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S1 p < n main results

Throughout this section , let β∗ be the true regression parameters vector with A = {j :
β∗j 6= 0}, |A| = sn, and βA the sub-vector and of a vector β corresponding to the indices
in A and XA the sub-matrix of X with columns corresponding to the set A.

S1.1 The technical conditions

(C1) n→∞, p = p0m may vary with n, and p/n→ 0.

(C2) There exists a positive constant R such that

0 < 1/R <
λmin(Λm), λmin(Ωm), λmin(n−1XTX),
λmax(Λm), λmax(Ωm), λmax(n−1XTX)

< R <∞

where λmin(B) and λmax(B) are the smallest and largest eigenvalues of a matrix
B.

(C3) Let ρ = ρn = min{|βj |; j ∈ A}. ρ/
√
p/n→∞

(C4) max
1≤i≤n

n−1||xixTi ||2 → 0 (where ||xixTi ||2 = ||xi||22 )

(C5) There exists a δ such that E(ε2+δ
ij ) <∞, i = 1, ..., n, j = 1, ...,m.

(C6) The function Pλ is concave on [0,∞) and differentiable on (0,∞). Furthermore,

Pλ(0) = 0, Pλ(θ) = Pλ(−θ) and lim
θ→∞

Pλ(θ) ≤ 1

n
.

(C7) If rn/
√
p/n→∞, then P ′λ(rn) = o(1/

√
np).

(C8) If rn = O(
√
p/n), then lim

n→∞
(
√
n/max(p, kn))P ′λ(rn)→∞

(C9) pm,m2/n→ 0

(C10) sup
j,k
E(εijεik)2+δ <∞, i = 1, . . . , n, j, k = 1, . . . ,m.

(C11) If rn/
√

(m+ p)m/n→∞, then mP ′γ(rn) = O(1).

(C12) If rn = O(
√

(m+ p)m/n), then lim
n→∞

√
(m+ p)m/nP ′γ(rn) =∞.

S1.2 Proof of Theorem 1

part (a) (Consistency)

Fix c > 0 and let M be a positive constant. We will show that if M is sufficiently large,
then

P

{
inf
||u||=1

Q(β∗ +M
√
p/nu|Λm)−Q(β∗|Λm) > 0

}
≥ 1− c
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for n sufficiently large. This suffices to prove the (a).

Let
D(u) = Q(β∗ +

√
p/nu|Λm)−Q(β∗|Λm) = J1 + J2 + J3,

where ||u|| = M and J1(u) = −2
√
p/nεTΛXu, J2(u) = (p/n)uTXTΛXu and

J3(u) = 2n
∑p
j=1

[
Pλ(|β∗j +

√
p/nuj |)− Pλ(|β∗j |)

]
. We bound the terms J1, J2, and J3

separately. First,

|J1| ≤ 2
√
p/nn||n−1εTΛX||||u|| = 2Mn

√
p/nOp(

√
p/n) = Op(p).

For J2(u), we have that J2(u) ≥ R−2M2p.
Notice that there exist N1,K1 such that for n > N1 J1 ≤ K1p and J2 ≥ R−2M2p .
Therefore, J2 − J1 ≥ p(R−2M2 −K1). Since M is arbitrary, for large enough M such
that J2 − J1 > K ′p with probability tending to 1, for some constant K ′.

Decompose J3(u) = 2n
∑
j∈A

[
Pλ(|β∗j +

√
p/nuj |)− Pλ(|β∗j |)

]
+2n

∑
j∈Ac

Pλ(|
√
p/nuj |).

Using the mean value theorem, and conditions (C7) and (C8), one can see that for some
0 < tj < 1, j ∈ A

2n
∑
j∈A

[
Pλ(|β∗j +

√
p/nuj |)− Pλ(|β∗j |)

]
= 2n

√
p/n

∑
j∈A
|uj |Pλ(|β∗j + tj

√
p/nuj |)

≤ 2
√
np||u||1o(1/

√
np) = o(1),

while

2n
∑
j∈Ac

Pλ(|
√
p0/nuj |) = 2n(p− sn)Θ(

√
p/n) = 2(p− sn)Θ(

√
p/n)

It follows that P (D(u) > 0)→ 1 as n→∞ for M large enough.

To show that the global minimum of Q(β|Λm) satisfies ||β̂ − β∗|| = Op(
√
p/n),

let β = β∗ + u, where ||u|| = Θ(
√
p/n). In this case we have J1 = −2εTΛXu, J2 =

uTXTΛXu and J3 = 2n
∑p
j=1

[
Pλ(|β∗j + uj |)− Pλ(|β∗j |)

]
. J2 and J1 satisfy (using

Lemma 2, condition (C2) and Cauchy-Schwartz inequality)

J2 ≥ n||u||2λmin

(
1

n
XTΛX

)
≥ n||u||2R−2

|J1| = 2n

〈
1

n
εTΛX,u

〉
≤ 2n|| 1

n
εTΛX||||u|| = 2Op(

√
np)||u||

Since
√
np < n, J2 dominates J1. Further, by (C6) the negative part of the penalty term

satisfies:

2n
∑
j∈A

Pλ(|β∗j |) ≤ 2npPλ(max
j∈A

(|β∗j |)) ≤ 2ns
1

n
≤ 2s.

From these, it follows that Q(β|Λm)−Q(β∗|Λm) > 0 as n→∞ with probability tending
to 1, implying that the penalized maximum likelihood function is not maximized outside
the ball of radius

√
p/n.
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part (b) (Sparsistency)

Let β̂ be a consistent estimator of the true β∗, such that ||β̂ − β∗|| < M
√
p/n. We

will show that for all j such that β∗j = 0, the derivative of the penalized likelihood is

maximized at 0, so that β̂j = 0. We do it be showing that the sign of the penalized

likelihood is dominated by the sign of the penalty P ′λ(β̂j), which is the sign of β̂j .

consider:

∂

∂β
Q(β) = −2XTΛy + 2XTΛXβ + 2n

p∑
j=1

P ′λ(βj)

= −2XTΛε+ 2XTΛX(β − β∗) + 2n

p∑
j=1

P ′λ(βj)

The derivative by βj , where the true β∗ = 0 satisfies:

∂

∂βj
Q(β) = −2xTj Λε+ 2xTj ΛX(β − β∗) + 2nsign(βj)P

′
λ(|βj |) = I1 + I2 + I3.

Consider I1. By Lemma 3 (part (2))

|I1| = 2
∣∣xTj Λε

∣∣ ≤ 2
√
n sup
j=1,...p

∣∣∣∣ 1√
n
xTj Λε

∣∣∣∣ = op(
√
nkn).

Consider now I2.

I2 = 2xTj ΛX(β − β∗) ≤ 2||XTΛX(β − β∗)||

≤ 2nλ1

(
1

n
XTΛX

)
||β − β∗|| ≤ 2Rn

√
p/n = 2R

√
pn

Finally, using condition (C8),

I3 = 2nsign(βj)P
′
λ(|βj |) = sign(βj)Θ(

√
max(p, kn)n).

We get that for all βj such that β∗j = 0, β̂j will be estimated as 0 with probability tending
to 1.

part (c) (Asymptotic normality)

Let β̂ be a sequence of local minima of Q(β|Λ) satisfying ||β̂ − β∗|| = OP (
√
p/n). The

existence of such β̂ is guaranteed by part (a).

Let u ∈ Rs be some vector where s = sn . We will show that

uTBΥ̌
−1/2

(β̂A − β
∗
A)

D→ N(0,uTGu)
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and if ||Λm −Ωm|| → 0, then uTBΥ−1/2(β̂A − β
∗
A)

D→ N(0,uTGu).

Notice that basic calculus implies that on the event {j; β̂j 6= 0} = A,

β̂A = (XT
AΛXA)−1XT

AΛY − n(XT
AΛXA)−1PA, (S1.1)

where P = Pλ(β̂) = (P ′λ(β̂1), ..., P ′λ(β̂p))
T .

Since λmax(Υ̌
−1/2

), λmax(Υ−1/2) = OP (
√
N), we have

nuTBΥ̌
−1/2

(XT
AΛXA)−1PA, nuTBΥ−1/2(XT

AΛXA)−1PA = oP (1), (S1.2)

where we have made use of (C2), (C4), and (C8).

Now consider

uTBΥ̌
−1/2

(XT
AΛXA)−1XT

AΛY = uTBΥ̌
−1/2

β∗A + uTBΥ̌
−1/2

(XT
AΛXA)−1XT

AΛε.
(S1.3)

We use the Lindeberg-Feller central limit theorem to show that

uTBΥ̌
−1/2

(XT
AΛXA)−1XT

AΛε =

n∑
i=1

wi,n,

with wi,n = uTBΥ̌
−1/2

(XT
AΛXA)−1XA,iΛmεi, converges in distribution to a normal

random variable. Fix c > 0 and let

ηi,n = uTBΥ̌
−1/2

(XT
AΛXA)−1XA,iΛmΣmΛmXT

A,i(X
T
AΛXA)−1Υ̌

−1/2
BTu.

Then for δ = 2,

E
(
w2
i,n; w2

i,n > c
)
≤

{
E
(
w2+δ
i,n

)}2/(2+δ)
P
(
w2
i,n > c

)δ/(2+δ)

≤ 1

c
η

1+δ/(2+δ)
i,n

{
E
(
εTi Σ−1εi

)(2+δ)/2
}2/(2+δ)

.

