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This supplementary material contains two remarks and all the technical proofs.

Remark S1 Suppose that X = Z, and that U and X are independent, then Sz (u) =
SFy(u) and Q{ao(r)} = {1 — Fu(uo) L EXXTaw(r) f{F~}(r[X)[X}]. Conse-
quently, the covariance function in Theorem 1 is reduced to W (u, v/) = 7(1—7) E(XXT)
[Fy{min(u,u)} — Fy(u)Fy(u')] and q{u, ag(7)} in Theorem 2 is reduced to q{u,
ao(r)} = —Fy(u)[1 = Fy (uo)| EXX T ao () fA{F~ (7]X) X} + { Fyy (w) — Fir(uo) }
BXXTag(r) f{F~H(7]X)|X}].

Remark S2 The results in Theorems 1 and 2 can be simplified for models with ho-
moscedastic errors. Consider the following location-shift model under the local alterna-
tive

Vi = XTBo(7) + n P2 o (1) I(U; > uo) + ¢, (S.1)
where ¢; are ¢.i.d. random variables with the th quantile zero. Thus

To(r) = sup [[R(u) + q{u, ao(7)} ],
u€(0,1)

where R(u) is a mean zero Gaussian process with covariance kernel W (u, u') = 7(1 —
7) [E(ZUZ;‘C,)—E(ZUXT){E(XXT)}_lE(XZZ,)], Q{ua aO(T)} = fe(o)[_E(ZuXT)
{E(XXT)}71Q;{co(7)} + P1{u, ao(7)], where f.(-) is the density function of e;,
Q {a(7)} = E{XZT ay(7) I(U > ug)} and Py {u, ag(7)} = E{ZZT ap(7)I(ug <
U < wu)}. Note that in this case the limiting null distribution of 7}, (7) no longer depends

on the unknown density function f.(-), and this simplifies the calculation of critical val-
ues.

Throughout the paper, we use ||z|| to denote the Euclidean norm for a vector x, and
use the vector-induced norm, i.e. [|Al| = sup, [|Az||/||z|| for a matrix A. Let [x] de-
note the integer part of . Denote (1) = (87 (1), a® (1))T, 6o(7) = (BL (1), & (7))T
and

Ro{u,7,8(r)} =n" "2 Y = XT B(r)}Z:I (U; < w),
=1
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R; {u,7B(r)} =02 [FAXTB(r)} - I{Y; = X] B(r) < ONZiI (Ui < u),
i=1

and

n
R {u,7,00(m)} = n~'2Y "¢ (Yi=XT Bo(r)—n" P2 ao (1) I(U; > uo)}Z:I(U; < w),
i=1
where RS {u, 7, 3(7)} is the statistic by re-centering I{Y; — X7 3(7) < 0} at its expec-
tation conditional on X;.

Proof of Proposition 1. The proof of Proposition 1(i) is given in the Supplementary
Material in Lee et al.(2011). We only give the proof of Proposition 1(ii). Let P and
P,, be the common probability measure and the empirical measure of the random sam-
ple of sample size n under the local alternative hypothesis. Also let ¢g{Y,X;3(7)} =
—p{Y =XTB(r)} and g{Y, W; 6(), u} = —p, {Y —X" B(r)—n~2ZT a(r)I(U >
u)} be the objective functions under the null and the alternative hypothesis with change
point ug = u. Note that

dY,W;0(7),u} ={Y = XT8(r) = n 22T (1) I(U > u)}
X[-7 + I{Y = XTB(r) — n Y?ZTa(r)I(U > u) < 0}].

