
TESTING FOR CHANGE POINTS DUE TO A COVARIATE
THRESHOLD IN QUANTILE REGRESSION

Liwen Zhang1, Huixia Judy Wang2, and Zhongyi Zhu3

Fudan University1,3, North Carolina State University2

Supplementary Material

This supplementary material contains two remarks and all the technical proofs.

Remark S1 Suppose that X = Z, and that U and X are independent, then SZ(u) =

SFU (u) and Q{α0(τ)} = {1 − FU (u0)}E[XXTα0(τ) f{F−1(τ |X)|X}]. Conse-
quently, the covariance function in Theorem 1 is reduced to W(u, u′) = τ(1−τ)E(XXT )[
FU{min(u, u′)} − FU (u)FU (u′)

]
and q{u, α0(τ)} in Theorem 2 is reduced to q{u,

α0(τ)} = −FU (u)[1−FU (u0)]E[XXTα0(τ)f{F−1(τ |X)|X}] +{FU (u)−FU (u0)}
E[XXTα0(τ)f{F−1(τ |X)|X}].

Remark S2 The results in Theorems 1 and 2 can be simplified for models with ho-
moscedastic errors. Consider the following location-shift model under the local alterna-
tive

Yi = XT
i β0(τ) + n−1/2ZTi α0(τ)I(Ui > u0) + εi, (S.1)

where εi are i.i.d. random variables with the τ th quantile zero. Thus

Tn(τ)⇒ sup
u∈(0,1)

‖R(u) + q{u,α0(τ)}‖,

where R(u) is a mean zero Gaussian process with covariance kernel W(u, u′) = τ(1−
τ)
[
E(ZuZ

T
u′)−E(ZuX

T ){E(XXT )}−1E(XZTu′)
]
, q{u,α0(τ)} = fε(0)[−E(ZuX

T )

{E(XXT )}−1Q1{α0(τ)} + P1{u,α0(τ)], where fε(·) is the density function of εi,
Q1{α0(τ)} = E{XZTα0(τ) I(U > u0)} and P1{u,α0(τ)} = E{ZZTα0(τ)I(u0 <

U ≤ u)}. Note that in this case the limiting null distribution of Tn(τ) no longer depends
on the unknown density function fε(·), and this simplifies the calculation of critical val-
ues.

Throughout the paper, we use ‖x‖ to denote the Euclidean norm for a vector x, and
use the vector-induced norm, i.e. ‖A‖ = supx 6=0 ‖Ax‖/‖x‖ for a matrix A. Let [x] de-
note the integer part of x. Denote θ(τ) = (βT (τ),αT (τ))T , θ0(τ) = (βT0 (τ),αT0 (τ))T

and

Rn{u, τ,β(τ)} = n−1/2
n∑
i=1

ψτ{Yi −XT
i β(τ)}ZiI(Ui ≤ u),
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Rc
n{u, τ,β(τ)} = n−1/2

n∑
i=1

[Fi{XT
i β(τ)} − I{Yi −XT

i β(τ) ≤ 0}]ZiI(Ui ≤ u),

and

Rd
n{u, τ, θ0(τ)} = n−1/2

n∑
i=1

ψτ{Yi−XT
i β0(τ)−n−1/2ZTi α0(τ)I(Ui ≥ u0)}ZiI(Ui ≤ u),

where Rc
n{u, τ,β(τ)} is the statistic by re-centering I{Yi−XT

i β(τ) ≤ 0} at its expec-
tation conditional on Xi.

Proof of Proposition 1. The proof of Proposition 1(i) is given in the Supplementary
Material in Lee et al.(2011). We only give the proof of Proposition 1(ii). Let P and
Pn be the common probability measure and the empirical measure of the random sam-
ple of sample size n under the local alternative hypothesis. Also let q{Y,X;β(τ)} =

−ρτ{Y −XTβ(τ)} and q{Y,W;θ(τ), u} = −ρτ{Y −XTβ(τ)−n−1/2ZTα(τ)I(U >

u)} be the objective functions under the null and the alternative hypothesis with change
point u0 = u. Note that

q{Y,W;θ(τ), u} = {Y −XTβ(τ)− n−1/2ZTα(τ)I(U > u)}
×[−τ + I{Y −XTβ(τ)− n−1/2ZTα(τ)I(U > u) < 0}].

Let 0q be a q−dimensional vector of zeros. The first derivative of q{Y,W;θ(τ), u}
with respect to θ(τ) evaluated at θ̃0(τ) = (βT0 (τ),0Tq )T is as follows

∂

∂θ
q{Y,W;θ(τ), u}|θ(τ)=θ̃0(τ)

= −X̃u[−τ + I{Y −XTβ(τ)− n−1/2ZTα(τ)I(U > u) < 0}]|θ(τ)=θ̃0(τ)

= −X̃u[−τ + I{Y −XTβ0(τ) < 0}].