Since max1≤i≤n ηi,n ≤ R3n||(XT
AΛXA)−1Υ̌

−1/2
Bu||2 max1≤i≤n

1
n ||XiX

T
i || → 0,

by (C7), it follows that

n∑
i=1

E(w2
i,n; w2

i,n > c) ≤ 1

c

{
E
(
εT1 Σ−1ε1

)(2+δ)/2
}2/(2+δ)

(
n∑
i=1

ηi,n

)
max

1≤i≤n
ηi,n

=
1

c

{
E
(
εT1 Σ−1ε1

)(2+δ)/2
}2/(2+δ)

uTBBTu max
1≤i≤n

ηi,n → 0

Thus, {wi,n}ni=1 satisfy the Lindeberg condition and it follows that

uTBΥ̌
−1/2

(XT
AΛXA)−1xA,iΛmεi

D→ N(0,uTGu).

Combining this with (S1.1)-(S1.3) proves the theorem.
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S1.3 Proof of Lemma 1

Part (a) (Rate of covariance matrix estimation under β̂)

We have Σ̂m = K1 + K2 + K3, where

K1 =
1

n

n∑
i=1

(yi −Xiβ
∗)(yi −Xiβ

∗)T =
1

n

n∑
i=1

εiε
T
i

K2 =
1

n

n∑
i=1

[
εi(β

∗ − β̂)TXT
i + Xi(β

∗ − β̂)εTi

]
K3 =

1

n

n∑
i=1

Xi(β
∗ − β̂)(β∗ − β̂)TXT

i .

We bound ||K1 −Σm||F , ||K2||F , and ||K3||F . Since

P


∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

εiε
T
i −Σm

∣∣∣∣∣
∣∣∣∣∣
2

F

> c

 ≤ 1

c
E

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

εiε
T
i −Σm

∣∣∣∣∣
∣∣∣∣∣
2

F

=
1

c

m∑
j,k=1

E

{
1

n

n∑
i=1

εijεik − σjk

}2

= O(m2/n)

it follows that ||K1 −Σm||F = OP (
√
m2/n). Notice that

||K3||F ≤ 1

n

n∑
i=1

||Xi(β̂ − β∗)(β̂ − β∗)TXT
i ||F = (β̂ − β∗)T

(
1

n

n∑
i=1

XT
i Xi

)
(β̂ − β∗)

≤

(
1

n

n∑
i=1

||xi||2
)
||β̂ − β∗||2 = O(R)OP (p/n)

and

||K2||F ≤ 2

n

n∑
i=1

||εi(β̂ − β∗)TXT
i ||F =

2

n

n∑
i=1

tr
(
εTi εi(β̂ − β

∗)TXT
i Xi(β̂ − β∗)

)1/2

≤ 2||β̂ − β∗||
n

n∑
i=1

λmax(XT
i Xi)

1/2||εi|| =
2||β̂ − β∗||

n

n∑
i=1

||xi||||εi||

≤ 2||β̂ − β∗||

(
1

n

n∑
i=1

||εi||2
)1/2(

1

n

n∑
i=1

||xi||2
)1/2

= OP (
√
pm/n).

The first transition is from the triangle inequality. The one before last is Cauchy-
Schwartz inequality, and the last equality uses the rate of consistency of the β̂ estimate
and condition (C4). The result follows from combining the bounds on ||K1−Σm||F ,K2

and K3.
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Part (b) (Consistency)

Assuming that Σ̂m = Σm +Op

(√
(m+ p)m/n

)
we will show that the estimator of Ω,

that minimizes Q(Ω|β̂) (where ||β̂ − β∗|| = Op(
√
p/n)) is consistent and sparsistent.

Define U a symmetric matrix of size m, αn =
√

(m+ p)m/n, and ∆n = αnU. Let
M be a constant.

P

(
inf

||U||F=M
Q(Ω + ∆u|β̂) > Q(Ω|β̂)

)
→ 1

For sufficiently large constant M . This will imply that there is a local minimizer in the
ball of radius Mαn around Ω.

Let

Q(Ωm + ∆u|β̂)−Q(Ωm|β̂) = tr(Σ̂m(Ωm + ∆u))− tr(Σ̂mΩm) + log det(Ωm)

−log det(Ωm + ∆u) +
∑
i≤j

(Pγ(|ωij + δij |)− Pγ(|ωij |))

= tr((Σ̂m −Σm)∆u) + vec(∆u)T
{∫ 1

0

g(v,Ωv)(1− v)dv

}
vec(∆u)

+
∑
i≤j

(Pγ(|ωij + δij |)− Pγ(|ωij |))

= L1 + L2 + L3

Where we used the taylor expansion of log det(Ωm + ∆u) around Ωm with the integral
form of the remainder (see Rothman et al (2008)), and Ωv = Ωm+v∆u, and g(v,Ωv) =
Ω−1
v ⊗Ω−1

v . Examining the various terms:

L1 = tr
(

(Σ̂m −Σm)∆u

)
≤ tr

(
(Σ̂m −Σm)T (Σ̂m −Σm)

)1/2

tr
(
∆T
u∆u

)1/2

= ||Σ̂m −Σm||F ||∆u||F = Op

(√
(m+ p)m/n

)
O(αn)

= OP ((m+ p)m/n)

vec(U)T
{∫ 1

0

g(v,Ωv)(1− v)dv

}
vec(U) ≥ M2/2 min

0≤v≤1
λmin

(
Ω−1
v ⊗Ω−1

v

)
≥ M2/2 min

0≤v≤1
λmin(Ω−2

v )

≥ M2/2 (R+ αnM)
−2

and this term is positive, so that

L2 = α2
nvec(U)T

{∫ 1

0

g(v,Ωv)(1− v)dv

}
vec(U) = Θ((m+ p)m/n).
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Note that in the last inequality we used the fact that λmax(A) = λmin(A−1) for a positive
definite matrix A, and λmax(A) ≤ ||A||F .

Finally, for L3:∑
i≤j

(Pγ(|ωij + δij |)− Pγ(|ωij |)) =
∑

i≤j,wij 6=0

(Pγ(|ωij + δij |)− Pγ(|ωij |))

+
∑

i≤j,wij=0

(Pγ(|ωij + δij |)

Where the right term satisfies
∑

i≤j,wij=0

(Pγ(|ωij + δij |) > 0. The left term is bounded by:

−
∑

i≤j,wij 6=0

P ′γ(|wij + δij |)|δij | ≥ −αnP ′γ(τ/2)
∑

i≤j,wij 6=0

|δij |

≥ −
√
tnαnP

′
γ(τ/2) ≥ −mαnP ′γ(τ/2)

Where tn is the number of non-zero elements in Ω and we used the relation between the
L1 and L2 norms. From condition (C11), it follows that L3, as well as L1, is dominated
by L2, and It follows that M may be chosen large enough so that the required probability
is close to 1, whenever n is sufficiently large. The result follows.

Part (C) (Uniform sparsity)

We examine the derivative of Q(Ω|Σ̂) at ωij = 0, and show that it is dominated by
the sign of the penalty term for all such terms. That will imply that the likelihood is
maximized when ω̂ij = 0.

∂Q(Ω̂|Σ̂)

ωij
= 2(σ̂ij − σij + P ′γ(|ω̂ij |)sign(ω̂ij))

From part (a), we have that ||Σ̂−Σ||F = Op(
√

(m+ p)m/n). Therefore,

max
ωij=0

(σ̂ij−σij) = Op(
√

(m+ p)m/n). At the same time, since ωij = 0, and ||Ω̂−Ω||2F =

OP ((m+ p)m/n), ω̂ij = Op(
√

(m+ p)m/n). From condition (C12), the result hold.

S1.4 Proof of Theorem 2

Preliminaries

First, we note that from Lemma 4, if ||Λm − Ωm|| → 0 then BΥ−1/2(β̂A − β
∗
A)

D→
N(0,G), where Υ = (XT

AΩXA)−1 and B is a sequence defined in Theorem 1.
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Proof of the theorem

At the first stage of Algorithm 1, a regularized estimator, or MLE (if feasible by sample

size) for β, namely β̂
(1)

is found under working independence assumption. According to
Theorems 1, under conditions (C1)-(C8), this estimator is

√
p/n consistent. Then, an

estimator of Ω, namely Ω̂
(1)

is found by minimizing Q(Ω|β̂
(1)

). According to Lemma 1,
if conditions (C9)-(C12) also hold, this estimator is

√
(m+ p)m/n consistent. Next, an

estimator β̂
(2)

is found be minimizing Q(β|Ω̂
(1)

), and Ω̂
(2)

is estimated by minimizing

Q(Ω|β(2)).

(i) If conditions (C1)-(C8) hold, according to Theorem 1 β̂
(2)

is consistent, sparsistent,
and asymptotically normal.