Let 0, be a g—dimensional vector of zeros. The first derivative of ¢{Y, W; 6(7), u}
with respect to 0(7) evaluated at 8y(7) = (87 (7),0])" is as follows

%q{Y, W3 6(7), utg(r)—gy(r)

= X -+ H{Y —X"8(r) = n V22T a(7) (U > u) < 0}l o(r)=do (=)

= X, [-7+ I{Y = X"By(r) < 0}].
Thus we have

d
nl/QPn%Q{Yv W:0(7), ubg(r)—gy(r)
= n'PE(=Xu[-7 + F{XT8(7)|X}))
= 0 PE(=X[-F{X"Bo(7) + n7 2  ao(1)I(U > ug)| X} + F{X"Bo(7)|X}])
= n2E(=Xu [~ f{anu (T)XIZ  ao (1) I(U > up)))
= (BEXZ"ao(r)I(U > ug) f{X" Bo(7)| X}, E[ZZ" co(7)I{U > max(u,u)}
FXTBo(m)|XHT)"

= qr{u, a(7)},
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where o, ., (7) is a value lying between X T By () and X” 8o (7)4+n~2Z  ao(1)I(U >
up). It is obvious that av, 4, (7) — X' Bo(7) as n goes to infinity.

Similarly, for the first derivative of ¢{Y, W; 3(7)} we have

n'2p, —q{YX B(T)}Hp(r)=po(r) — q1-

By Proposition 1(i), the local asymptotic limiting distribution for the local alternative
hypothesis can be characterized by

;(Sgp[g(U) +ar{u, ()} V(W) G(w) + qr{u, ao(n)}] - (6] +a)" Vi
(G1 +a1)).

This completes the proof of Proposition 1.

Lemma 1 (i) Suppose that Assumptions AI-A3 hold, we have

(il). n= 0 fi AFT N () Y2 XTI(U < u) & S, (u) uniformly inu € (0,1);

(i2).n 3" | Z XTI(U <u) B B(Z,XT) uniformly inu € (0,1);

(i3). n =130 fAFT N (T)YZZT o (T) T (wo < Ui < u)} 2y P{u, oo(7)} uniformly in
€ (0,1);

(i4). n= 'S X Z o (7) I (o < U; < u)} 2 Q{a(1)} uniformly inu € (0, 1).

(ii). Suppose that Assumptions A2, A3 and A6 are satisfied, then (il )-(i4) hold uniformly

inue (0,1)andT € T.

Proof of Lemma 1. (i) We only give the proof of (il), since the proofs of (i2)-(i4) are
similar. To prove (il), we need to show that

-l Zf’{F TIZX]I(U; < u) — S (u)|| = op(1),

uniformly in v € (0,1). Let Up,---,U, be a random sample from the measurable
space (x,.A4). Hence it is sufficient to show the element-wise uniform convergence
of the matrix n =2 >0 | fi{l ;N (1)}ZXTI(U; < w). Let Z = (ZW),...  Z@O)T,
X = (XM ... XCOHT where Z0) (j=1,--- ,¢)and X*) (k=1,---,p) could be
the variable U or any other covariates. To obtain the desired results, we need to show
that for any j,k = 1,--- ,n, we have

n! Z F{F Y 2y X I (Ui < u) B B[f{F(71X)[X} 2 X B (U < )],

uniformly in v € (0,1). Let f,(Z9), X®) U) = f{F (X)X} ZOXB (U < u),
and denote the class of measurable functlons F={fu(Z2D,Zz® U): x - R} It
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is sufficient to show that f,(ZU), X(¥) U7) is P-Glivenko-Cantelli. That is we want to
show that, for any € > 0, there exist finite brackets {(I™(Z), X®) 17), h(Z0), X (*)|
Uu)),m=1,-- N} such that for any fu(Z9) X ®) 1) € F, there exists some m
such that [™(Z0), ) X® U) < £ (2D, X®) Uy < h(Z20D), X®) 1), and

E{hum(Z(j),X(’“),U) (ZD, X% 1)} <e,

where E denotes the expectation under the variables Z7), X (¥) and U. We partition the
region (0,1) into N intervals of equal length at the points w1, - -+, un41, where u; = 0
and un1 = 1. For any € > 0, take

(29, x® Uy = 2O XP {20 XE S 0 (U < tn_1)
+ZOXP{ZzDXE < 0}I(U < up),

and

nr(z9), x®) Uy = z0) x( ’“)I{Z IXFE) > 0V (U < up)
+ZOXB{Z7DXE) < 0} (U < ty_1),

form=1,---, M.