Thus we have

n1/2Pn
∂

∂θ
q{Y,W;θ(τ), u}|θ(τ)=θ̃0(τ)

= n1/2E(−X̃u[−τ + F{XTβ0(τ)|X}])
= n1/2E(−X̃u[−F{XTβ0(τ) + n−1/2ZTα0(τ)I(U > u0)|X}+ F{XTβ0(τ)|X}])
= n1/2E(−X̃u[−n−1/2f{αn,u0(τ)|X}ZTα0(τ)I(U > u0)])

−→ (E[XZTα0(τ)I(U > u0)f{XTβ0(τ)|X}]T , E[ZZTα0(τ)I{U > max(u, u0)}
f{XTβ0(τ)|X}]T )T

= q̃L{u,α0(τ)},



TESTING FOR CHANGE POINTS S3

whereαn,u0(τ) is a value lying between XTβ0(τ) and XTβ0(τ)+n−1/2ZTα0(τ)I(U >

u0). It is obvious that αn,u0(τ)→ XTβ0(τ) as n goes to infinity.

Similarly, for the first derivative of q{Y,W;β(τ)} we have

n1/2Pn
∂

∂β
q{Y,X;β(τ)}|β(τ)=β0(τ) −→ q̃1.

By Proposition 1(i), the local asymptotic limiting distribution for the local alternative
hypothesis can be characterized by

1

2
(sup
u

[G(u) + q̃L{u,α0(τ)}]TV (u)−1[G(u) + q̃L{u,α0(τ)}]− (GT1 + q̃1)TV−1
1

(G1 + q̃1)).

This completes the proof of Proposition 1.

Lemma 1 (i) Suppose that Assumptions A1–A3 hold, we have
(i1). n−1

∑n
i=1 fi {F

−1
i (τ)}ZiXT

i I(Ui ≤ u)
p−→ Sz(u) uniformly in u ∈ (0, 1);

(i2). n−1
∑n

i=1 ZiX
T
i I(Ui ≤ u)

p−→ E(ZuX
T ) uniformly in u ∈ (0, 1);

(i3). n−1
∑n

i=1 fi{F
−1
i (τ)}ZiZTi α0(τ)I(u0 ≤ Ui ≤ u)} p−→ P{u,α0(τ)} uniformly in

u ∈ (0, 1);
(i4). n−1

∑n
i=1 Xi Z

T
i α0(τ)I(u0 ≤ Ui ≤ u)} p−→ Q{α0(τ)} uniformly in u ∈ (0, 1).

(ii). Suppose that Assumptions A2, A3 and A6 are satisfied, then (i1)-(i4) hold uniformly
in u ∈ (0, 1) and τ ∈ T .

Proof of Lemma 1. (i) We only give the proof of (i1), since the proofs of (i2)-(i4) are
similar. To prove (i1), we need to show that∥∥∥∥∥n−1

n∑
i=1

fi{F−1
i (τ)}ZiXT

i I(Ui ≤ u)− Sz(u)

∥∥∥∥∥ = op(1),

uniformly in u ∈ (0, 1). Let U1, · · · , Un be a random sample from the measurable
space (χ,A). Hence it is sufficient to show the element-wise uniform convergence
of the matrix n−1

∑n
i=1 fi{F

−1
i (τ)}ZiXT

i I(Ui ≤ u). Let Z = (Z(1), · · · , Z(q))T ,
X = (X(1), · · · , X(p))T , where Z(j) (j = 1, · · · , q) and X(k) (k = 1, · · · , p) could be
the variable U or any other covariates. To obtain the desired results, we need to show
that for any j, k = 1, · · · , n, we have

n−1
n∑
i=1

fi{F−1
i (τ)}ZijXikI(Ui ≤ u)

p−→ E[f{F−1(τ |X)|X}Z(j)X(k)I(U ≤ u)],

uniformly in u ∈ (0, 1). Let fu(Z(j), X(k), U) = f{F−1(τ |X)|X}Z(j)X(k)I(U ≤ u),
and denote the class of measurable functions F = {fu(Z(j), Z(k), U) : χ → R}. It
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is sufficient to show that fu(Z(j), X(k), U) is P-Glivenko-Cantelli. That is we want to
show that, for any ε > 0, there exist finite brackets {(lmu (Z(j), X(k), U), hmu (Z(j), X(k),

U)),m = 1, · · · , N} such that for any fu(Z(j), X(k), U) ∈ F , there exists some m
such that lmu (Z(j), X(k), U) ≤ fu(Z(j), X(k), U) ≤ hmu (Z(j), X(k), U), and

E{hmu (Z(j), X(k), U)− lmu (Z(j), X(k), U)} ≤ ε,

where E denotes the expectation under the variables Z(j), X(k) and U . We partition the
region (0,1) into N intervals of equal length at the points u1, · · · , uN+1, where u1 = 0

and uN+1 = 1. For any ε > 0, take

lmu (Z(j), X(k), U) = Z(j)X(k)I{Z(j)X(k) > 0}I(U ≤ um−1)

+Z(j)X(k)I{Z(j)X(k) < 0}I(U ≤ um),

and

hmu (Z(j), X(k), U) = Z(j)X(k)I{Z(j)X(k) > 0}I(U ≤ um)

+Z(j)X(k)I{Z(j)X(k) < 0}I(U ≤ um−1),

for m = 1, · · · ,M .

For any m and lmu (Z(j), X(k), U) ≤ fu(Z(j), X(k), U) ≤ hmu (Z(j), X(k), U), we
have

E{hmu (Z(j), X(k), U)− lmu (Z(j), X(k), U)}

=

∫
f{F−1(τ |X)|X}z(j)x(k)I{z(j)x(k) > 0}I(um−1 ≤ u ≤ um)dP

−
∫
f{F−1(τ |X)|X}z(j)x(k)I{z(j)x(k) < 0}I(um−1 ≤ u ≤ um)dP

= (a) + (b).