(ii) If in addition conditions (C9)-(C11) hold, then according to Theorem 1 and Lemma
4, this estimator is consistent, sparsistent, asymptotically normally distributed and

efficient. By Lemma 1 Ω̂
(2)

is consistent and sparsistent.
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S2 Consistency of the BIC

Before proceeding, note that a penalized estimator of β with working/estimated preci-

sion matrix Ω̂ and with non-zero entries on the set Â is given by

β̂Â = (XT
Â

Ω̂X
Â

)−1XT
Â

Ω̂Y − n(XT
Â

Ω̂X
Â

)−1P ′λ(β̂Â)

S2.1 Proof of Theorem 3

part (a) (fixed precision matrix)

We first show that the probability of selection of any overfitting model (a model with at
least one “false positive” selection) tends to 0. A ⊂ Â:

Consider

BIC(β̂A)− BIC(β̂Â) =
1

n

[
(Y −Xβ̂A)TΛ(Y −Xβ̂A)− (Y −Xβ̂Â)TΛ(Y −Xβ̂Â)

+kn(s− ŝ)
]

the penalized estimator satisfies β̂Â = (XT
Â

ΛX
Â

)−1XT
Â

ΛY + n(XT
Â

ΛX
Â

)−1P ′λ(β̂Â).
Therefore by using the decomposition Y = XAβA + ε and since

{I−Λ1/2X
Â

(XT
Â

ΛX
Â

)−1XT
Â

Λ1/2}

is a projection matrix on the null space of XÂ, it is easy to verify that

(Y −XÂβ̂Â)TΛ(Y −XÂβ̂Â) =

= εTΛ1/2{I−Λ1/2X
Â

(XT
Â

ΛX
Â

)−1XT
Â

Λ1/2}Λ1/2ε+ n2P ′λ(β̂Â)T (XT
Â

ΛX
Â

)−1P ′λ(β̂Â)

= (Y −Xβ̂Â,ML)TΛ(Y −Xβ̂Â,ML) + n2P ′λ(β̂Â)T (XT
Â

ΛX
Â

)−1P ′λ(β̂Â)

Claim: the terms involving the penalty are negligible. Using conditions (C2) and Lemma

5 for bounding the eigenvalues of
(
n(XT

AΛXA)−1
)

and
(
n(XT

Â
ΛX

Â
)−1
)

, condition (C7)

to bound the penalty on term belonging to the true model, and condition (C8) for false
positive terms, we get that for the true model:

n2P ′λA(β̂A)T (XT
AΛXA)−1P ′λA(β̂A) ≤ n||P ′λA(β̂A)||2λ1

(
n(XT

AΛXA)−1
)

≤ Rnsop(
1

np
) = op(1)

while for the overfitted model:
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n2P ′λÂ(β̂Â)T (XT
Â

ΛX
Â

)−1P ′λÂ(β̂Â) ≥ n||P ′λÂ(β̂Â)||2λmin

(
n(XT

Â
ΛX

Â
)−1
)

≥ R−1nΘ

(√
max(p, kn)

n

)
= Θ

(√
nmax(p, kn)

)
.

Therefore, asymptotically, the difference between the BIC’s satisfies:

n

(
BIC(β̂A)− BIC(β̂Â)

)
≤ (Y −Xβ̂A,ML)TΛ(Y −Xβ̂A,ML)

−(Y −Xβ̂Â,ML)TΛ(Y −Xβ̂Â,ML) + kn(s− ŝ)

Denote the projection of a vector x on the column space of a matrix A by PA(x), and
P⊥A (x) the projection on the sparse orthogonal to the column space of A. One can see
that

(Y −Xβ̂Â,ML)TΛ(Y −Xβ̂Â,ML) = εTΛ1/2{I−Λ1/2X
Â

(XT
Â

ΛX
Â

)−1XT
Â

Λ1/2}Λ1/2ε

= ||P⊥[
Λ1/2

XÂ

](Λ1/2ε)||2,

(Y −Xβ̂A,ML)TΛ(Y −Xβ̂A,ML) = εTΛ1/2{I−Λ1/2XA(XT
AΛXA)−1XT

AΛ1/2}Λ1/2ε

= ||P⊥[
Λ1/2

XA

](Λ1/2ε)||2

= ||P⊥[
Λ1/2

XÂ

](Λ1/2ε)||2 + ||P[
X̃Â\A

](Λ1/2ε)||2

Where X̃Â\A = P⊥
[Λ1/2XA]

(XÂ), a matrix of rank ŝ− s. Therefore,

(Y −Xβ̂A,ML)TΛ(Y −Xβ̂A,ML)− (Y −Xβ̂Â,ML)TΛ(Y −Xβ̂Â,ML)

= ||P[
X̃Â\A

](Λ1/2ε)||2 (S2.1)

where

||P[
X̃Â\A

](Λ1/2ε)||2 = εTΛ1/2{Λ1/2X̃Â\A(X̃T
Â\AΛX̃

Â\A)−1X̃T
Â\AΛ1/2}Λ1/2ε

= n−1εTΛX̃Â\A

(
n−1X̃T

Â\AΛX̃
Â\A

)−1

X̃T
Â\AΛε

≤ Rn|| 1
n

X̃T
Â\AΛε||2

Where we used condition (C2) and Lemma 5 for the inequality. According to Lemma 3,
we have the uniform bound:

P

(
sup
A⊂Â

1

ŝ− s
||P[

Λ1/2
X̃Â\A

](Λ1/2ε)||2 ≥ kn

)
→ 0
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Therefore, using (S2.1) and (S2.2):

P

(
sup
A⊂Â

n

ŝ− s

(
BIC(β̂A)− BIC(β̂Â)

)
> 0

)

≤ P

(
sup
A⊂Â

n

ŝ− s

(
(Y −Xβ̂A,ML)TΛ(Y −Xβ̂A,ML)

−(Y −Xβ̂Â,ML)TΛ(Y −Xβ̂Â,ML) + kn

)
> 0

)

≤ P

(
sup
A⊂Â

1

ŝ− s
||P[

Λ1/2
X̃Â\A

](Λ1/2ε)||2 ≥ kn

)
→ 0

The probability of selection of an underfitting model tends to 0 (Here “underfitting”
model is a model with at least one true parameter set as zero, i.e. false negative).
A\Â 6= ∅: First, as before, we claim that the penalty terms are negligible. It was shown

in the previous part,

n2P ′λA(β̂A)T (XT
AΛXA)−1P ′λA(β̂A) = op(1) (S2.2)

and therefore could be seen to be dominated by other terms in the BIC. Also:

n2P ′λÂ(β̂Â)T (XT
Â

ΛX
Â

)−1P ′λÂ(β̂Â) > 0. (S2.3)

Denote the sub-vector of a vector u corresponding to the indices in a set B by u[B]. Write
Y = XAβ

∗
A + ε = XA∩Âβ

∗
A[A∩Â]

+ XA\Âβ
∗
A[A\Â]

+ ε = XÂβ
∗
A[Â]

+ XA\Âβ
∗
A[A\Â]

+ ε

(since the β∗j for j ∈ Â\A is zero). Then:

(Y −XAβ̂A,ML)TΛ(Y −XAβ̂A,ML) =

= (XAβ
∗
A + ε−XAβ̂A,ML)TΛ(XAβ

∗
A + ε−XAβ̂A,ML)

= εTΛε+ (β∗A − β̂A,ML)TXT
AΛXA(β∗A − β̂A,ML) + 2(β∗A − β̂A,ML)TXT

AΛε

Similarly:

(XÂβ
∗
A[Â] + XA\Âβ

∗
A[A\Â] + ε−XÂβ̂Â,ML)

TΛ(XÂβ
∗
A[Â] + XA\Âβ

∗
A[A\Â] + ε−XÂβ̂Â,ML)

= εTΛε+ (β∗
A[Â]
− β̂Â,ML)TXT

Â
ΛXÂ(β∗

A[Â]
− β̂Â,ML)

+β∗T
A[A\Â]

XT
A\ÂΛXA\Âβ

∗
A[A\Â]

+ 2(β∗
A[Â]
− β̂Â,ML)TXT

Â
ΛXA\Âβ

∗
A[A\Â]

+2(β∗
A[Â]
− β̂Â,ML)TXT

Â
Λε+ 2β∗T

A[A\Â]
XT
A\ÂΛε

from the consistency and identifiability assumptions, condition (C2) and lemma 5, the
following hold:

n(β∗A − β̂A,ML)T (n−1XT
AΛXA)(β∗A − β̂A,ML) = Op(np/n) = Op(p)



VARIABLE SELECTION FOR MULTIVARAITE REGRESSION S15

By Lemma 2 part 2, 2(β∗A − β̂A,ML)TXT
AΛε = εTΛXA

(
XT
AΛXA

)−1
XT
AΛε = Op(p).

inf
Â⊂A

(
nβ∗T

A[A\Â]
(n−1XT

A\ÂΛXA\Â)β∗
A[A\Â]

)
≥ inf
Â⊂A

(
n||β∗

A[A\Â]||2λmin
(
n−1XT

A\ÂΛXA\Â

))
(S2.4)

≥ nR2|A\Â| min
j∈A\Â

β2
j = R2|A\Â|Θ(max(p, kn)) (S2.5)

We will now show that the “cross product” terms are dominated by the other terms,
uniformly over all models with at least one false negative variable. We first show it for
2(β∗

A[Â]
−β̂Â,ML)TXT

Â
ΛXA\Âβ

∗
A[A\Â]

, than for 2(β∗
A[Â]
−β̂Â,ML)TXT

Â
Λε+2β∗T

A[A\Â]
XT
A\ÂΛε.

From Lemma 6, 2(β∗
A[Â]
− β̂Â,ML)TXT

Â
ΛXA\Âβ

∗
A[A\Â]

is dominated by

max
(
nβ∗TA[A\Â](n

−1XT
A\ÂΛXA\Â)β

∗
A[A\Â], n(β

∗
A[Â] − β̂Â,ML)

T (n−1XT
ÂΛXÂ)(β

∗
A[Â] − β̂Â,ML)

)
.