For any m and I*(Z0), X®) U) < f,(29), X U) < km(Z20), X 1), we
have

E{hZ@(Z(j),X(’“), U) — ZZI(ZU),X(’“), U)}
_ / FIE X)X De® 1020 S 03wy < u < up)dP
- / FF X)X}z 2® 12020 < 03 (w1 < u < up)dP
= (a) + (b).

For (a), we have

— -1 () 2 (B) 11 (3 1 (F)
- m—1 > U > Umnm
/f{F (71X) | X}V W T{z 2™ > 0} (u <u < up,)dP

(/[f{F1(T|X)|X}Z(])$(k)}21{2(3)95(k) > O}dP/I(um_l <u< Um)dP) 2

1/2
(AP X)X }292 0 fy (u) /N
(MyL/N)Y/?
= (M/N)'2,

IN

IN
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where M; and M are some positive constants, f is bounded by L, M = M;L and
u* lies between u,,—1 and u,,, and the third inequality follows from Cauchy-Schwarz
inequality.

Similarly, for (b) we have

) = [ HE RN 00 < 0b o1 < 0 < )P

(/[f{F1(7‘]X)X}{_Z(J')w(k)}]2I{z(j)x(k) < O}dP/I(um_l <u< um)dP)l/2

< (BUAF (X)X 2O () /v)
(MLL/N)?
= (M/N)'2.

IN

Hence, we obtain
E{Rm(Z@D, x®) 1y — (X9, x®) 1)y < 2(M/N)V2 < e,

where the last inequality above follows by taking N > [4M /e?]+1. Hence the minimum
number of e—brackets needed to cover F is [4M/e?] + 1 and is finite. By Glivenko-
Cantelli theorem, we can get the uniform convergence.

(ii). The uniform convergence in u € (0,1) and 7 € T can be proven in a similar
way by replacing the function f,(Z0), X®) 17) with f, ,(Z0), X*) ) and thus is
omitted. This completes the proof of Lemma 1.

Lemma 2 Let D be an arbitrary compact set in RP. Under Assumptions AI-A3 and
Hi, we have

sup sup ||R;{u,7,B0(7) +n~ 7€} — Ri{u, 7, 00(r)}| = 0p(1).
ue(0,1) €D

Proof of Lemma 2. Without loss of generality, we assume that the components of X;
are nonnegative. Then Z;I{Y; < X7 Bo(7)+n"1/2XT ¢} and F;{XT Bo(7)+n"1/2XT¢}
are nondecreasing in £. Because D is compact, for any given § > 0, D can be parti-
tioned into a finite number of subsets Dy, - - - , D,,(5), where the diameter of each subset
is less than or equal to 6. For £ € Dy, h € {1,--- ,n(d)}, there exists two points
&n,1 and &, o in Dy, such that XiTﬁhJ < X;f[f < XiTEhQ. By the monotonicity of
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Z;1{Y; < X Bo(7) + n~1/2XT¢}, we have
R¢ {u, T, Bo () + n~Y2¢} — R {u,7,00(7)}
n 2y IFAXT Bo(r) + 0”1 PXT €}

=1
—I{Y; — XTBo(r) — nV2XT €10 < ONZI(U; < u) — RE{u, 7,00(7)}

= [RS{u,7,B0(7) + n %€} — RE{u, 7,00(r)}] — n V2 [FA{XT Bo(7)
=1
+nV2XT ey 0} — F{XTBo(r) + n V2XT Y Z,1(U; < w). (S.2)

v

Similarly, we have
RS {u, 7, Bo(r) +n 2} — RI{u, 7,00(7)}

< R {u,m Bo(r) + n 21} — Ru{u,7,00(r)}] = n™ 2 Y [F{XT Bo()

+nPXT G} — FAXT Bo(r) + 7 VPXT ENZI(U; < w). (8.3)