For (a), we have

(a) =

∫
f{F−1(τ |X)|X}z(j)x(k)I{z(j)x(k) > 0}I(um−1 ≤ u ≤ um)dP

=
(∫

[f{F−1(τ |X)|X}z(j)x(k)]2I{z(j)x(k) > 0}dP
∫
I(um−1 ≤ u ≤ um)dP

)1/2

≤
(
E[f{F−1(τ |X)|X}z(j)x(k)]2fU (u∗)/N

)1/2

≤ (M1L/N)1/2

= (M/N)1/2,
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where M1 and M are some positive constants, f is bounded by L, M = M1L and
u∗ lies between um−1 and um, and the third inequality follows from Cauchy-Schwarz
inequality.

Similarly, for (b) we have

(b) =

∫
f{F−1(τ |X)|X}{−z(j)x(k)}I{z(j)x(k) < 0}I(um−1 ≤ u ≤ um)dP

=
(∫

[f{F−1(τ |X)|X}{−z(j)x(k)}]2I{z(j)x(k) < 0}dP
∫
I(um−1 ≤ u ≤ um)dP

)1/2

≤
(
E[f{F−1(τ |X)|X}z(j)x(k)]2fU (u∗)/N

)1/2

≤ (M1L/N)1/2

= (M/N)1/2.

Hence, we obtain

E{hmu (Z(j), X(k), U)− lmu (X(j), X(k), U)} ≤ 2(M/N)1/2 ≤ ε,

where the last inequality above follows by takingN ≥ [4M/ε2]+1. Hence the minimum
number of ε−brackets needed to cover F is [4M/ε2] + 1 and is finite. By Glivenko-
Cantelli theorem, we can get the uniform convergence.

(ii). The uniform convergence in u ∈ (0, 1) and τ ∈ T can be proven in a similar
way by replacing the function fu(Z(j), X(k), U) with fu,τ (Z(j), X(k), U) and thus is
omitted. This completes the proof of Lemma 1.

Lemma 2 Let D be an arbitrary compact set in Rp. Under Assumptions A1-A3 and
H1, we have

sup
u∈(0,1)

sup
ξ∈D
‖Rcn{u, τ,β0(τ) + n−1/2ξ} − Rdn{u, τ, θ0(τ)}‖ = op(1).

Proof of Lemma 2. Without loss of generality, we assume that the components of Xi

are nonnegative. Then ZiI{Yi < XT
i β0(τ)+n−1/2XT

i ξ} andFi{XT
i β0(τ)+n−1/2XT

i ξ}
are nondecreasing in ξ. Because D is compact, for any given δ > 0, D can be parti-
tioned into a finite number of subsets D1, · · · ,Dn(δ), where the diameter of each subset
is less than or equal to δ. For ξ ∈ Dh, h ∈ {1, · · · , n(δ)}, there exists two points
ξh,1 and ξh,2 in Dh such that XT

i ξh,1 ≤ XT
i ξ ≤ XT

i ξh,2. By the monotonicity of
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ZiI{Yi < XT
i β0(τ) + n−1/2XT

i ξ}, we have

Rc
n{u, τ,β0(τ) + n−1/2ξ} − Rd

n{u, τ, θ0(τ)}

≥ n−1/2
n∑
i=1

[Fi{XT
i β0(τ) + n−1/2XT

i ξ}

−I{Yi −XT
i β0(τ)− n−1/2XT

i ξh,2 < 0}]ZiI(Ui ≤ u)− Rd
n{u, τ, θ0(τ)}

= [Rc
n{u, τ,β0(τ) + n−1/2ξh,2} − Rd

n{u, τ, θ0(τ)}]− n−1/2
n∑
i=1

[Fi{XT
i β0(τ)

+n−1/2XT
i ξh,2} − Fi{XT

i β0(τ) + n−1/2XT
i ξ}]ZiI(Ui ≤ u). (S.2)

Similarly, we have

Rc
n{u, τ,β0(τ) + n−1/2ξ} − Rd

n{u, τ, θ0(τ)}

≤ [Rc
n{u, τ,β0(τ) + n−1/2ξh,1} − Rd

n{u, τ, θ0(τ)}]− n−1/2
n∑
i=1

[Fi{XT
i β0(τ)

+n−1/2XT
i ξh,1} − Fi{XT

i β0(τ) + n−1/2XT
i ξ}]ZiI(Ui ≤ u). (S.3)

By the inequality |y| ≤ max(|x|, |z|) for x ≤ y ≤ z and combining (S.2) and (S.3), we
obtain

sup
ξ∈D

sup
u∈(0,1)

‖Rc
n{u, τ,β0(τ) + n−1/2ξ} − Rd

n{u, τ, θ0(τ)}‖

≤ max
1≤h≤n(δ)

max
k=1,2

sup
u∈(0,1)

‖Rc
n{u, τ,β0(τ) + n−1/2ξh,k} − Rd

n{u, τ,θ0(τ)}‖

+ max
1≤h≤n(δ)

max
k=1,2

sup
u∈(0,1)