From Lemma 7, we have that

2(β∗
A[Â]
− β̂Â,ML)TXT

Â
Λε+ 2β∗T

A[A\Â]
XT
A\ÂΛε ≤

p−1/4

[
(β∗

A[Â]
− β̂Â,ML)TXT

Â
ΛXÂ(β∗

A[Â]
− β̂Â,ML)

+2(β∗
A[Â]
− β̂Â,ML)TXT

Â
ΛXA\Âβ

∗
A[A\Â]

+ β∗T
A[A\Â]

XT
A\ÂΛXA\Âβ

∗
A[A\Â]

]

with probability tending to 1 uniformly over all sets Â such that A\Â 6= ∅.

Finally, we use the results on the penalty terms (S2.2) and (S2.3) in combining the above
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results:

sup
Â⊂A

(
BIC(β̂A)−BIC(β̂Â)

)
= sup

Â⊂A

(
1

n
{(Y −XAβ̂A,ML)TΛ(Y −XAβ̂A,ML)

+n2P ′λ(β̂A)T (XT
Â

ΛXA)−1P ′λ(β̂A)

−(Y −XÂβ̂Â,ML)TΛ(Y −XÂβ̂Â,ML)

−n2P ′λ(β̂Â)T (XT
Â

ΛX
Â

)−1P ′λ(β̂Â) + kn(s− ŝ)}
)

≤ sup
Â⊂A

(
1

n
{(Y −XAβ̂A,ML)TΛ(Y −XAβ̂A,ML) + op(1)

−(Y −XÂβ̂Â,ML)TΛ(Y −XÂβ̂Â,ML) + kn|A\Â|}
)

=
1

n

{
Op(p) + inf

Â⊂A

(
kn|A\Â| − nβ∗TA\Â(n−1XT

A\ÂΛXA\Â)β∗
A\Â

)}
=

1

n

{
Op(p) + |A\Â|

[
kn −R2Θ(max(p, kn))

]}

thus, as n→∞ BIC(β̂A)−BIC(β̂Â) < 0 uniformly for every underfitted model Â.

part (b) (estimated precision matrix)

Let Λ be an estimator of Ω, based on some initial
√
p/n-consistent estimator of β. Then,

by Lemma 1, we have that ||Λ−Ω||F = Op(
√
m(m+ p)/n).

Let Λ = Ω̂ be a
√
m(m+ p)/n-consistent estimator of Ω. We want to show that

with probability tending to 1 the eigenvalues of Λ are uniformly bounded. It is given
that ||Λ − Ω||F = ||∆||F = Op(

√
m(m+ p)/n). Since the operator norm of a matrix

is bounded by its Frobenius norm, we have that λ1(∆) = Op(
√
m(m+ p)/n). Invoking

the result from matrix perturbation theory (Stewart and Sun (1990)): if A is an m×m
squared positive definite matrix and E is a perturbation matrix, then for all k = 1, . . . ,m

λk(A) + λ1(E) ≥ λk(A + E) ≥ λk(A) + λm(E). (S2.6)

and take Ω to be the positive definite matrix, and ∆ to be the perturbation matrix. With
probability tending to 1, there exists an N ∈ N so that for all n > N,

√
m(m+ p)/n <

R−1/2. Then, for n > N :

λ1(Λ) ≤ λ1(Ω) + λ1(∆) = R+Op(
√
m(m+ p)/n) ≤ R+R−1/2 and,

λm(Λ) ≥ λm(Ω)− λ1(∆) = R−Op(
√
m(m+ p)/n) ≥ R−1 −R−1/2 = R−1/2

With probability tending to 1. Therefore, the BIC is valid and consistent for model
selection with the consistent estimator Λ.
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S3 Large p main results

S3.1 Modified technical conditions

(C1’) Let p > n at a sub-exponential rate, so that log(p)/n→ 0. The number of outcomes
is still smaller than the sample size m < n. In addition, the true model size s = |A|
satisfies s < n and s

log(p)
→ 0.

(C2’) The eigenvalues of the positive definite matrices 1
NXXT , 1

nXT
AXA satisfy

0 < R−1 < λmin

(
1

n
XT

AXA

)
, λmin

(
1

n
XXT

)
< λmax

(
1

n
XT

AXA

)
, λmax

(
1

n
XXT

)
< R <∞

(C3’) Identifiability condition: min
j:βj 6=0

βj√
log(p)/n

→∞

(C7’) If rn is such that lim
n

rn√
log(p)/n

=∞, then n
√

log(p)/nP ′λ(rn) = o(1)

(C8’) If rn is such that lim
n

rn√
log(p)/n

≤ c, then P ′λ(rn)/m→∞

(C10’) The errors are normally distributed, i.e. ε ∼ N (0,Σ)

S3.2 Proof of Theorem 4

Part (a) (consistency)

As in the proof of theorem 1, we decompose the difference between the penalized likeli-
hood functions toD(u) = J1+J2+J3, where ||u|| = M and J1(u) = −2

√
log(p)/nεTΛXu,

J2(u) = (log(p)/n)uTXTΛXu and J3(u) = 2n

[∑p
j=1 Pλ(|β∗j+

√
log(p)/nuj |)−Pλ(|β∗j |)

]
.

Consider the presentation u = (uTA,u
T
Ac)

T ,X = (XA|XAc). Then:

|J1| = 2
√

log(p)/nεTΛXAuA + 2
√

log(p)/nεTΛXAcuAc = J1A + J1Ac

J2 = log(p)/n

(
uTAXT

AΛXAuA + uTAcX
T
AcΛXAcuAc

+uTAXT
AΛXAcuAc + uTAcX

T
AcΛXAuA

)
J3 = 2n

[∑
j∈A

Pλ(|β∗j +
√

log(p)/nuj |)− Pλ(|β∗j |)
]

+ 2n

[ ∑
j∈Ac

Pλ(|
√

log(p)/nuj |)
]

= J3A + J3Ac

Note that since M = ||u|| ≤ ||uA||+||uAc ||, at least one of ||uA||, ||uAc || 6→ 0. Therefore,
if ||uAc || → 0, there exists a boundB andNB such that for n > NB , M ≥ ||uA|| > B > 0.
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We first show that if ||uAc || is bounded from below, then J3Ac dominates the rest of the
terms. We then show that if ||uAc || → 0, then J2 dominates the sum J1 + J2 + J3.

Suppose first that ||uAc || is bounded. Let xn/
√

log(p)/n→∞,

limn→∞ |yn/
√

log(p)/n| ≤ c. Then

|J1| ≤ 2
√

log(p)/nn(
1

N
εT ε)1/2(

1

n
uTXTΛ2Xu)1/2 ≤ Op(

√
mnlog(p))||u||R3

J2 ≥ nlog(p)/n||u||2λmin(n−1XTΛX) ≥ 0

J3A = 2n
√

log(p)/n
∑
j∈A

ujP
′
λ(β∗j + tj

√
log(p)/nuj)

≤ 2n
√

log(p)/n
√
s||u||2P ′λ(xn) = 2

√
sMop(1)

J3Ac = 2n
√

log(p)/n
∑
j 6∈A

|uj |P ′λ(|tj
√

log(p)/nuj |)

≥ 2n
√

log(p)/n
∑
j 6∈A

|uj |P ′λ(|yn|) = 2(
∑
j 6∈A

|uj |)n
√

log(p)/nΘp(m)

= 2||uAc ||1Θp(m
√
nlog(p))

and we can see that indeed the sum J1 + J2 + J3 is positive with probability tending to
1. Suppose now that ||uAc || → 0 as n→∞. Then ||uA|| is bounded. We use Lemma 2
and get:

J1A ≤ 2
√
nlog(p)|| 1

n
εTΛXA||||uA|| ≤ 2M

√
nlog(p)Op(

√
s/n) = Op(

√
log(p)s)

J1Ac ≤ 2
√
nlog(p)Op(m)||uAc ||(

1

n
uTAcX

T
AcΛ

2XAcuAc)
1/2

= Op(m
√
nlog(p)||uAc ||2)

Therefore, if ||uAc || → 0, but ||uAc || 6= 0, we have that J1Ac = op(J3Ac). Further, if
||uAc|| = 0, then

J2 ≥ (log(p)/n)uTAXT
AΛXAuA ≥ log(p)||uA||2λmin(

1

n
XT
AΛXA) = Θ(log(p))

and J1 = op(J2). That proves part (a).

Part (b) (Uniform sparsity)

We proceed as in theorem 1 part (b), and show that if ||β̂ − β∗|| < M
√

log(p)/n. then
for each j such that β∗j = 0, the derivative of the penalized likelihood is maximized at 0.

As in Theorem 1, we see that the derivative by βj , where the true β∗ = 0, uniformly
for all j = 1, . . . , p, satisfies:

∂

∂βj
Q(β) = −2XT

j Λε+ 2XT
j ΛX(β − β∗) + 2nsign(βj)P

′
λ(|βj |)

≤ I1 + I2 + I3
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Consider I1. Let εΛ
i = Λεi ∼ N (0,ΛΣΛ). Since Xi = I ⊗ xi, there is some

k = 1, . . . ,m such that

|I1| = 2
√
n

(
1√
n

n∑
i=1

xijε
Λ
ik

)
≤
√
n max
j=1,...,p0,k=1,...,m

(
1√
n

n∑
i=1

xijε
Λ
ik

)

According to Lyapunov CLT, for each pair of indices j, k we have that (using Lemma 5)

s2
jk =

n∑
i=1

x2
ijvar(εΛik) = σ2

k

n∑
i=1

x2
ij = nσ2

k

then
1

sjk

n∑
i=1

xijε
Λ
ik =

1√
n

n∑
i=1

xijε
Λ
ik ∼ N (0, σ2

k).

