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Summary

This web appendix contains two parts. In the first part, we provide the
proofs of all the theoretical results in the main paper. In the second part, we

provide figures for the real data analysis in Section 5.
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1. Proofs

Proof of Lemma 1.

By the property of the least-squares, E(Y (T) — (;(T)X;(T))5(T)X;(T) = 0
and E(Y (T) — Bio(T)X,(T))5(T) X;(T) = 0, where T is the random observation
time with distribution Frr(-) Therefore,

EB(T)Xy(T)(Bio(T)Xy(T) — B(T)Xi(T))
= E(Y(T) — B(T)X,(T))Bi(T)Xy(T) — E(Y(T) — Bio(T)Xy(T))3(T)X,(T) = 0.

It follows from this and the orthogonal decomposition Go(T) = B(T)+ (B1o(T) —
Bi(T)) that

EB(T)? = EB(T)* — E(Bio(T) — Bi(T))*.
By Conditions A, C and definition of p,,
EBy(T)? > Ml/ Bio(t)?dt > MyLyeyn ™",
T
B(B(T) = HT)? < M [ (50(t) = A(®)Pdt < MaLags.

The desired result follows from Triangle inequality. [

For functions gl(l)(t) and gl(2) (t), define the following inner product
) (2 1 1 2
00 = = > w3 (XKuttig)at” (k) ) (Xutig) gl (1) ).
( J
Its population version is

("0t = Bl ol = B (XD (1) (XD (1)),

where 7' is the random observation time with distribution Frr(-). We denote
the corresponding norms by || - ||, and || - ||. Let gy = >, mx B, note that
A (UWU )y = [l |2
The following result from Huang, Wu and Zhou (2004) will be used.
Lemma 2. (Lemma A.2 in Huang, Wu and Zhou (2004)) Let G denote the
collection of vectors of functions g = (g1,...,gp) with g; € Gy, then for s > 0,



Varying-coefficient Independence Screening 3

there exist positive constants Cy, Cs such that

2

n S
< O, K2 (-0— )
>S>_ 145, eXp 2Km1—|—8

P( sup {81, 82)n — (81,82)]
g,.8,€G g1l

Lemma 3. Under Conditions A and B, for s > 0, there exist constants C
and C5 such that

(Amin(U;WUl) _ Amin(EUQWUl)( 2

P( e (EUTWU,) > s) < C1K} exp(—C'g% 1 j_ S). (1.1)

More over, there exists some positive constants ¢4 and c5 such that

P{‘)\max (UIWU)™) = A ((EU;WUl)—l)‘ > Amax ((EU;WUI)‘l)}

< cs K exp<—04nKl_1>. (1.2)

Proof of Lemma 3. For g1 = Y, g1xB1x(t) and g2 = ;. gor Bax(t) € G, by

Lemma 2, for s > 0,

|<glvg2>n — <glag2>| 2 n s?
P< sup > S) < C1Kj exp(—C’2— ) (1.3)
91,9266 lg1lllg=] Ki1+s

Since for any g € Gy,

llgllz = llgl®l < [lgll? = llgl®|
>

lgll? ~ supgeg, llgll?’
we have
_ _ 2 _ 2
sup 1{91,92)n — (91, 92)| > su (9, 9)n — (9, 9)| > su g5 ||9H2|_ (1.4)
91,92€G; llg1llg=ll 9€Gy lallllgll 9eG, SUPyeg, |9l

Since for any g € G,

inf (|lg]7 — llg1*) < inf (lg]7) — inf (lg]*)-
9€G; 9€G; g€
By switching the roles of ||g||2 and ||g||?, we also have

inf 2 2y < ipf 2) — inf 2y,
int (Jgl ~ gl2) < ing (ll) ~ it (Jgl2)
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In other words,
inf ([lgl[7) — inf (|lg]*)| < max{| inf (gl — llgl*)I,| nf (Ig]* — gllZ)[}. (1.5)
9€G; 9eG 9€g; 9€g;