∥∥∥∥n−1/2
n∑
i=1

[Fi{XT
i β0(τ) + n−1/2XT

i ξh,k}

−Fi{XT
i β0(τ) + n−1/2XT

i ξ}]ZiI(Ui ≤ u)

∥∥∥∥
= (c) + (d), (S.4)

where

(c) = max
1≤h≤n(δ)

max
k=1,2

sup
u∈(0,1)

∥∥∥n−1/2
n∑
i=1

ψi(h, k, u)
∥∥∥,

and ψi(h, k, u) = [Fi{XT
i β0(τ)+n−1/2XT

i ξh,k}−I{Yi−XT
i β0(τ)−n−1/2XT

i ξh,k <

0}−Fi{XT
i β0(τ)+n−1/2ZTi α0(τ)I(Ui ≥ u0)}+I{Yi−XT

i β0(τ)−n−1/2ZTi α0(τ)I(Ui
≥ u0) < 0}]ZiI(Ui ≤ u). Because the distance between ξ and ξh,k is less than δ,
by mean value theorem and Assumption A3(a) and Lemma 1, it is easy to show that
(d) = δOp(1), which can be arbitrarily small by choosing a small δ.
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Let U(i) be the i-th order statistic of {Ui; i = 1, · · · , n}, and {(Y(i),X(i),Z(i)); i =
1, · · · , n} be the observation and {F(i); i = 1, · · · , n} be the distribution functions
corresponding to U(i). For notational simplicity, we omit h, k, u in the expression
ψi(h, k, u) when no confusion is made. Let ψ(i) be the score function of the subject
associated with U(i). Then

ψ(i) =
(
F(i){XT

(i)β0(τ) + n−1/2XT
(i)ξh,k} − I{Y(i) −XT

(i)β0(τ)− n−1/2XT
(i)ξh,k < 0}

− F(i)[X
T
(i)β0(τ) + n−1/2ZT(i)α0(τ)I{U(i) ≥ u0}]

+ I[Y(i) −XT
(i)β0(τ)− n−1/2ZT(i)α0(τ)I{U(i) ≥ u0} < 0]

)
Z(i)I{U(i) ≤ u}.

Then for an arbitrarily small number ε > 0, we have

P
{

max
h=1,··· ,n(δ)

max
k=1,2

sup
u∈(0,1)

∥∥∥ n∑
i=1

ψi

∥∥∥ > ε
}

= P
{

max
h=1,··· ,n(δ)

max
k=1,2

sup
u∈(0,1)

∥∥∥ n∑
i=1

ψ(i)

∥∥∥ > ε
}

< n(δ) max
h=1,··· ,n(δ)

max
k=1,2

P
{

max
j=1,··· ,n

∥∥∥ j∑
i=1

ψ(i)

∥∥∥ > ε
}
. (S.5)

Let the σ-fields F(i) = σ{ψ(1), · · · , ψ(i)} for i = 1, · · · , n. Because of the equality
E{ψ(i)|X(i)} = 0, then {ψ(i),F(i)} is an array of martingale difference. For every
γ > 1, applying Doob inequality gives

P

{
max

j=1,··· ,n

∥∥∥∥∥n−1/2
j∑
i=1

ψ(i)

∥∥∥∥∥ > ε

}
≤M2ε

−2γE

∥∥∥∥∥n−1/2
n∑
i=1

ψ(i)

∥∥∥∥∥
2γ

= M2ε
−2γE

∥∥∥∥∥n−1/2
n∑
i=1

ψi

∥∥∥∥∥
2γ

, (S.6)

where M2 is a constant depending on γ. Because {ψi,Fi} is an array of martingale
difference, by the Rosenthal inequality (Hall and Heyde, 1980), we have

E

∥∥∥∥∥n−1/2
n∑
i=1

ψi

∥∥∥∥∥
2γ

≤M3n
−γE

{
n∑
i=1

E(‖ψi‖2|Fi−1)

}γ
+M3n

−γ
n∑
i=1

E‖ψi‖2γ ,

where M3 is a constant. Note that

E(‖ψi‖2|Fi−1)

≤ ‖Zi‖2|Fi{XT
i β0(τ) + n−1/2XT

i ξh,k} − Fi{XT
i β0(τ) + n−1/2ZTi α0(τ)I(Ui ≥ u0)}|

= ‖Zi‖2|fi(ζ)|n−1/2|XT
i ξh,k − ZTi α0(τ)I(Ui ≥ u0)|

≤ Ln−1/2{‖Zi‖2‖‖Xi‖‖ξh,k‖+ ‖Zi‖3‖α0(τ)I(Ui ≥ u0)‖},
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where ζ is between XT
i β0(τ)+n−1/2ZTi α0(τ)I(Ui ≥ u0) and XT

i β0(τ)+n−1/2XT
i ξh,k.

By Hölder’s inequality,

E‖ψi‖2γ = E{E(‖ψi‖2γ |Fi−1)} ≤ E{E(‖ψi‖2|Fi−1)}γ

≤ Lγn−γ/2E{‖Zi‖2‖‖Xi‖‖ξh,k‖+ ‖Zi‖3‖α0(τ)I(Ui ≥ u0)‖}γ .