By the inequality |y| < max(|z|, |z|) for z < y < z and combining (S.2) and (S.3), we
obtain

sup sup R} {u, 7, Bo(r) +n~'/?€} — Ry {u,T, o ()}
£€eD ue(0,1)

< —-1/2 _ pd
S pa o sup IR {u, 7, Bo(r) + 0 e} = Rodu, 7 60(r)
—1/2 (T ~1/2%T
* 1<han(8) b5 uzl(lopl) n ;[Fz{xz Bo(7) +n~ "X Enict
—FAX{ Bo(7) + n~PXT €Y 2,1(U; < )
= () +(d), (S4)
where

_ ~1/2
0= s, 2, [tk

and v;(h, k,u) = [E{X?ﬁo(r)+n_1/2XiT£h7k}—I{Y}—XZT,BO(T)—n‘1/2X;fF£h,k <
0} —F{ XY Bo(7)+n" "2 LT g (1)1 (Us 2 o) }+I{Yi=XT Bo(r)—n""?Z] ao (1) I(U;
> ug) < 0}]Z;I(U; < w). Because the distance between & and &, is less than J,
by mean value theorem and Assumption A3(a) and Lemma 1, it is easy to show that
(d) = 60, (1), which can be arbitrarily small by choosing a small §.
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Let Uy;) be the i-th order statistic of {U;;i = 1,--- ,n}, and {(Y(), X(5), Z(3)); i =
1,---,n} be the observation and {F;;i = 1,---,n} be the distribution functions
corresponding to U;). For notational simplicity, we omit h, k,u in the expression
¥;(h, k,u) when no confusion is made. Let () be the score function of the subject
associated with Uy;y. Then

by = (F(i){Xz;)BO(T) X ey = H{Y(o) — X Bo(r) —n” VX 6 < 0}
40 [XT-)Bo(T) 22l a0 (r) H{U Gy > o]
+ IV — XE)80(7) — 02 ZE ao(r) [{Us) > o} < 0]) 2y [{U) < ).

Then for an arbltrarlly small number € > 0, we have

P{ max max sup HZ%

h=1,- ) k=1,2 u€(0,1)

-9
]

= P{ max max Ssup szz)

h=1,++n(6) k=1,2 ye (0,1

} (S.5)

< n(f) max maXP{ max
h=1,m(6) k=12 \j=

Let the o-fields F(;) = o{¢q), -+ ,¢q)} fori = 1,---  n. Because of the equality
E{Y|X@} = 0, then {9, #(;)} is an array of martingale difference. For every
~v > 1, applying Doob inequality gives
n
w2y )
i=1

n-1/2
P {] max Z ()
n 2
WY
i=1

where M> is a constant depending on 7. Because {v;,.%#;} is an array of martingale
difference, by the Rosenthal inequality (Hall and Heyde, 1980), we have

nfl/zzn:%
i=1
where M3 is a constant. Note that
E(||vil*|Fi-1)
<NZPIFAXT Bo(r) + 02X T &n s} — FAXT Bo(r) +n~PZE ag (1) (Ui = wo)}|
= 1 ZilP*|£i(Q)In ™" XT &ne — 2T o (M) I(Ui = up)
< Lo~V Zil PR 1€kl + 112412 lleo (1) T(Ui = wo)[I},

2v

} < Mye 2'E

= Mye 2'E , (5.6)

i=1 i=1

2y n Y n
< My E {Z E(\Wﬂr?r%_l)} + Man ™Y B[,
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where ( is between X7 8o (1) +n"2Z  ao(7)I(U; > up) and X7 Bo(1)+n"2XT &), 1.
By Holder’s inequality,