The right-hand-side of (1.5) is further bounded from above as

max{| inf (|9l — [lg/%)] (gl = llgll1} < SUP‘HgH?L - ||9H2‘- (1.6)
gegl gegl

,| inf
9€G
It follows from (1.4)—(1.6) that

(91, 92)n = {91.92)| _ [infyei(l9]12) — infyec, (1911
sup

>
91,9266 lg1llllg2ll supgeg, 1911

For g € Gy, by the property of B-splines in de Boor (1978), there exist positive

constants Fq, Fo such that
PLsaz < Bu(t))2dt < 22342 R, k=1,... K
7, 2 ik S T(Z’Ylk 1w (t))"dt < EZW@’ wER, k=1,... K.
k k k

Hence by Condition A, there exist positive D; and Dy such that

D1/K; < Auin(EUWU; /n) < sup ||g||> = Muax(EUJWU;/n) < Dy /K. (1.8)
9€G

Since [|g||2 =~/ (U;WU;/n)~,
inf (lgllz) = win v (UIWU/n)y = Auin(UjWU; /n), and
geY,

inf (Ilg]*) = miny' (EU;WUL/n)Y = Muin E(U; WU /),
1
the right-hand-side of (1.7) can be expressed as

infyeq,(912) = infyeq (I91°)] | Anin(UTWUL/M) = Anin(EU;WU,/n)

— (1.9
S P N (EUTWU, ) (1.9)
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Now it follows from (1.9) and (1.3) that for s > 0,

(Amm(U;WUl /1) = Amin(EUIWU, /n)(

P
( A (EUTWU, /) ~ 3)
2
n S

To prove the second inequality, letting s = 1/2D1 Dy Lin (1.10), we have

P(‘Amin(U;WUl) _ Amin(EU;WUl)‘ >1 /2D1Kl‘1>

< CO1K} exp(—04nKl_1>, (1.11)
for some positive constant ¢4. By (1.8), it follows that

P(’)\min(UEWUl/n) — )\min(EUEWUl/n)‘ 2 1/2)\min(EU;WUl/n))
< O1K} exp<—04nKl_1), (1.12)

for some positive constants C7 and cy4.
The second part of the lemma thus follows from the fact that Ay, (H)™! =
Amax(H™Y), if we establish that

P <‘{/\mm(U§WUl)}_l - {Amin(EU;WUl)} ‘ > {Amin(EUgWUl)}_1>

< K2 exp(—cémKn_ll), (1.13)

by using (1.12). A similar argument in Lemma 5 of Fan et al. (2011) applies
hence we omit the details. The desired result follows be letting ¢5 = Cy. O

Lemma 4. Under Conditions A, B, D and E, for any ¢ > 0,

P(|[UWY — EUWY]|? > K;6?)
< 4K exp(—0%/2(c; N2w*n K[ + cgNwd)), (1.14)

for some positive constants c; and cg.
Proof of Lemma 4. . Recall that Uy = (U, ..., Upp,)', Wy = w1, and

g = (€i1,- s €in,) - Vi = Xi(tiy) a(tij), Yi= Yir, -, Yin,), Y =(Yy,...,Y,).
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We have

UWY =) U,W, Y, => (U, WY, + U Wies).

Note that
U, WY, = w Z Uy Yij = w; Z XiijYij(Bu(tij), - - -, Big, (ti5))', and
ZUEZWZYZ <Z szle}/zyBll 2] ZwZZXlZ]Y;‘]BlKL tzy)) .
i
Let leij = Blk(tij)Xlin;'j — EBlk(tij)Xlin;j. Hence
!/
UWY - EUWY = <ZwZT11]ZwZTlKU) . (115)
i J { J
Since Yj; = fﬁ-j + €5, we can write Tjg;; = Tigij1 + Tigije, where
Tirij1 = Bu(tij) X1i;Yij — EBi(tij) X1i;Yis,

and Tigijo = B (tij) Xiijeij-
By Properties of B-splines in de Boor (1978), By (t) > 0, Z,ﬁl By (t) = 1.
EBy(tij) < CgKl_l for some C3 > 0. By Conditions A, B, E, we have