Hence we have

E

∥∥∥∥∥n−1/2
n∑
i=1

ψi

∥∥∥∥∥
2γ

≤ M3L
γn−γ/2E

[
n−1

n∑
i=1

{‖Xi‖2‖Zi‖ξh,k‖+ ‖Xi‖2‖ZTi α0I(Ui ≥ u0)‖}

]γ

+M3L
γn−3γ/2+1n−1

n∑
i=1

E{‖Xi‖2‖Zi‖‖ξh,k‖+ ‖Zi‖3‖α0(τ)I(Ui ≥ u0)‖}γ

≤ M3L
γn−γ/2E

[
n−1

n∑
i=1

{‖Xi‖2‖Zi‖‖D‖+ ‖Zi‖4‖α0(τ)I(Ui ≥ u0)‖}

]γ

+M3L
γn−3γ/2+1n−1

n∑
i=1

E{‖Xi‖2‖Zi‖‖D‖+ ‖Zi‖3‖α0(τ)I(Ui ≥ u0)‖}γ

≤ M3M4L
γn−γ/2E

[
n−1

n∑
i=1

{‖Xi‖2‖Zi‖+ ‖Zi‖3‖α0(τ)I(Ui ≥ u0)‖}

]γ

+M3L
γn−3γ/2+1n−1

n∑
i=1

E{‖Xi‖2‖Zi‖+ ‖Zi‖3‖α0(τ)I(Ui ≥ u0)‖}γ

≤ 2MM3M4L
γn−γ/2, (S.7)

where M3 and M4 are some finite constants, M4 = max(‖D‖γ , 1). In the above, the
second inequality follows because ‖ξh,k‖ ≤ ‖D‖, and the fourth inequality follows
from the Assumption A3(c). Combining (S.4), (S.5), (S.6) and (S.7), yields that

sup
ξ∈D

sup
u∈(0,1)

‖Rc
n{u, τ,β0(τ) + n−1/2ξ} − Rd

n{u, τ, θ0(τ)}‖

≤ 4n(δ)MM2M3M4L
γn−γ/2ε−2γ

= o(1).

This completes the proof of Lemma 2.

Lemma 3 Under Assumptions A1-A3 and H1, we have

sup
u∈(0,1)

sup
ξ∈D
‖Rn{u, τ,β0(τ)+n−1/2ξ}−Rdn{u, τ,θ0(τ)}+Sz(u)ξ−P{u,α0(τ)}‖ = op(1).
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Proof of Lemma 3. Direct calculation gives that

Rn{u, τ,β0(τ) + n−1/2ξ} − Rd
n{u, τ,θ0(τ)}+ Sz(u)ξ − P{u,α0(τ)}

=
[
Rc
n{u, τ,β0(τ) + n−1/2ξ} − Rd

n{u, τ,θ0(τ)}
]

+
(
n−1/2

n∑
i=1

[
τ − Fi{XT

i β0(τ)

+n−1/2XT
i ξ}

]
ZiI(Ui ≤ u) + Sz(u)ξ − P{u,α0(τ)}

)
= (e) + (f).

To obtain the desired result, it is sufficient to show that (e) and (f) are op(1) uniformly
in u ∈ (0, 1) and ξ ∈ D. The uniform property of the first term (e) is obtained by
Lemma 1. It remains to show that (f) is op(1) uniformly in u ∈ (0, 1) and ξ ∈ D.
Because we have

‖(f)‖ =
∥∥∥n−1

n∑
i=1

fi{XT
i β0(τ) + n−1/2ZTi α0(τ)I(Ui ≥ u0) + ηi}

× {−ZiXT
i I(Ui ≤ u)ξ + ZiZ

T
i α0(τ)I(u0 ≤ Ui ≤ u)}+ Sz(u)ξ − P{u,α0(τ)}

∥∥∥
≤
∥∥∥− n−1

n∑
i=1

fi{XT
i β0(τ) + n−1/2ZTi α0(τ)I(Ui ≥ u0) + ηi}ZiXT

i I(Ui ≤ u)ξ

+ Sz(u)ξ
∥∥∥+

∥∥∥n−1
n∑
i=1

fi{XT
i β0(τ) + ηi}ZiZTi α0(τ)I(u0 ≤ Ui ≤ u)− P{u,α0(τ)}

∥∥∥
= ‖(g)‖+ ‖(h)‖,

where the first equality follows from the mean value theorem with ηi between 0 and
n−1/2XT

i ξ−n−1/2ZTi α0(τ)I(Ui ≥ u0). By Assumption A3(a), we have max1≤i≤n |ηi |
= op(1). Then from Assumption A1, for each i, we have

fi{XT
i β0(τ) + n−1/2ZTi α0(τ)I(Ui ≥ u0) + ηi}

= fi{XT
i β0(τ) + n−1/2ZTi α0(τ)I(Ui ≥ u0)}+ op(1).

Then

−n−1
n∑
i=1

fi{XT
i β0(τ) + n−1/2ZTi α0(τ)I(Ui ≥ u0) + ηi}ZiXT

i I(Ui ≤ u)ξ + Sz(u)ξ

= −n−1
n∑
i=1

fi{XT
i β0(τ) + n−1/2ZTi α0(τ)I(Ui ≥ u0)}ZiXT

i I(Ui ≤ u)ξ + Sz(u)ξ + op(1)

= op(1).