Bl = B{E(il?|Fi-0)} < B{E(Ii]?|Fim)}
< L PE(Z P&kl + 121 a0 (T I(U; > o)},

Hence we have

n 2y
E n_l/QZwi
=1
n Y
< ML B [0t ST PN Zilln sl + X012 ZF o L(U; > uow}]
=1
n
ML ST BN Zal 16l + 1Zil1P o () I (U; = wo) ]}
=1
n Y
< M;L'n2E n—lz{nxz-u?nza||D||+uzi||4|ao<r>f<wzwn}]
=1
n
ML 02 VST BYIXPZa D + 1126l (M I(U; = wo)ll}
=1
n Y
< MzMyL'n 2B |07 XKl Zal + 1123 1P o (7) I (U; > U0)||}]
=1
n
M3 L3 ST BOXGIPZa) + 1124 e (1) (U = wo)ll}
=1
< 2MMsMyLin~"/2, (S.7)

where M3 and My are some finite constants, My = max(||D||”,1). In the above, the
second inequality follows because ||&}, || < ||DJ|, and the fourth inequality follows
from the Assumption A3(c). Combining (S.4), (S.5), (S.6) and (S.7), yields that

sup sup R} {u,7, Bo(r) +n~ '€} — R {u, 7, o()}|
£€eD ue(0,1)

< An(8)M MyMs ML n ™"/ 22
= o(l).

This completes the proof of Lemma 2.

Lemma 3 Under Assumptions A1-A3 and Hy, we have

sup sup ||Rp{u, 7, Bo(7)+n "€} =Rt {u, 7, 00(r)}+S, (u)€—P{u, ao (1) }| = 0p(1).
u€e(0,1) €D
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Proof of Lemma 3. Direct calculation gives that
R, {u, 7, Bo(7) + n~2€} —R%{u,7,00(7)} + Sz(w)€ — P{u, a(7)}
= [R&{u,7,Bo(r) +n 12} — R {u,7,00(7)}] + <n-1/2 > = F{XTBo(7)
=1
40 V2XTEY| ZiI(Us < u) + Su(u)€ — Pfu, ao(T)})
= (e)+(f)

To obtain the desired result, it is sufficient to show that (e) and (f) are o0, (1) uniformly
inu € (0,1) and € € D. The uniform property of the first term (e) is obtained by
Lemma 1. It remains to show that (f) is 0,(1) uniformly in v € (0,1) and £ € D.
Because we have

1A= [ D2 FXT Bo(r) + 0 22 awo(r)I(U; > o) + 1)
i=1
x A=ZX] 1(Us < w)€ + ZiZ] ao(r) (g < Uy < )} + S,(w)é — Plu, ao(7)}
= H - 2": FAXT Bo(r) +n P2 o () I(U; > wo) + mi} ZiX] T(Us < u)é
1=1
+ Sz(u)EH + anl S JAXEBo(7) + i ZiZF (1) (ug < Uy < u) — P{u, aO(T)}H
i=1

= 1@l + [,

where the first equality follows from the mean value theorem with 7; between 0 and
n~12XTeé—n12ZT (1) I(U; > up). By Assumption A3(a), we have maxi<;<p, |1,
= 0p(1). Then from Assumption A1, for each i, we have
Fi{XT Bo(r) + V22T g () I(U; = wo) + i}
= X7 Bo(r) + 07 PZ (M) I(U; = uo)} + 0p(1).
Then

—n Y F{XT Bo(r) + 07 VP2 g (7)I(Us = wo) + ni}ZiXT I(Us < u)é + Sp(u)€
=1

=~ F{XTBo(r) + n VP2 0o (1) (U > 1) YZiXT T(U; < w)€ + Sa(w)€ + 0,(1)
=1

= op(1).

By Lemma 1, uniformly in v € (0,1) and £ € D, we have sup,¢(g 1) SuPgep || (9)]|
= 0y(1). Following the similar arguments, we can show that sup,,¢ 1) Supgep || (7)|| =
0p(1). This completes the proof of Lemma 3.