Therefore, let maxσ2
1 , . . . , σ

2
m < B (this bound exists, since we assume least 2+δ bounded

moments of the errors, and Λ has bounded eigenvalues), and denote by uj,k the j, k
normal random variable with mean 0 and variance B. then a uniform bound for all
j = 1, . . . , p is given by:

√
n max
j=1,...,p0,k=1,...,m

(
1√
n

n∑
i=1

xijε
Λ
ik

)
≤
√
n max
j=1,...,p0,k=1,...,m

uj,k ≤ B
√
nOp(

√
log(p))

The bound for the maximum of normal variables with diminishing correlation is given
in Arias-Castro et al (2011), and note that correlations between the errors may only
decrease this bound. Therefore, I1 < 2B

√
nOp(log(p)) uniformly for all coordinates

j = 1, . . . p of β. Therefore:

|I1| ≤ max
j=1,...p

(
−2XT

j Λε
)
≤ B
√
nOp(

√
log(p))

I2 ≤ max
j=1,...p

(
2XT

j ΛX(β − β∗)
)
≤ 2||XTΛX(β − β∗)||

≤ 2nλ1

(
1

n
XTΛX

)
||β − β∗|| = 2nRO(

√
log(p)/n)

I3 = 2nsign(βj)P
′
λ(|βj |) = 2nΘ(mlog(p)/

√
n)sign(βj) = 2Θ(mlog(p)

√
n)sign(βj)

It is easy to see that β̂j = 0 maximizes the penalized likelihood for all j 6= A.

S3.3 Proof of corollary

Similar to Theorem 2.
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S4 Secondary lemmas

Lemma 2: Let conditions (C1)-(C10) hold. Then

1. || 1nXTΛε|| = Op(
√
p/n).

2. εTΛXA

(
XT
AΛXA

)−1
XT
AΛε = Op(p) for an indices set A ⊂ {1, . . . , p}.

Proof: 1. Let Q = εTΛ(n−1XXT )Λε be a quadratic form with the positive semidefinite
matrix of rank p Λ(n−1XXT )Λ, and denote ε ∼ F (0,Σ) for some distribution F and a
block diagonal covariance matrix Σ. Then

Q = εTΣ−1/2Σ1/2Λ(n−1XXT )ΛΣ1/2Σ−1/2ε = zTAz = zTUDUTz = (Uz)TD(Uz)

where z ∼ F (0, I) and UTDU is the spectral decomposition of the positive semidefinite
matrix A. Uz ∼ F (0, I) since U is orthogonal. Denote Uz = (u1, . . . , uN )T , where

ui ∼ F (0, 1) for i = 1, . . . , N . Then Q =
∑N
i=1 λiu

2
i , where λ1, . . . , λN are the eigenvalues

of Σ1/2Λ(n−1XXT )ΛΣ1/2 and only p of them are different than zero and are bounded
positive numbers from (C2). Fix M and let ε =

√
p/n. Since the fourth moments of ε

are bounded, there exists a B such that E((ui− 1)4) < B, i = 1, . . . , N . By Chebyshev’s
inequality:

P

(∣∣∣∣∣ 1nQ− 1

n

N∑
i=1

λi

∣∣∣∣∣ ≥Mε

)
≤
n2

N∑
i=1

λ2
iE(u2

i − 1)

p2n2M2
≤ pR2B

p2M2
→ 0 as n→∞

Therefore 1
nQ is of the same order of 1

n

∑N
i=1 λi = Op(p/n). We conclude that there

exists M large enough and || 1nXTΛε|| =
√
Q/n = Op(

√
p/n).

For 2., notice that

εTΛXA

(
XT
AΛXA

)−1
XT
AΛε ≤ ||εTΛXA||2λ1

(
[XT

AΛXA]−1
)

=
1

n
||εTΛXA||2λ1

(
[
1

n
XT
AΛXA]−1

)
≤ n|| 1

n
εTΛXA||2λ1

(
[
1

n
XTΛX]−1

)
≤ nR2|| 1

n
εTΛX||2 = Op(p)

Lemma 3 Let conditions (C1)-(C10) hold, and let kn be such that p/k
2+δ
2

n → 0.

1. Let Â be a set of indices such that Â ⊃ A, and let X̃Â\A = P⊥
[Λ1/2XA]

(XÂ), where

P⊥
[Λ1/2XA]

(XÂ) is the projection of X̂Â on col([Λ1/2XA])⊥. This is a matrix of rank
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(ŝ− s), where ŝ = |Â| and s = |A|. Then

P

(
sup
A⊂Â

1

ŝ− s
||P[X̃Â\A](Λ

1/2ε)||2 ≤ kn

)
→ 1

2.

P

(
sup

j=1,...,p

∣∣∣∣ 1√
n
xTj Λε

∣∣∣∣ <√kn)→ 1

Proof: First, we claim that ||x̃j ||2 = ||xj−PM (xj)||2 ≤ ||xj ||2. This is straight forward
from the Pythagorean theorem. Next, we bound

1

n
||Σ1/2Λx̃j ||22 =

1

n
x̃Tj ΛΣΛx̃j ≤

1

n
xTj xjλ1

(
Λ2
)
λ1(Σ) ≤ R3 1

n
tr(xjx

T
j )

= R3λ1

(
1

n
xjx

T
j

)
≤ R3λ1

(
1

n
XXT

)
≤ R4

where for we used the eigenvalue bound from condition (C2) a few times, and Lemma
6 for the fifth transition. Presented differently, we have that

|| 1√
n
x̃Tj ΛΣ1/2||2 ≤ R4.

In the following steps we will use Lemma 3 in Dicker et al (2012), that says that there

exists a constant K such that sup||u||=1E
∣∣uT ε̃∣∣2+δ

< K for ε̃ iid with bounded 2 + δ

moments. Let ε̃ = Σ−1/2ε, so that cov(ε̃) = I.

P

(
sup
A⊂Â

1

ŝ− s
||P[X̃Â\A](Λ

1/2ε)||2 ≥ kn

)
≤ P

(
sup
A⊂Â

Rn

ŝ− s
|| 1
n

X̃Â\AΛε||2 ≥ kn

)

= P

(
sup
A⊂Â

R

ŝ− s
|| 1√

n
X̃Â\AΛΣ1/2ε̃||2 ≥ kn

)

≤ P

(
(ŝ− s) sup

j∈1,...,p

R

ŝ− s

∣∣∣∣ 1√
n
x̃Tj ΛΣ1/2ε̃

∣∣∣∣2 ≥ kn
)

≤
∑

j=1,...p

P

(
sup

j∈1,...,p
R

∣∣∣∣ 1√
n
x̃Tj ΛΣ1/2ε̃

∣∣∣∣2 ≥ kn
)
≤ pP

(
R5sup

u
|uε̃|2 ≥ kn

)

= pP

(
R5(2+δ)/2sup

u
|uε̃|2+δ ≥ k

2+δ
2

n

)
≤ pR5(2+δ)/2E

(
|uT ε̃|

)
k

2+δ
2

n

≤ pR5(2+δ)/2K

k
2+δ
2

n

→ 0

which proves part 1. Part 2 follows similarly:

P

(
sup

j=1,...p

∣∣∣∣ 1√
n
xTj ΛΣ1/2ε̃

∣∣∣∣ >√kn) ≤ pR2P
(∣∣uT εk∣∣ >√kn) = pR2P

((
uT ε̃

)2+δ
> k

2+δ
2

n

)
→ 0
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Lemma 4 Suppose that ||Λm −Ωm|| → 0 holds. Then

B(Υ̌
−1/2 −Υ−1/2)Υ̌(Υ̌

−1/2 −Υ)−1/2)BT → 0.

Proof: From the above expression, it is clear that, in fact, it suffices to show

1√
n
||Υ̌−1/2 −Υ−1/2|| → 0. (S4.1)

Now, since ||Λ−Ω|| → 0, (C2) and some basic matrix manipulations imply that∣∣∣∣∣∣∣∣ 1nΥ̌
−1 − 1

n
Υ−1

∣∣∣∣∣∣∣∣→ 0.

The convergence (S4.1) and part (ii) of the theorem follow from Theorem VII.2.12 of
(Bhatia, 1997).

Lemma 5. Let X be a n× p matrix, let A be a subset of the indices {1, . . . , p}, and let
XA be the matrix whose columns are the subset of columns of X corresponding to A.
Then:

(i) σmin(X) ≤ σmin(XA) ≤ σmax(XA) ≤ σmax(X)

(ii) λmin(XTΛX) ≤ λmin(XT
AΛXA) ≤ λmax(XT

AΛXA) ≤ λmax(XTΛX) where Λ is a
symmetric positive definite matrix.

Where σmax, σmin, λmax, λmin are the largest and smallest singular values of a matrix,
and the largest and smallest eigenvalues of a matrix.

Proof.

1. By definition, σmax(XA) = max
||uA||=1

||XAuA||2. Let u∗A be the vector with the

indices corresponding to A equal to uA and the rest are zero. Then σmax(X) =
max
||u||=1

||Xu||2 ≥ max
||u∗A||=1

||Xu∗A||2. Similarly it can be shown for the minimum

singular value.