\Zleijl\ < 2n; By M3,
j
var(Y " Tirij1) < nfEBj(ti) Xi;Yi < nfCsBIMZE; . (1.16)
J

By Bernstein’s inequality, for any d; > 0,

P(‘ZwiZleijl‘ > 41)

< 2exp( ! i )
exp( —= ,
P\ 2 N2 s M2 BIK T+ 2Nw By Msd1 /3

(1.17)

where w = max; w; and N = max; n;. Now we bound the tail of Tj;;;2. Note
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m
that for k£ = 1,...,K;, m>2, E‘Zj leiﬂ‘ = E‘Zj XlijeijBlk(tij)

{6,120 B o n;—2
S GO vy B (e L LR
1 P n;—1

2?2:1 br=

-

b,

By Condition E, for any b, > 1, r=1,...,n4, > " by =m > 2,

br
B|Tiirs| " = B| Xuireir B (tir)

br b b
< B(|xp; Bult)

Blesr|" | Xuir))
< b, 1By O3 E exp(Bale;|| X ) Mar K7t < B3C3b,! By " Mr K7L

m
Hence E‘wi ZXlije,-jBlk(t,-j)‘ < m!w{”n;’"szlKl_lBQ_mMé”, for some constant By > 0.
J
By Bernstein’s inequality, for any do > 0,
n
P(‘Z w; ZXlijEijBlk(tij)‘ > 52)
i=1 j

1 62
< 2ex (—— 2 ) 1.18
- P\ 2nw2N2By ? M3 ByK; ' + wN By ' M30, (1.18)

Combining (1.17) and (1.18), taking c; = max(C3M3B},2B; *M3B,) and
cg = max(2/3By M3, By ' M3),

n
P(‘Z wj Zleij
=1

1 &2
>6) < dexp(—= S (119
) < texp (= crN2w2n K, + CgNw5> (1.19)

The desired result now follows from the union bound of probability,
P(|UWY — EUWY]|?? > K;0%) < 4K exp(—02/2(c N?w?n K + csNwd)).

0

Throughout the rest of the proof, for any matrix A, let [|A|| = \/Amax(ATA)
be the operator norm and ||Al/s = max; ;|A4;;| be the infinity norm. The next

lemma is about the tail probability of the eigenvalues of the design matrix.
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LEMMA 5. Under Conditions A, B, D and E, for any § > 0,

P(|I%lP? = 17:17| = c2Fin™") <

(8K + 2K}) exp(—csN 2w 2n! "4 K7%) 4+ 6 K7} exp(—C4nKl_1).
Proof of Lemma 5. Recall that
-1 _
5, = (EU;WU1> EU/WY, and §(t) = Bi(t),.

Let a, = UWY, B, = (UWU,)"2, a= EFUJWY and B = (EU;WU,)"2

By some algebra,

a/,B,a, —a'Ba= (a, —a)B,(a, —a) +2(a, —a)'B,a+a,(B, — B)a,

we have
1Al* = 17:]1* = S1 + Sz + Ss, (1.20)
where
/
Sy = (U;WY - EU§WY) (UIWU,)2 (U;WY - EU;WY),
/
Sy = 2(U;WY - EUQWY) (U'WU)) 2EU/WY,
Sy = (EUQWY)’((U;WUI)—2 - (EU;WUI)—2)EU;WY.
Note that
$1 < A (UIWU))2) - [UjWY — EUJWY . (1.21)
By Lemma 4,

P(|[UWY — EUWY|? > K;6%) < 4K exp(—6%/2(cz N*w*n K, ! + csNwd)).
Recall the result in Lemma 3 that,

P{ P (UIWU) ™) = A (FUWU) )| 2 A (EUWT) ) }

< O1KZ exp (—c;mKn_ll) .
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Since by the property of B-spline in de Boor (1978),
Amas ((BUWUY) ™) < n72D1?K2,
it follows that
P {/\max<(U2WUl)_2) > 4D1_2Kl2n_2} < C’lK?n exp<—04nK;bl>. (1.22)
Combining (1.21)—(1.22) and the union bound of probability, we have

