.27 0.01 0.49

Table 6: Large-p simulation results when the working correlation matrix is the true
outcome correlation matrix.



Table 7: Large-p simulation results when the working correlation matrix is the identity

matrix.
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penalty mean T mean FP mean FN mean ME
AR cov
po=95, m=>5
LASSO 0.00 9.32 0 0.72
Adaptive LASSO 0.05 4.81 0 0.55
SCAD 0.06 4.55 0 0.34
SELO 0.72 0.61 0 0.27
po =20, m=5
LASSO 0.00 15.08 0.00 1.06
Adaptive LASSO 0.00 6.37 0.00 0.71
SCAD 0.00 9.24 0.00 0.49
SELO 0.74 0.58 0.00 0.34
po =25, m=20
LASSO 0.00 17.76 0.00 1.18
Adaptive LASSO 0.00 10.96 0.00 1.13
SCAD 0.01 12.00 0.00 0.56
SELO 0.26 3.33 0.00 0.52
po =20, m=20
LASSO 0.00 27.85 0.00 1.59
Adaptive LASSO 0.00 14.43 0.00 1.25
SCAD 0.00 26.89 0.00 0.92
SELO 0.48 2.27 0.00 0.55
EX cov
po=5 m=2>5
LASSO 0.00 9.50 0 0.72
Adaptive LASSO 0.05 4.79 0 0.54
SCAD 0.09 4.71 0 0.35
SELO 0.69 0.76 0 0.28
Po = 207 m=>5
LASSO 0.00 15.36 0.00 1.07
Adaptive LASSO 0.00 6.57 0.00 0.73
SCAD 0.01 9.30 0.00 0.49
SELO 0.73 0.57 0.00 0.33
po =05, m=20
LASSO 0.00 21.74 0.00 1.26
Adaptive LASSO 0.00 12.40 0.00 1.20
SCAD 0.02 14.20 0.00 0.63
SELO 0.25 3.54 0.00 0.53
po =20, m =20
LASSO 0.00 31.31 0.00 1.67
Adaptive LASSO 0.00 16.61 0.00 1.30
SCAD 0.00 28.72 0.00 1.00
SELO 0.42 4.07 0.01 0.64
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