2. From the Cholesky decomposition Λ = LLT where L is a lower diagonal matrix.
Then λmax(XTΛX) = σ2

max(LX). Since (LXA) = (LX)A, the inequalities follow
from part (i).

Lemma 6. Let Λ be a positive definite symmetric matrix, u,v vectors. Then

|uTΛv| ≤
√
uTΛu

√
vTΛv ≤ 1

2
uTΛu+

1

2
vTΛv
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Proof. Notice that f(x,y) = xTΛy is an inner product of x and y. Therefore we can
use the Cauchy-Schwartz inequality and the averages inequality to get:

|uTΛv| ≤
√
uTΛu

√
vTΛv =

√
uTΛu · vTΛv ≤ 1

2
uTΛu+

1

2
vTΛv

Lemma 7: Under the regularity conditions (C1)-(C10), and the identifiability condition
in Theorem 3, the following hold:

P

(
sup

Â:A\Â6=∅

∣∣∣(β∗A[Â]
− β̂Â,ML)TXT

Â
Λε+ β∗T

A[A\Â]
XT
A\ÂΛε

∣∣∣ >
p−1/4

[
(β∗

A[Â]
− β̂Â,ML)TXT

Â
ΛXÂ(β∗

A[Â]
− β̂Â,ML)

+2(β∗
A[Â]
− β̂Â)TXT

Â
ΛXA\Âβ

∗
A[A\Â]

+β∗T
A[A\Â]

XT
A\ÂΛXA\Âβ

∗
A[A\Â]

])
→ 0

Proof: To simplify, note that we want to show that for some vectors u1,u2 we have
that |uT1 Λ1/2ε + uT2 Λ1/2ε| > n1/4||u1 + u2||2. We are going to bring the expression
to a form easier to work with. First, let us stack the two terms together, by having
XAβ

∗
A[A∪Â]

instead of the two XA\Âβ
∗
A[A\Â]

,XÂβ
∗
A[Â]

. We can do it by stacking XÂ on

XA\Â as XÂ∪A, and similarly setting β∗
A[Â∪A]

= (β∗T
A[Â]

,β∗T
A[A\Â])T . Denote β̂Â:ML,0 =

(β̂
T

Â,ML,0
T
|A\Â|)

T the stacked vector of β̂Â,ML and zeros corresponding to A\Â.

We want to show:

P

(
sup

Â:A\Â 6=∅

∣∣∣(β∗A[Â∪A]
− β̂Â:ML,0)TXT

A∪ÂΛε
∣∣∣ >

p−1/4(β∗
A[Â∪A]

− β̂Â:ML,0)TXT
A∪ÂΛXA∪Â(β∗

A[Â∪A]
− β̂Â:ML,0)

)
→ 0.

First we bound the right term from below. We use Lemma 5 and condition (C2):

(β∗
A[Â∪A]

− β̂Â:ML,0)TXT
A∪ÂΛXA∪Â(β∗

A[Â∪A]
− β̂Â:ML,0) ≥

≥ n||β∗
A[Â∪A]

− β̂Â:ML,0||
2λm

(
1

n
XT
A∪ÂΛXA∪Â

)
≥ n||β∗

A[Â∪A]
− β̂Â:ML,0||

2λm

(
1

n
XTΛX

)
≥ nR−2||β∗

A[Â∪A]
− β̂Â:ML,0||

2
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and note that, from the identifiability condition in Theorem 3(
infj∈A |β∗j | = Θ(

√
max(kn, p)/n

)
, we have that(

inf
Â:A\Â 6=∅

||β∗
A[Â∪A]

− β̂Â:ML,0||

)
= Θ(

√
max(kn, p)/n).

Using similar arguments to before:

||(β∗
A[Â∪A]

− β̂Â:ML,0)TXT
A∪ÂΛΣ1/2||2 =

= (β∗
A[Â∪A]

− β̂Â:ML,0)TXT
A∪ÂΛΣΛXA∪Â(β∗

A[Â∪A]
− β̂Â:ML,0)

≤ n||β∗
A[Â∪A]

− β̂Â:ML,0||
2λ1

(
1

n
XT
A∪ÂΛΣΛXA∪Â

)
≤ n||β∗

A[Â∪A]
− β̂Â:ML,0||

2λ1

(
1

n
XTΛΣΛX

)
≤ nR4||β∗

A[Â∪A]
− β̂Â:ML,0||

2

Consider the required probability. Let ε̃ = Σ−1/2ε be a vector of iid random variables
with bounded 2 + δ moments. Let u be the vector of norm 1:

u = (β∗
A[Â∪A]

− β̂Â:ML,0)TXT
A∪ÂΛΣ1/2/||(β∗

A[Â∪A]
− β̂Â:ML,0)TXT

A∪ÂΛΣ1/2||.

Then:

P

(
sup

Â:A\Â 6=∅

∣∣∣(β∗A[Â∪A]
− β̂Â:ML,0)TXT

A∪ÂΛε
∣∣∣ >

p−1/4(β∗
A[Â∪A]

− β̂Â:ML,0)TXT
AΛXA(β∗

A[Â∪A]
− β̂Â:ML,0)

)

≤ P

(
sup

Â:A\Â6=∅
R2||β∗

A[Â∪A]
− β̂Â:ML,0||

∣∣uT ε̃∣∣ > np−1/4R−2||β∗
A[Â∪A]

− β̂Â:ML,0||
2

)

≤ P

(
sup

u:||u||=1

∣∣uT ε̃∣∣ > √np−1/4R−4 inf
Â:A\Â 6=∅

||β∗
A[Â∪A]

− β̂Â:ML,0||

)

= P

 sup
u:||u||=1

∣∣uT ε̃∣∣2+δ
>

[
√
np−1/4R−4 inf

Â:A\Â6=∅
||β∗

A[Â∪A]
− β̂Â:ML,0||

]2+δ


≤ P

(
sup

u:||u||=1

∣∣uT ε̃∣∣2+δ
>
[√

np−1/4R−4
√

max(kn, p)/n
]2+δ

)

≤
sup

u:||u||=1

E
∣∣uT ε̃∣∣2+δ

[
R−4p−1/4

√
max(kn, p)

]2+δ
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From Lemma 3 in Dicker et al (2012) we have that supu:||u||=1E
∣∣uT ε̃∣∣2+δ

< K for some
constant K. Therefore:

P

(
sup

Â:A\Â 6=∅

∣∣∣(β∗A[Â∪A]
− β̂Â:ML,0)TXT

A∪ÂΛε
∣∣∣ >

p−1/4(β∗
A[Â∪A]

− β̂Â:ML,0)TXT
A∪ÂΛXA∪Â(β∗

A[Â∪A]
− β̂Â:ML,0)

)
→ 0

uniformly over all Â such that A\Â 6= ∅.

S5 Additional small-p simulations results

The following tables summarize three simulation studies. In all simulation studies, the
settings are exactly the same as in the paper. However, we consider two alternatives to
the estimation procedure:

1. Working correlation structure - identity matrix. We consider using the identity
matrix as the working correlation structure. We use both BIC and data validation
for tuning parameter selection. Table 1 provides variable selection results and
Table 2 provides the estimated and empirical standard errors of the regression
parameter estimates.

2. Iterative algorithm in which the regression parameters are estimated and a penalty
parameter is selected using either BIC or data validation, then precision matrix
is estimated and penalty parameter is selected, then regression parameters are
estimated, etc. Table 3 provides variable selection results and Table 4 provides the
estimated and empirical standard errors of the regression parameter estimators.

In addition, Table 5 provides variable selection results in the (unrealistic) scenario when
the true correlation structure is known, and the precision matrix is estimated paramet-
rically accordingly.
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Simulation Method size TM FP FN ME PE

AR cov, n = 50

LASSO - BIC 4.95 0.17 2.10 0.15 1.60 10.57
Adaptive LASSO - BIC 4.94 0.08 2.32 0.38 1.62 10.36
SCAD - BIC 4.75 0.16 1.99 0.24 1.53 10.34
SELO - BIC 3.89 0.33 1.17 0.28 1.42 10.56
LASSO - validation 10.44 0.01 7.47 0.04 1.31 10.49
Adaptive LASSO - validation 8.10 0.03 5.29 0.19 1.33 10.39
SCAD - validation 7.77 0.06 4.86 0.10 1.15 10.38
SELO - validation 3.75 0.46 0.92 0.18 0.97 10.45

AR cov, n = 100

LASSO - BIC 4.92 0.19 1.94 0.03 0.91 10.49
Adaptive LASSO - BIC 4.95 0.12 2.01 0.06 0.66 10.36
SCAD- BIC 4.30 0.32 1.34 0.04 0.60 10.37
SELO - BIC 3.59 0.62 0.62 0.04 0.43 10.46
LASSO - validation 11.08 0.01 8.09 0.01 0.71 10.46
Adaptive LASSO - validation 8.01 0.03 5.03 0.02 0.54 10.39
SCAD - validation 7.29 0.09 4.30 0.01 0.43 10.40
SELO - validation 3.84 0.56 0.85 0.01 0.34 10.43