P(S) > 4n 2 D% K32 5?)
< 4K exp(—6%/2(c;N2W*nK,,t 4+ cs Nwd))
+01 K2 exp (—C4ann1). (1.23)

To bound S5, we note that

|Sa|

IN

2 UWY — EU;WY] - [[(UjWU) >EUjWY]|
2UIWY — EUWY||- [(UWU)~2| - [EU[WY].  (1.24)

IN

Since by Condition D,

K,

2
IEUWYI? =3 (B wi Y Bulty) Xiig Yy ) (1.25)
k=1 i 7
K o K,
= (E Sw Blk(tij)X”jYij) < n?BIMEN?*0? Y EB} < CuN%wn?,
k=1 i 7 k=1

for some Cy > 0, it follows from (1.14), (1.22), (1.24), (1.25) and the union bound
of probability that

P(|Sy| = 8D;2C) P n K %5)
< 4K exp(—6%/2(c;N?w*n K" + cs Nwé))
+C K} exp<—04nKl_1>. (1.26)
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Now we bound S3. Note that
S5 = (EU§WY)’<(U§WUl)—2 - (EU;WU,)—2>EU;WY.
It can be further expressed as

Sy = (EUQWY)’(U{WUZ)_Q((EUQWU;)Q—(UQWUl)2>-
(EUWU)) ?EUWY. (1.27)

By the fact that ||[AB]|| < ||A] - ||B]|, we have

85| < [(UIWU))? — (EUWU?| - [|(UWU) 72 -
I(EUWU) | - [ EUWY 2. (1.28)

Since for any symmetric matrix |A + B| < ||A] + [|B]|, and UWU; is

symmetric,

I(UiWU,)* - (EUWU)?| (1.29)
= ||(U/WU, — EUWU,)(U/WU, — EUWU, + 2EU,WU))||
< |UWU, - EU[WU|” + 2[[UWU; - EUWU,| - [EUWU,.

Since for Kj-dimensional square matrix D, ||D|| < K;||D||oo, we have
[UIWU, - EUWU,|| < K|[UWU,; — EUWU||. (1.30)

We now use Bernstein’s inequality to bound the right-hand side of (1.30).
Since || Big|loo < 1, we have that for k,m < Kj, j < n;,

i
var(Z Blk(tij)Blm(tij)Xl%'j) § nzM??EB?]g(tU)B?m(tw) § nzM{)?EBl%g(tzy) § NM%CgKl_l.
j=1
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By Bernstein’s inequality, for any ¢ > 0,

n ng n ng
PO}:aME:XﬁﬂiM%ﬂBmﬂnﬂ—<E§:a%§:XﬁﬂiMhﬂBmﬂnﬂ|>5)S
=1 =1

i=1  j=1

52
2 expd — . 1.31
exp 2(Nw2M§03nK;1+2wNM§5/3)} (1-31)

By (1.29) and (1.31), we have

P(H(U;WUl)2 _(EUWU)?|| > K262 + 2D2n6) <

52
2exp{ - 3 1.32
P 2(Nw2M3Csn K" + 20N M35/3) (1.32)
By(1.22), (1.25), (1.28), (1.30)-(1.32) and the union bound of probability, it
follows that
P(|S3] > 8C4 Dy *DyK'n~ 16 4+ AKY D n=26%)
< 2K} exp(—6%/2(csN?w*n K ! + csNwé))
+2K7Cy exp<—64nKl_1). (1.33)
It follows from (1.20), (1.23), (1.26), (1.33) and the union bound of proba-
bility that for some positive constants cg, c19, ¢11 and ¢;2,
P ([I9l12 = 15l12| = oo in? + c1o 72 /m + enn Ko /n + cinKPo? /n?)
< (8K; +2K7) exp(—62/2(cr N?*w*n K, ! + cgNwé))
+6K7Cy exp<—04nKl_1). (1.34)