By Lemma 1, uniformly in u ∈ (0, 1) and ξ ∈ D, we have supu∈(0,1) supξ∈D ‖(g)‖
= op(1). Following the similar arguments, we can show that supu∈(0,1) supξ∈D ‖(h)‖ =
op(1). This completes the proof of Lemma 3.
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Lemma 4 Under Assumptions A1-A3 and H1, β̂(τ) has the following Bahadur repre-
sentation:

β̂(τ)− β0(τ) = S−1

{
n−1

n∑
i=1

ψτ (εi)Xi

}
+ n−1/2S−1Q{α0(τ)}+ op(1). (S.8)

Proof of Lemma 4. First, the consistency of β̂(τ) can be obtained from Procházka
(1988). Applying Lemma 4.1 of He and Shao (1996), we get

sup
‖β(τ)−β0(τ)‖≤δn

∥∥∥n−1/2
n∑
i=1

[ψτ{Yi −XT
i β(τ)} − ψτ (εi)]Xi

−n−1/2
n∑
i=1

E[ψτ{Yi −XT
i β(τ)}Xi|Xi]

∥∥∥ = Op{(δn + n−1/2)1/2 log n},

where δn = o(1) as n→∞. Note that

E[ψτ{Y −XTβ(τ)}|X] = τ − F{XTβ(τ)|X}.

Therefore,

n−1/2
n∑
i=1

(ψτ{Yi −XT
i β̂(τ)} − [τ − Fi{XT

i β̂(τ)}])Xi = n−1/2
n∑
i=1

ψτ (εi)Xi

+Op[{‖β̂(τ)− β0(τ)‖+ n−1/2}1/2 log n]. (S.9)

By the subgradient condition of quantile regression (Koenker, 2005) and Assumption
3(a), we have

n−1/2
n∑
i=1

ψτ{Yi −XT
i β̂(τ)}Xi = op(1).

Hence we obtain

n−1/2
n∑
i=1

(ψτ{Yi −XT
i β̂(τ)} − [τ − Fi{XT

i β̂(τ)}])Xi

= n−1/2
n∑
i=1

[Fi{XT
i β̂(τ)} − τ ]Xi + op(1)

= n−1/2
n∑
i=1

fi{XT
i β0(τ) + n−1/2ZTi α0(τ)I(Ui ≥ u0)}XiX

T
i {β̂(τ)− β0(τ)}

−n−1
n∑
i=1

fi{XT
i β0(τ) + n−1/2ZTi α0(τ)I(Ui ≥ u0)}XiZ

T
i α0(τ)I(Ui > u0)

+op(1) + op[n
1/2{β̂(τ)− β0(τ)}]

= n1/2S{β̂(τ)− β0(τ)} −Q{α0(τ)}+ op(1) + op[n
1/2{β̂(τ)− β0(τ)}],
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which together with (S.9) proves Lemma 4.

Proof of Theorem 2. Because Theorem 1 is only a special case of Theorem 2 when
α0(τ) = 0, we only need to prove Theorem 2, namely Yi = XT

i β0(τ)+n−1/2ZTi α0(τ)

I(Ui > u0) + εi under the alternative hypothesis. Let ξ = n1/2{β̂(τ) − β0(τ)}, it
follows from Lemmas 3 and 4 that

Rn{u, τ, β̂(τ)}
= Rd

n{u, τ,β0(τ)} − n1/2Sz(u){β̂(τ)− β0(τ)}+ P{u,α0(τ)}+ op(1)

= n−1/2
n∑
i=1

ψτ (εi)ZiI(Ui ≤ u)− Sz(u)S−1n−1/2
n∑
i=1

ψτ (εi)Xi − Sz(u)S−1Q{α0(τ)}

+P{u,α0(τ)}+ op(1)

= n−1/2
n∑
i=1

ψτ (εi){I(Ui ≤ u)Zi − Sz(u)S−1Xi} − Sz(u)S−1Q{α0(τ)}+ P{u,α0(τ)}

+op(1)

= R(u) + q{u,α0(τ)}+ op(1).

Following the proofs in Stute (1997), the weak convergence of R(u) can be obtained.
This completes the proof of Theorem 2.

Proof of Corollary 1. Following the same arguments used in the proof of Theorem 2,
we can show that

Rn{u, τ, β̂(τ)} = n−1/2
n∑
i=1

ψτ (εi){I(Ui ≤ u)Zi−Sz(u)S−1Xi}+q{u,α0(τ)}+oP (1),

where q{u,α0(τ)} = an{−Sz(u)S−1Q{α0(τ)}+P{u,α0(τ)}}. Because q{u,α0(τ)}
→ +∞ as n goes into infinity, this implies Tn(τ) goes into infinity. This completes the
proof of Corollary 1.

The following lemma is needed to prove Theorem 3.

Lemma 5 Under Assumptions A1-A5, we have

sup
u∈(0,1)

‖Sz,n(u)− Sz(u)‖ = op(1).



S12 Liwen Zhang, Huixia Judy Wang, and Zhongyi Zhu

Proof of Lemma 5. Let g{β(τ)} = ZiX
T
i Khn{Yi −XT

i β(τ)}. Then

Sz,n(u)− Sz(u) = n−1
n∑
i=1

[g{β̂(τ)}I(Ui ≤ u)− g{β0(τ)}I(Ui ≤ u)}]

+n−1
n∑
i=1

[g{β0(τ)}I(Ui ≤ u)− Sz(u)]

= (i) + (j).