EX cov, n = 50

LASSO - BIC 5.02 0.15 2.17 0.15 1.55 10.22
Adaptive LASSO - BIC 4.93 0.11 2.30 0.37 1.61 10.19
SCAD - BIC 4.95 0.19 2.19 0.23 1.66 10.22
SELO - BIC 3.94 0.37 1.20 0.26 1.39 10.35
LASSO - validation 10.86 0.01 7.89 0.03 1.30 10.26
Adaptive LASSO - validation 8.16 0.03 5.34 0.18 1.30 10.24
SCAD - validation 7.82 0.06 4.92 0.10 1.13 10.22
SELO - validation 3.64 0.51 0.83 0.19 0.91 10.23

EX cov, n = 100

LASSO - BIC 4.86 0.21 1.88 0.02 0.92 10.19
Adaptive LASSO - BIC 4.77 0.16 1.84 0.07 0.70 10.17
SCAD - BIC 4.08 0.42 1.13 0.06 0.63 10.16
SELO - BIC 3.49 0.67 0.54 0.05 0.44 10.24
LASSO - validation 11.48 0.01 8.49 0.01 0.74 10.22
Adaptive LASSO - validation 8.28 0.04 5.30 0.02 0.58 10.21
SCAD - validation 7.40 0.12 4.40 0.01 0.45 10.21
SELO - validation 3.87 0.60 0.89 0.02 0.36 10.19

Table 1: Small-p simulation results for the 4 scenarios, by outcome correlation matrix
and sample size, when using the two stage algorithm with the identity as the working
correlation matrix.
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Simulation Method β1 = 3 β2 = 1.5, β3 = 2,
se est(se emp) es est(se emp) es est(se emp)

AR cov, n = 50

LASSO - BIC 0.26(0.29) 0.14(0.27) 0.17(0.34)
Adaptive LASSO - BIC 0.41(0.3) 0.06(0.47) 0.11(0.43)
SCAD - BIC 0.31(0.3) 0.17(0.45) 0.21(0.58)
SELO - BIC 0.42(0.3) 0.42(0.34) 0.41(0.47)
LASSO - validation 0.3(0.3) 0.2(0.28) 0.24(0.35)
Adaptive LASSO - validation 0.41(0.3) 0.1(0.34) 0.13(0.4)
SCAD - validation 0.34(0.31) 0.19(0.38) 0.24(0.45)
SELO - validation 0.42(0.3) 0.42(0.28) 0.41(0.43)

AR cov, n = 100

LASSO - BIC 0.19(0.21) 0.11(0.22) 0.13(0.23)
Adaptive LASSO - BIC 0.29(0.21) 0.06(0.29) 0.07(0.24)
SCAD - BIC 0.22(0.2) 0.13(0.33) 0.16(0.33)
SELO - BIC 0.3(0.21) 0.3(0.25) 0.3(0.22)
LASSO - validation 0.22(0.19) 0.16(0.22) 0.18(0.25)
Adaptive LASSO - validation 0.3(0.21) 0.1(0.22) 0.1(0.24)
SCAD - validation 0.24(0.21) 0.15(0.23) 0.18(0.23)
SELO - validation 0.3(0.21) 0.3(0.23) 0.3(0.23)

EX cov, n = 50

LASSO - BIC 0.26(0.28) 0.15(0.29) 0.18(0.34)
Adaptive LASSO - BIC 0.41(0.28) 0.07(0.47) 0.11(0.44)
SCAD - BIC 0.32(0.31) 0.17(0.51) 0.22(0.58)
SELO - BIC 0.41(0.28) 0.42(0.34) 0.41(0.46)
LASSO - validation 0.31(0.3) 0.21(0.29) 0.24(0.33)
Adaptive LASSO - validation 0.4(0.28) 0.11(0.39) 0.13(0.39)
SCAD - validation 0.34(0.31) 0.2(0.31) 0.24(0.46)
SELO - validation 0.42(0.3) 0.42(0.28) 0.41(0.43)

EX cov, n = 100

LASSO - BIC 0.19(0.23) 0.11(0.22) 0.13(0.24)
Adaptive LASSO - BIC 0.29(0.23) 0.06(0.28) 0.07(0.28)
SCAD - BIC 0.21(0.23) 0.12(0.31) 0.16(0.33)
SELO - BIC 0.3(0.23) 0.3(0.22) 0.3(0.23)
LASSO - validation 0.22(0.2) 0.16(0.19) 0.18(0.26)
Adaptive LASSO - validation 0.29(0.23) 0.09(0.21) 0.1(0.25)
SCAD - validation 0.24(0.23) 0.16(0.23) 0.18(0.24)
SELO - VALIDATION 0.3(0.23) 0.3(0.21) 0.3(0.26)

Table 2: Small-p simulation results. Estimated and empirical standard errors for the
regression parameter estimators provided in Table 1.
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Simulation Method size TM FP FN ME PE

AR cov, n = 50

LASSO - BIC 4.48 0.24 1.57 0.08 1.88 9.23
Adaptive LASSO - BIC 3.49 0.31 0.90 0.41 1.61 9.10
SCAD - BIC 3.53 0.15 1.15 0.61 1.90 9.09
SELO - BIC 3.31 0.36 0.78 0.47 1.52 9.04
LASSO - validation 9.93 0.05 6.98 0.05 1.63 9.15
Adaptive LASSO - validation 7.10 0.09 4.35 0.24 1.64 9.11
SCAD - validation 6.69 0.07 4.04 0.34 1.63 9.05
SELO - validation 5.10 0.31 2.49 0.40 1.49 9.04

AR cov, n = 100

LASSO - BIC 4.22 0.35 1.22 0.00 0.84 9.02
Adaptive LASSO - BIC 3.36 0.59 0.50 0.13 0.57 8.89
SCAD - BIC 3.39 0.41 0.66 0.26 0.65 8.86
SELO - BIC 3.05 0.70 0.24 0.19 0.49 8.85
LASSO - validation 9.14 0.05 6.14 0.00 0.68 8.95
Adaptive LASSO - validation 6.30 0.20 3.35 0.06 0.58 8.89
SCAD - validation 6.14 0.22 3.19 0.06 0.58 8.86
SELO - validation 5.35 0.47 2.42 0.07 0.55 8.87

EX cov, n = 50

LASSO - BIC 4.67 0.21 1.73 0.06 1.81 9.25
Adaptive LASSO - BIC 3.65 0.28 1.02 0.37 1.46 9.28
SCAD - BIC 3.62 0.12 1.23 0.61 1.73 9.37
SELO - BIC 3.24 0.32 0.73 0.49 1.28 9.28
LASSO - validation 10.24 0.06 7.27 0.03 1.60 9.26
Adaptive LASSO - validation 7.20 0.12 4.43 0.23 1.54 9.28
SCAD - validation 6.79 0.09 4.06 0.27 1.43 9.31
SELO - validation 5.03 0.24 2.46 0.43 1.35 9.29

EX cov, n = 100

LASSO - BIC 4.28 0.33 1.28 0.00 0.82 9.12
Adaptive LASSO - BIC 3.37 0.61 0.47 0.09 0.52 9.14
SCAD - BIC 3.47 0.41 0.68 0.21 0.55 9.17
SELO - BIC 3.20 0.66 0.34 0.14 0.40 9.12
LASSO - validation 9.80 0.05 6.80 0.00 0.68 9.13
Adaptive LASSO - validation 6.67 0.21 3.73 0.06 0.58 9.16
SCAD - validation 6.16 0.23 3.22 0.05 0.52 9.16
SELO - validation 5.79 0.37 2.88 0.09 0.52 9.16

Table 3: Small-p simulations results for the 4 scenarios, by outcome correlation matrix
and sample size, when using an iterative algorithm in which the regression parameters
and the precision matrix are alternately estimated, and tuning parameters are selected
at each iteration.
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Simulation Method β1 = 3 β2 = 1.5, β3 = 2,
se est(se emp) es est(se emp) es est(se emp)

AR cov, n = 50

LASSO - BIC 0.35(0.39) 0.29(0.43) 0.27(0.3)
Adaptive LASSO - BIC 0.39(0.49) 0.22(0.9) 0.3(0.34)
SCAD - BIC 0.36(0.58) 0(0.77) 0.28(0.48)
SELO - BIC 0.38(0.54) 0.33(1.07) 0.33(0.3)
LASSO - validation 0.38(0.35) 0.32(0.46) 0.31(0.29)
Adaptive LASSO - validation 0.41(0.44) 0.32(0.64) 0.37(0.38)
SCAD - validation 0.38(0.57) 0.28(0.93) 0.3(0.36)
SELO - validation 0.41(0.52) 0.35(0.94) 0.34(0.32)

AR cov, n = 100

LASSO - BIC 0.27(0.3) 0.23(0.27) 0.22(0.19)
Adaptive LASSO - BIC 0.28(0.38) 0.24(0.41) 0.23(0.2)
SCAD - BIC 0.27(0.51) 0.23(0.68) 0.22(0.2)
SELO - BIC 0.28(0.39) 0.26(0.4) 0.24(0.17)
LASSO - validation 0.29(0.3) 0.25(0.27) 0.24(0.2)
Adaptive LASSO - validation 0.3(0.35) 0.3(0.38) 0.25(0.2)
SCAD - validation 0.28(0.39) 0.24(0.43) 0.23(0.19)
SELO - validation 0.3(0.34) 0.27(0.32) 0.25(0.19)