In (1.34), let CgKlg(Sz/nz+Cl()KlE’/2(5/n+611K14(5/TL+612K16(52/TL2 = o yn =2
for any given co > 0, i.e., taking 6 = n1_2“Kl_2C2/cn, there exist some positive

constants c3 and ¢4 such that
P({I5l? = 17l?| = exlin=2")
< (8K + 205Kl2) eXp(—03n1_4”Kl_3) + 6C5Kl2 exp (—C4nKl_1). O

Proof of Theorem 1.
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Note that | [~ Bl(t)2dt -7 @l(t)mt’ =

A /7 By (1)B (1) dt, — 4, /7 By(1)Bi(1) dt| = |(3 — 1) /7 BA(1)B(t) dt (%, + 7).

Since by B-splines property, Amax{ [7 Bi(t)B;(t)'dt} < C’5Kl_1 for some positive

constant Cs, the above can be bounded by
< Nl | BUOBUO 13]G = 30) (G + 0] = G713l = 13- 139
Therefore on the event
_ 412 RIE —1 —2k
By = {max I ]2 = [51]1?] < e1C5 Lag K™ /2},
EMy
we have

max %‘/T@(t)%it - /Tﬁ](t)th‘ < eén )2,

le M,

Meanwhile by Lemma 1, we have

%‘/Tﬁl(tydt >ci1én~2%/2, foralll € M,. (1.36)

Hence, by the choice of v,,, we have M, C ./\//Y,,n. Let co = 0105_1L1£, the result

now follows from Lemma 5 and a simple union bound:
P(BL) < spf (85 + 265 K5 exp(—eoN 22! ") o+ 6 K exp(—eanC,) | O

Proof of Theorem 2.
The proof takes two steps. Let U = (Uy,...,U,)". In the first step we show
that

|EUWY|? = O(Amax (EUWU)). (1.37)
Define the joint regression coefficients in the population

a, = argming B(Y — Ua)W(Y — U'a).
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By the score equation of «,, we get
EUW(Y - Uq,) = 0.

Hence, |[EUWY|? = o, EUWUEUWU q,, < M\uax(2)a,EUWU . Tt

now follows from the orthogonal decomposition that
var(Y) = var(U'a,) + var(Y — U'ay,).
Since var(Y) = O(1), we conclude that var(U'a,,) = O(1), i.e.
o, EUWU o, = O(1).

For the second step, by definition and the fact that ||Bjg|leo < 1, we have

Pn

DIl < max A {(BUIWU) | EUWY | = (K] A (2).
=1 ==

This implies that the number of {I : ||7,]|? > eK,,n"2*} can not exceed O(n* Apax (X))

for any € > 0. Since on the set

B — ‘~2_A2‘<K—2n
o= {max [ 1302 = 40| < Bn™0),

the number of {I : ||4,]|* > 26 K,,,n~ 2"} can not exceed the number of {I : ||7,||* >

eK,,n~ %}, which is bounded by O{n?A\p.x(X)} Moreover, on set B, we have

1 RV 3 02 -1, —2k
. _ < .
lEM. |T|‘/Tﬁl(t) dt /Tﬂl(t) dt‘ s eCslyn

Let £ = c6C; ' L1 /2, the number of {I : ‘—}‘ Ir Bi(t)2dt > cgn=2"} can not ex-
ceed the number of {1 : ||9,|*> > eK,,n~ 2}, which is bounded by O{n?* \yax(2)}.

Thus we have
P[IM,,| < O{n* Amax(2)}] = P(By).

The conclusion follows from Theorem 1. This completes the proof. [I.

2. Figures
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Figure 2.1: Estimated time-varying transcriptional effects for 21 known yeast TFs related to
cell cycle process. LEU3 and REB1 are not selected, so there are no estimates for these two.
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Figure 2.2: Estimated time-varying transcriptional effects for 14 TFs identified by IVIS on an
augmented higher dimension dataset.