S10 Liwen Zhang, Huixia Judy Wang, and Zhongyi Zhu

Lemma 4 Under Assumptions A1-A3 and Hy, B (1) has the following Bahadur repre-
sentation:

B(r) = Bo(r) =S~ { ‘1ZwT &) }+n‘1/25—1Q{a0(T)}+op(1). (S.8)

Proof of Lemma 4. First, the consistency of B(T) can be obtained from Prochdzka
(1988). Applying Lemma 4.1 of He and Shao (1996), we get

swp [0 2, Yi = XTB(r)} — (€)X
18(7)=Bo(7)||<dn i=1

—n V23 Bl Y = XTB()IX K| = 0p{(6n + 073 210z n},
=1

where J,, = o(1) as n — oo. Note that

E[p{Y — XTB(r)}|X] = 7 — F{XTB()|X}.

Therefore,
n2Y (@Y = XTB(7)} — [r — FAXT B(r)})Xi = n 1/ Zw €)X
i=1
+O,[{11B(7) = Bo(7)|| + n~/?} /2 1ogn). (8.9)

By the subgradient condition of quantile regression (Koenker, 2005) and Assumption
3(a), we have

n2N (Y = XTB(r) X = 0,(1).
i=1
Hence we obtain

Y (WY - XTB()) - [ - RXTB(IX

n~ 2N FAXTB(7)} — 71X + 0p(1)

=1

= 072 X Bo(r) + 022 ao (M) (Ui > uo) X XT{B(r) — Bo(7)}

=1

—n Y FAXT Bo(r) + 022 ag (1) I(U; > ) X2, oo (1) I(Us > o)

+op(1) —Al—op[nl/Q{B(T) — Bo(m)}] )
= n'2S{B(7) = Bo(7)} — Q{ex(7)} + 0p(1) + 0p[n'/*{B(r) — Bo(7)}],
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which together with (S.9) proves Lemma 4.

Proof of Theorem 2. Because Theorem 1 is only a special case of Theorem 2 when
a(7) = 0, we only need to prove Theorem 2, namely Y; = X7 By(7) +n~2ZT (1)
I(U; > ug) + ¢ under the alternative hypothesis. Let & = n'/2{B(r) — Bo(7)}, it
follows from Lemmas 3 and 4 that

R, {u,7,B(7)}
R {u, 7, Bo(7)} — n'/*S,(u){B(7) — Bo(r)} + P{u, cro(T)} + 0p(1)
n2N e (6)Zil (Ui < u) — Sp(w)S™'n 2 "1 (€)X — S4(w)S T Qfaxo(7) }

i=1 =1
+P{u, ap(7)} + 0p(1)

= Y () {I(Ui < w)Zi — Su(u)ST' Xy} — Sy (u)ST'Q{a(r)} + P{u, oo (1)}
=1

+op(1)
= R(u) + q{u, ag(7)} + 0p(1).

Following the proofs in Stute (1997), the weak convergence of R(u) can be obtained.
This completes the proof of Theorem 2.

Proof of Corollary 1. Following the same arguments used in the proof of Theorem 2,

we can show that
R, {u,7,B(r)} =02 o (e){I(Us < u)Zi—S4(uw)S™ X, }+q{u, () }Hop(1),
=1

where q{u, a(7)} = an{—Sz(u)S™1Q{ao(7)} +P{u, ao(7)} }. Because q{u, ap(7)}
— 400 as n goes into infinity, this implies 7,,(7) goes into infinity. This completes the
proof of Corollary 1.

The following lemma is needed to prove Theorem 3.

Lemma 5 Under Assumptions AI-A5, we have

sup |[Szn(u) — Sz (u)|| = 0p(1).
u€(0,1)
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Proof of Lemma 5. Let g{3(7)} = Z; X7 K}, {Y; — X?3(7)}. Then
S:n(u) =Sg(u) = n7 Z [9{B(M)}H (Ui < u) = g{Bo(7)} (Ui < w)}]

1Zg{ﬁo VH(U; < u) — Sz(u)]
= (i)+(j)-

To obtain the desired result, we need to show that (i) and (j) are op(1) uniformly in
€(0,1).