EX cov, n = 50

LASSO - BIC 0.31(0.34) 0.26(0.37) 0.27(0.3)
Adaptive LASSO - BIC 0.33(0.47) 0.22(0.75) 0.3(0.36)
SCAD - BIC 0.32(0.61) 0(0.73) 0.28(0.44)
SELO - BIC 0.33(0.53) 0.27(0.89) 0.32(0.28)
LASSO - validation 0.33(0.31) 0.3(0.41) 0.31(0.28)
Adaptive LASSO - validation 0.35(0.42) 0.34(0.59) 0.36(0.3)
SCAD - validation 0.32(0.51) 0.26(0.84) 0.3(0.29)
SELO - validation 0.34(0.48) 0.3(0.93) 0.33(0.26)

EX cov, n = 100

LASSO - BIC 0.23(0.2) 0.21(0.27) 0.21(0.2)
Adaptive LASSO - BIC 0.24(0.23) 0.21(0.31) 0.23(0.22)
SCAD - BIC 0.23(0.36) 0.21(0.57) 0.22(0.19)
SELO - BIC 0.24(0.25) 0.23(0.31) 0.23(0.19)
LASSO - validation 0.25(0.26) 0.24(0.24) 0.24(0.2)
Adaptive LASSO - validation 0.25(0.33) 0.28(0.3) 0.25(0.19)
SCAD - validation 0.24(0.32) 0.22(0.33) 0.23(0.18)
SELO - validation 0.25(0.32) 0.24(0.32) 0.24(0.19)

Table 4: Small-p simulations results. Estimated and empirical standard errors for the
regression parameter estimators provided in Table 3.
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Simulation Method size True model false pos false neg ME pred err

AR cov, n = 50

LASSO - BIC 5.22 0.08 2.29 0.07 1.64 9.52

Adaptive LASSO - BIC 3.82 0.29 1.17 0.34 1.46 9.57

SCAD - BIC 4.08 0.20 1.53 0.45 1.79 9.67

SELO - BIC 3.72 0.40 1.00 0.28 1.52 9.62

LASSO - validation 9.51 0.02 6.54 0.03 1.49 9.52

Adaptive LASSO - validation 7.04 0.10 4.25 0.21 1.46 9.58

SCAD - validation 5.82 0.10 3.21 0.39 1.69 9.65

SELO - validation 4.52 0.41 1.84 0.32 1.52 9.61

AR cov, n = 100

LASSO - BIC 5.21 0.14 2.21 0.00 0.88 9.42

Adaptive LASSO - BIC 3.73 0.46 0.88 0.14 0.61 9.44

SCAD - BIC 3.71 0.51 0.90 0.19 0.63 9.47

SELO - BIC 3.60 0.56 0.68 0.08 0.54 9.45

LASSO - validation 10.62 0.02 7.62 0.00 0.80 9.43

Adaptive LASSO - validation 6.82 0.16 3.87 0.04 0.63 9.45

SCAD - validation 5.66 0.28 2.78 0.12 0.63 9.47

SELO - validation 4.30 0.59 1.40 0.10 0.53 9.45

EX cov, n = 50

LASSO - BIC 5.32 0.14 2.38 0.06 1.46 9.35

Adaptive LASSO - BIC 4.08 0.29 1.36 0.28 1.26 9.26

SCAD - BIC 3.84 0.34 1.20 0.36 1.34 9.30

SELO - BIC 3.94 0.44 1.16 0.22 1.35 9.24

LASSO - validation 9.81 0.02 6.82 0.00 1.32 9.31

Adaptive LASSO - validation 6.92 0.12 4.09 0.16 1.28 9.27

SCAD - validation 4.93 0.22 2.23 0.30 1.17 9.29

SELO - validation 3.92 0.48 1.19 0.27 1.13 9.25

EX cov, n = 100

LASSO - BIC 4.99 0.18 1.99 0.00 0.80 9.10

Adaptive LASSO - BIC 3.84 0.49 0.91 0.08 0.50 9.12

SCAD - BIC 3.44 0.66 0.52 0.08 0.39 9.11

SELO - BIC 3.57 0.62 0.60 0.03 0.40 9.10

LASSO - validation 10.39 0.02 7.39 0.00 0.67 9.11

Adaptive LASSO - validation 6.76 0.16 3.80 0.03 0.50 9.11

SCAD - validation 5.04 0.39 2.08 0.04 0.40 9.11

SELO - validation 4.23 0.72 1.28 0.05 0.38 9.11

Table 5: Small-p simulation results for the 4 scenarios, by outcome correlation matrix
and sample size, when using the two stage algorithm with the true correlation structures
as the working correlation matrix.
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S6 Additional large-p simulations results

In the following simulations, we provide additional simulation results, in which we apply
the two-stage procedure on the same scenarios as in the large-p simulations section in the
main manuscript, but use different estimators of the precision matrix. Table 6 provides
results when the working correlation matrix is the true outcome correlation matrix, and
Table 7 provides results when the working correlation matrix is the identity. In all
simulations we had n = 50 subjects.

S7 Data set and code: description and instructions

The data set that was used in the data analysis section in the manuscript is supplied, as
well as code for analysis, in the journal website. Three files are given:

1. diabetes data set.txt is a text file with the data set. For conveniency, only the
probes used in the data analysis are supplied (i.e. non expressed probes that were
filtered are not supplied) and the expression values are already log transformed.

2. TSofer sparse mult reg code.R in as R code supplying implementations of all the
algorithm and functions needed in order to analysis the data set.

3. TSofer analysis code.R is the R code that reads the data, calls the algorithms, and
performs the analysis.
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penalty mean T mean FP mean FN mean ME

AR cov

p0 = 5, m = 5

LASSO 0.00 9.57 0 0.61
Adaptive LASSO 0.08 4.46 0 0.42
SCAD 0.18 3.56 0 0.26
SELO 0.68 0.74 0 0.20

p0 = 20, m = 5

LASSO 0.00 15.37 0.00 0.82
Adaptive LASSO 0.01 6.06 0.00 0.51
SCAD 0.02 7.17 0.00 0.29
SELO 0.68 0.64 0.00 0.24

p0 = 5, m = 20

LASSO 0.00 29.19 0.00 1.22
Adaptive LASSO 0.00 10.12 0.00 0.70
SCAD 0.03 9.06 0.00 0.29
SELO 0.39 2.62 0.00 0.30

p0 = 20, m = 20

LASSO 0.00 29.19 0.00 1.22
Adaptive LASSO 0.00 13.55 0.00 0.80
SCAD 0.00 19.41 0.00 0.42
SELO 0.44 2.64 0.00 0.38

EX cov

p0 = 5, m = 5

LASSO 0.00 10.07 0 0.57
Adaptive LASSO 0.06 4.72 0 0.39
SCAD 0.20 3.93 0 0.27
SELO 0.70 0.66 0 0.18

p0 = 20, m = 5

LASSO 0.00 15.70 0.00 0.72
Adaptive LASSO 0.01 7.76 0.02 1.10
SCAD 0.03 6.90 0.00 0.25
SELO 0.68 0.70 0.00 0.22

p0 = 5, m = 20

LASSO 0.00 19.25 0.00 0.72
Adaptive LASSO 0.00 12.06 0.00 1.31
SCAD 0.08 7.38 0.00 0.22
SELO 0.40 2.77 0.00 0.24

p0 = 20, m = 20

LASSO 0.00 29.09 0.00 0.89
Adaptive LASSO 0.00 16.61 0.00 1.50
SCAD 0.00 18.34 0.00 0.35
SELO 0.45 2.27 0.01 0.49

Table 6: Large-p simulation results when the working correlation matrix is the true
outcome correlation matrix.
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penalty mean T mean FP mean FN mean ME

AR cov

p0 = 5, m = 5

LASSO 0.00 9.32 0 0.72
Adaptive LASSO 0.05 4.81 0 0.55
SCAD 0.06 4.55 0 0.34
SELO 0.72 0.61 0 0.27

p0 = 20, m = 5

LASSO 0.00 15.08 0.00 1.06
Adaptive LASSO 0.00 6.37 0.00 0.71
SCAD 0.00 9.24 0.00 0.49
SELO 0.74 0.58 0.00 0.34

p0 = 5, m = 20

LASSO 0.00 17.76 0.00 1.18
Adaptive LASSO 0.00 10.96 0.00 1.13
SCAD 0.01 12.00 0.00 0.56
SELO 0.26 3.33 0.00 0.52

p0 = 20, m = 20

LASSO 0.00 27.85 0.00 1.59
Adaptive LASSO 0.00 14.43 0.00 1.25
SCAD 0.00 26.89 0.00 0.92
SELO 0.48 2.27 0.00 0.55

EX cov

p0 = 5, m = 5

LASSO 0.00 9.50 0 0.72
Adaptive LASSO 0.05 4.79 0 0.54
SCAD 0.09 4.71 0 0.35
SELO 0.69 0.76 0 0.28

p0 = 20, m = 5

LASSO 0.00 15.36 0.00 1.07
Adaptive LASSO 0.00 6.57 0.00 0.73
SCAD 0.01 9.30 0.00 0.49
SELO 0.73 0.57 0.00 0.33

p0 = 5, m = 20

LASSO 0.00 21.74 0.00 1.26
Adaptive LASSO 0.00 12.40 0.00 1.20
SCAD 0.02 14.20 0.00 0.63
SELO 0.25 3.54 0.00 0.53

p0 = 20, m = 20

LASSO 0.00 31.31 0.00 1.67
Adaptive LASSO 0.00 16.61 0.00 1.30
SCAD 0.00 28.72 0.00 1.00
SELO 0.42 4.07 0.01 0.64

Table 7: Large-p simulation results when the working correlation matrix is the identity
matrix.