To obtain the desired result, we need to show that (i) and (j) are op(1) uniformly in
u ∈ (0, 1).

First note that

(i) = n−1
n∑
i=1

ZiX
T
i I(Ui ≤ u)[Khn{Yi −XT

i β̂(τ)} −Khn{Yi −XT
i β0(τ)}]

≤ n−1
n∑
i=1

ZiX
T
i I(Ui ≤ u) max

1≤i≤n
[Khn{Yi −XT

i β̂(τ)} −Khn{Yi −XT
i β0(τ)}].

By Assumptions A3(a), A4 and A5, and the fact that β̂(τ) − β0(τ) = Op(n
−1/2),

following mean value theorem, we have

max
1≤i≤n

[Khn{Yi −XT
i β̂(τ)} −Khn{Yi −XT

i β0(τ)}]

≤ h−2
n max

1≤i≤n
‖Xi‖K ′(ζ)Op(n

−1/2) = op(1),

where ζ is a point between Yi −XT
i β̂(τ) and Yi −XT

i β0(τ). Hence (i) = op(1).

Next, by the Taylor expansion we have

n−1
n∑
i=1

E[g{β0(τ)}I(Ui ≤ u)]

= n−1
n∑
i=1

EXi(ZiX
T
i I(Ui ≤ u)E[Khn{Yi −XT

i β0(τ)}|Xi])

= n−1
n∑
i=1

EXi

(
ZiX

T
i I(Ui ≤ u)[fi{XT

i β0(τ)}+ o(1)]
)

= Sz(u) + op(1).

The rest of the proof follows with the similar arguments used in Lemma 1 of Hansen
(1996) and thus is omitted.
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Proof of Theorem 3. Denote

R∗∗n (u) = n−1/2
n∑
i=1

ωiψτ (ei){I(Ui ≤ u)Zi − Sz(u)S−1Xi}. (S.10)

To obtain the result, we need to show that

(i) R∗n(u) and R∗∗n (u) are uniformly asymptotically equivalent, that is

sup
u∈(0,1)

‖R∗n(u)− R∗∗n (u)‖ = sup
u∈(0,1)

∥∥∥∥∥n−1/2
n∑
i=1

ωiψτ (ei){Sz,n(u)S−1
n − Sz(u)S−1}Xi

∥∥∥∥∥
= op(1);

and (ii) R∗∗n (u) converges to the Gaussian process R(u).

The first part (i) is a direct conclusion of Lemma 4 by allowing u = 1. Then it
follows that Sn = S + op(1) and

sup
u∈(0,1)

∥∥∥n−1/2
n∑
i=1

ωiψτ (ei){Sz,n(u)S−1
n − Sz(u)S−1}Xi

∥∥∥
= sup

u∈(0,1)

∥∥∥n−1/2
n∑
i=1

ωiψτ (ei)[{Sz,n(u)− Sz(u)}S−1
n − Sz(u)(S−1

n − S−1)]Xi

∥∥∥
≤ sup

u∈(0,1)
‖[{Sz,n(u)− Sz(u)}S−1

n − Sz(u)(S−1
n − S−1)]‖

∥∥∥n−1/2
n∑
i=1

ωiψτ (ei)Xi

∥∥∥
= op(1),

where the second equation follows by Lemma 4, and n−1/2
∑n

i=1 ωiψτ (ei)Xi = Op(1).

For (ii), we first show that the covariance function of R∗∗n (u) converges to that of
R(u). For each u ∈ R and u′ ∈ R, we have

Cov{R∗∗n (u),R∗∗n (u′)}

= Cov
[
n−1/2

n∑
i=1

ωiψτ (ei)
{
I(Ui ≤ u)Zi − Sz,n(u)S−1

n Xi

}
,

n−1/2
n∑
i=1

ωiψτ (ei)
{
I(Ui ≤ u′)Zi − Sz,n(u′)S−1

n Xi

} ]
= n−1

n∑
i=1

Cov[ωiψτ (ei){I(Ui ≤ u)Zi − Sz,n(u)S−1
n Xi},

ωiψτ (ei){I(Ui ≤ u′)Zi − Sz,n(u′)S−1
n Xi}]
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= n−1
n∑
i=1

E{ωiψτ (ei)}2{I(Ui ≤ u)Zi − Sz,n(u)S−1
n Xi}

×{I(Ui ≤ u′)Zi − Sz,n(u′)S−1
n Xi}T

→ τ(1− τ){E(ZuZu′)− E(ZuX
T )S−1STz (u′)− Sz(u)S−1E(XZTu′)

+Sz(u)S−1E(XXT )S−1STz (u′)}, almost surely,

which is the same as the covariance of R∗∗n (u) in Theorem 1.

Next, by the Cramer-Wold device, the finite dimensional convergence of the process
R∗∗n (u) can be obtained.

Finally, because the class of functions Fn = [ψτ (·){I(U ≤ u)Z− Sz,n(u)S−1
n X :

u ∈ R}] is a Vapnik-Chervonenskis class of functions. Applying Lemma 15 in Pol-
lard (1984), we can show that R∗∗n (u) is uniformly tight. This completes the proof of
Theorem 3.