First note that
@) = n ") ZXTIU; < w)[Kp, {Y; = XTB(7)} = Kn, {Yi = X] Bo(7)}]
i=1

< n 'Y ZXTI(U; < u) max (K, {Yi — X[ B(7)} — K, {Yi — X[ Bo(7)}].

c 1<i<n
=1

By Assumptions A3(a), A4 and A5, and the fact that 3(7) — Bo(1) = 0,(n~1/2),
following mean value theorem, we have

max [Kp, {Y; — XZTB(T)} — K, {Yi — XzTﬂO(T)H

1<i<n

< hy? max [ X]|K'(¢)0p(n"?) = 0,(1),
1<i<n
where ¢ is a point between Y; — X7 3(7) and Y; — X7 By (7). Hence (i) = o,(1).

Next, by the Taylor expansion we have

_IZEQ{ﬂo ) (U; < )]

_ *1ZEX Z.XT1(U; < w)E[Ky, {Y; — XTBo(7)} X))

= n! Z BEx, (ZX!I(U; < w)[fi{X] Bo()} +0(1)])
=1
= Sz(u) + 0p(1).

The rest of the proof follows with the similar arguments used in Lemma 1 of Hansen
(1996) and thus is omitted.
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Proof of Theorem 3. Denote

R (u) =n 2 " winpe (e){I(Ui < w)Zi — So(w)S™'Xs}. (S.10)
=1

To obtain the result, we need to show that

(i) R} (u) and R’ *(u) are uniformly asymptotically equivalent, that is

sup [|R;(w) — R (uw)]| = sup ||n "2 withr(e){S.n(u)S, " — Sa(u)STIX;
u€(0,1) u€(0,1) i=1
= op(1);

and (ii) R}*(u) converges to the Gaussian process R(u).

The first part (i) is a direct conclusion of Lemma 4 by allowing v = 1. Then it
follows that S,, = S + 0,(1) and

Sl(lp) Hn_1/2 Zme(ei){SZ,n(u)S;l — S, (u)ST11X;
u€e (0,1 i=1

= o [ St l(un) = Sulu}S! — S,(0)(S;” — S TIX,
ue(0, i=1

< 3o {San(u) = Su()}87" — Su(w(S" = 8Tl[n Y v e0X,
ue (0, i=1

= op(1),

where the second equation follows by Lemma 4, and n~1/2 Yo withr ()X = Op(1).

For (ii), we first show that the covariance function of R**(u) converges to that of
R(u). Foreach v € R and v’ € R, we have

Cov{R}" (u), R:*(u')}

= Cov |:7’L71/2 szwT(@) {I(UZ S U)Z’L — SZ,n(u)Sglxz} 7
i=1
n—1/2 Zwid}‘r(ei) {I(UZ < u’)ZZ — SZ,"(U/)S:LIXl}]
=1

— n—l ZCOV[MW(%){I(U} < U)Zi — Sz,n(U)Sngz},

=1

witrr (e){I(U; < u')Zi — S (u)S; X }]
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= n 'Y Elwith(e){I(U; < u)Zi — S0 ()8, ' X}
=1
x{I(U; <u)Zi — S, (u)S,; ' X} T
— 71 =7){E(Z,Zy) — BE(Z,XT)S™1ST(v/) — S, (u)S™'E(XZL)
+8,(u)STE(XXT)S718T(w/)}, almost surely,

which is the same as the covariance of R’*(u) in Theorem 1.

Next, by the Cramer-Wold device, the finite dimensional convergence of the process
R}*(u) can be obtained.

Finally, because the class of functions F,, = [t (){I(U < u)Z — S, ,,(u)S,; !X :
u € R}] is a Vapnik-Chervonenskis class of functions. Applying Lemma 15 in Pol-
lard (1984), we can show that R}*(u) is uniformly tight. This completes the proof of
Theorem 3.

To prove Theorem 4, we need to show that the processes Ry, {u, 7, Bo(7) +n~/2£} and
RE{u, 7,00(7)} — Sy(u)§ + P{u,cg(7)} are uniformly asymptotically equivalent in
(u,7) € (0,1) x T.