To prove Theorem 4, we need to show that the processes Rn{u, τ,β0(τ) +n−1/2ξ} and
Rd
n{u, τ,θ0(τ)} − Sz(u)ξ + P{u,α0(τ)} are uniformly asymptotically equivalent in

(u, τ) ∈ (0, 1)× T .

Lemma 6 Under Assumptions A2-A6 and H∗1 , we have

sup
τ∈T

sup
u∈(0,1)

sup
ξ∈D
‖Rn{u, τ,β0(τ) + n−1/2ξ} − Rdn{u, τ,θ0(τ)}+ Sz(u)ξ

−P{u,α0(τ)}‖ = op(1).

Proof of Lemma 6. We first partition T into n(εn) parts with points ω1 = τ0 < τ1 <

· · · < τn(εn) = ω2, where n(εn) = [(ω2 − ω1)/εn] + 1, εn = n−1/2−d for some d > 0.
For τj−1 < τ < τj ,

Rc
n{u, τ, β0(τ) + n−1/2ξ} − Rd

n{u, τ,θ0(τ)}
≤ Rc

n{u, τj−1, β0(τj−1) + n−1/2ξ} − Rd
n{u, τj ,θ0(τj)}

+n−1/2
n∑
i=1

(τj − τj−1)ZiI(Ui ≤ u)

+n−1/2
n∑
i=1

[Fi{XT
i β0(τj) + n−1/2ξ} − Fi{XT

i β0(τj−1) + n−1/2ξ}]ZiI(Ui ≤ u).

Using the same argument, a reverse inequality holds when τj−1 and τj are switched.
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Then we can get

sup
τ∈T

sup
u∈(0,1)

sup
ξ∈D
‖Rc

n{u, τ, β0(τ) + n−1/2ξ} − Rd
n{u, τ,θ0(τ)}‖

≤ max
1≤j≤n(εn)

sup
u∈(0,1)

sup
ξ∈D
‖Rc

n{u, τj−1, β0(τj−1) + n−1/2ξ} − Rd
n{u, τj , θ0(τj)}‖

+ max
1≤j≤n(εn)

sup
u∈(0,1)

sup
ξ∈D
‖Rc

n{u, τj , β0(τj) + n−1/2ξ} − Rd
n{u, τj−1,θ0(τj−1)}‖

+ max
1≤j≤n(εn)

sup
u∈(0,1)

sup
ξ∈D

∥∥∥n−1/2
n∑
i=1

(τj − τj−1)ZiI(Ui ≤ u)
∥∥∥

+ max
1≤j≤n(εn)

sup
u∈(0,1)

sup
ξ∈D

∥∥∥n−1/2
n∑
i=1

[Fi{XT
i β0(τj) + n−1/2ξ} − Fi{XT

i β0(τj−1)

+ n−1/2ξ}]ZiI(Ui ≤ u)
∥∥∥

= (k) + (l) + (m) + (n).

For the terms (k) and (l), we have

(k) + (l) ≤ 2 max
1≤j≤n(εn)

sup
u∈(0,1)

sup
ξ∈D
‖Rc

n{u, τj , β0(τj) + n−1/2ξ} − Rd
n{u, τj ,θ0(τj)}‖

+ 2 max
1≤j≤n(εn)

sup
u∈(0,1)

‖Rd
n{u, τj , β0(τj)‖ − Rd

n{u, τj−1, β0(τj−1)‖

= (o) + (p),

where τ is invariant in the first inequality while ξ is invariant in the second inequality.
The term (o) can be shown to be op(1) by using similar arguments as the proof of
Lemma 1. For the term (p), let Φ = (0, 1) × (0, 1) be a parameter set with metric
ρ{(u, τ), (u′, τ ′)} = |u′ − u|+ |τ ′ − τ |. For a given τ ,

Rn{u, τ, β0(τ)} = n−1/2
n∑
i=1

[τ − I{Yi −XT
i β0(τ) ≤ 0}]ZiI(Ui ≤ u)

= n−1/2
n∑
i=1

[τ − I{Fi(Yi) ≤ τ)}]ZiI(Ui ≤ u).

Define Vi = Fi(Yi), then Vi has a standard uniform distribution. Hence,

Rn{u, τ, β0(τ)} = n−1/2
n∑
i=1

{τ − I(Vi ≤ τ)}ZiI(Ui ≤ u).

Moreover, {(τ − I(Vi ≤ τ))ZiI(Ui ≤ u); i = 1, · · · , n} is a sequence of vector
martingale differences. Hence, following the same lines as that in Theorem A1 of Bai
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(1996), we can obtain the stochastic equicontinuity of Rn{u, τ, β0(τ)} on (Φ, ρ). That
is, for any ε > 0 and η > 0, there exists a φ > 0 such that for large n, we have

P
[

sup
Ω
‖ − Rn{u, τ, β0(τ)}+ Rn{u′, τ ′, β0(τ ′)}‖ > η

]
< ε,

where Ω = {(s1, s2) ∈ Φ; s1 = (u, τ) and s2 = (u′, τ ′), ρ(s1, s2) < φ}, thus (p) =

op(1). Finally it is easy to show that the last two terms (m) and (n) are op(1) by using
the similar arguments as that of Lemma A.2 in Qu (2008), so we omit the details here.

Proof of Theorem 4. The proof is similar to that of Theorem 2 based on results of Lem-
mas 4 and 6 and thus is omitted.
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