Lemma 6 Under Assumptions A2-A6 and HY, we have

sup sup sup ||Rn{u, 7, Bo(7) +n"/2€} — RE{u, 7,00(7)} + S, (u)€
T€T ue(0,1) €D

—P{u, (1)} = 0p(1).

Proof of Lemma 6. We first partition 7 into n(e,) parts with points w1 = 79 < 71 <
oo < Tp(e,) = wa, Where n(ey,) = [(w2 —wi)/en] + 1,6, = n~1/2=4 for some d > 0.
FOI‘Tj_l <7 <7y,

RE {u, T, Bo(T) +n 2} — R {u, 7,00(7)}
< R&{u, i1, Bo(rj—1) + n~1/%€} — R {u, 75, 00(7;)}

‘|‘TL_1/2 Z(Tj — ijl)ZiI(Ul' S u)
i=1

+n 1 2Y (FAXT Bo(my) + 072} — Fo{XT Bo(rjo) + 0 PENZI(U; < ).

=1

Using the same argument, a reverse inequality holds when 7;_1 and 7; are switched.



TESTING FOR CHANGE POINTS S15

Then we can get

sup  sup SuP||R {u,7,B0(7) + "¢} — R {u,7,60(7)}|
T€T ue(0,1) €D

< max sup sup |[RS{u,7j_1, Bo(rj_1) +n Y2} — RE{u, 7, 00(m)} |
1<j<n(en) ue(0,1) €€D

+ _max sup sup ||RG{u, 7, So(ry) +n €} — Ry {u, 71, 00(7j-1)} |
1<j<n(en) ue(0,1) £€D

+ max  sup supH —1/2 —7i-1) 2L 1(U; <u)H
1<j<n(en) ue(0,1) é€D Z ”

+ max _ sup su —1/2 [E{XTBy(r +nl2 FAXTBy(r
x| sup sup Z (X7 Bo(ry) + n1/2€} — F{XT Bo(ry1)

+ 2N Z, I (Us < )|
= (k) + () + (m) + (n).
For the terms (k) and (1), we have

(k)+ (1) <2 max  sup sup ||R}{u,7j, Bo(1;) +n" 1/25} Rd{u 75, 00(75) }H|
1<j<n(en) ue(0,1) €€D

+2 max sup |[RA{u, 7, B0(m5)] — Ri{u, 751, Bo(ri-1)|
1<j<n(en) ue(0,1)
= (0) + (p),

where 7 is invariant in the first inequality while £ is invariant in the second inequality.
The term (o) can be shown to be 0,(1) by using similar arguments as the proof of
Lemma 1. For the term (p), let & = (0,1) x (0,1) be a parameter set with metric
p{(u,7), (v, 7))} =|u — u|+ |7" — 7|. For a given T,

R, {u, 7, Bo(r)} =n~"/? Z — I{Y; = X[ Bo(7) < OYZ:I (U; < w)
=n 1?2 Z[T — H{F,(Y;) < T)NZI(U; < u).
i=1
Define V; = F;(Y;), then V; has a standard uniform distribution. Hence,
R, {u, 7, Bo(r)} = n—l/QZ{T I(Vi < 7)}ZI(U; < ).

Moreover, {(t — I(V; < 7))Z;I1(U; < u);i = 1,---,n} is a sequence of vector
martingale differences. Hence, following the same lines as that in Theorem A1l of Bai
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(1996), we can obtain the stochastic equicontinuity of R, {u, 7, 5o(7)} on (®, p). That
is, for any € > 0 and n > 0, there exists a ¢ > 0 such that for large n, we have

Plsup | - Ry{u.7. fo(r)} + Roful 7 Bo()} | > 0] < e

where Q = {(s1,82) € ®;51 = (u,7) and sy = (v, 7"), p(s1, 82) < ¢}, thus (p) =
op(1). Finally it is easy to show that the last two terms (m) and (n) are o,(1) by using
the similar arguments as that of Lemma A.2 in Qu (2008), so we omit the details here.

Proof of Theorem 4. The proof is similar to that of Theorem 2 based on results of Lem-
mas 4 and 6 and thus is omitted.
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