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Summary

This web appendix contains two parts. In the first part, we provide the

proofs of all the theoretical results in the main paper. In the second part, we

provide figures for the real data analysis in Section 5.
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1. Proofs

Proof of Lemma 1.

By the property of the least-squares, E(Y (T )− β̃l(T )Xl(T ))β̃l(T )Xl(T ) = 0

and E(Y (T )− βl0(T )Xl(T ))β̃l(T )Xl(T ) = 0, where T is the random observation

time with distribution FT (·) Therefore,

Eβ̃l(T )Xl(T )(βl0(T )Xl(T ) − β̃l(T )Xl(T ))

= E(Y (T ) − β̃l(T )Xl(T ))β̃l(T )Xl(T ) − E(Y (T ) − βl0(T )Xl(T ))β̃l(T )Xl(T ) = 0.

It follows from this and the orthogonal decomposition βl0(T ) = β̃l(T )+(β10(T )−

β̃l(T )) that

Eβ̃l(T )2 = Eβl0(T )2 − E(βl0(T ) − β̃l(T ))2.

By Conditions A, C and definition of ρn,

Eβl0(T )2 ≥ M1

∫

T
βl0(t)

2dt ≥ M1L1c1n
−2κ,

E(βl0(T ) − β̃l(T ))2 ≤ M2

∫

T
(βl0(t) − β̃l(t))

2dt ≤ M2L2ρ
2
n.

The desired result follows from Triangle inequality. �

For functions g
(1)
l (t) and g

(2)
l (t), define the following inner product

〈g
(1)
l , g

(2)
l 〉n =

1

n

∑

i

wi

∑

j

(
Xli(tij)g

(1)
l (tij)

)(
Xli(tij)g

(2)
l (tij)

)
.

Its population version is

〈g
(1)
l , g

(2)
l 〉 = E〈g

(1)
l , g

(2)
l 〉n = E

(
Xli(T )g

(1)
l (T )

)(
Xli(T )g

(2)
l (T )

)
,

where T is the random observation time with distribution FT (·). We denote

the corresponding norms by ‖ · ‖n and ‖ · ‖. Let gγ =
∑

k γlkBlk, note that

γ
′(U′

lWUl/n)γ = ‖gγ‖
2
n.

The following result from Huang, Wu and Zhou (2004) will be used.

Lemma 2. (Lemma A.2 in Huang, Wu and Zhou (2004)) Let G denote the

collection of vectors of functions g = (g1, . . . , gp)
′ with gl ∈ Gl, then for s > 0,
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there exist positive constants C1, C2 such that

P
(

sup
g

1
,g

2
∈G

|〈g1,g2〉n − 〈g1,g2〉|

‖g1‖‖g2‖
> s
)
≤ C1K

2
m exp

(
−C2

n

Km

s2

1 + s

)
.

Lemma 3. Under Conditions A and B, for s > 0, there exist constants C1

and C2 such that

P
(
∣∣∣λmin(U

′
lWUl) − λmin(EU′

lWUl)
∣∣∣

λmax(EU′
lWUl)

> s
)
≤ C1K

2
l exp

(
−C2

n

Kl

s2

1 + s

)
. (1.1)

More over, there exists some positive constants c4 and c5 such that

P
{∣∣∣λmax

(
(U′

lWUl)
−1
)
− λmax

(
(EU′

lWUl)
−1
)∣∣∣ ≥ λmax

(
(EU′

lWUl)
−1
)}

≤ c5K
2
l exp

(
−c4nK−1

l

)
. (1.2)

Proof of Lemma 3. For g1 =
∑

k g1kB1k(t) and g2 =
∑

k g2kB2k(t) ∈ Gl, by

Lemma 2, for s > 0,

P
(

sup
g1,g2∈Gl

|〈g1, g2〉n − 〈g1, g2〉|

‖g1‖‖g2‖
> s
)
≤ C1K

2
l exp

(
−C2

n

Kl

s2

1 + s

)
. (1.3)

Since for any g ∈ Gl,

|‖g‖2
n − ‖g‖2|

‖g‖2
≥

|‖g‖2
n − ‖g‖2|

supg∈Gl
‖g‖2

,

we have

sup
g1,g2∈Gl

|〈g1, g2〉n − 〈g1, g2〉|

‖g1‖‖g2‖
≥ sup

g∈Gl

|〈g, g〉n − 〈g, g〉|

‖g‖‖g‖
≥ sup

g∈Gl

|‖g‖2
n − ‖g‖2|

supg∈Gl
‖g‖2

. (1.4)

Since for any g ∈ Gl,

inf
g∈Gl

(‖g‖2
n − ‖g‖2) ≤ inf

g∈Gl

(‖g‖2
n) − inf

g∈Gl

(‖g‖2).

By switching the roles of ‖g‖2
n and ‖g‖2, we also have

inf
g∈Gl

(‖g‖2 − ‖g‖2
n) ≤ inf

g∈Gl

(‖g‖2) − inf
g∈Gl

(‖g‖2
n).
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In other words,

∣∣∣ inf
g∈Gl

(‖g‖2
n) − inf

g∈Gl

(‖g‖2)
∣∣∣ ≤ max{| inf

g∈Gl

(‖g‖2
n − ‖g‖2)|, | inf

g∈Gl

(‖g‖2 − ‖g‖2
n)|}. (1.5)

The right-hand-side of (1.5) is further bounded from above as

max{| inf
g∈Gl

(‖g‖2
n − ‖g‖2)|, | inf

g∈Gl

(‖g‖2 − ‖g‖2
n)|} ≤ sup

g∈Gl

∣∣∣‖g‖2
n − ‖g‖2

∣∣∣. (1.6)

It follows from (1.4)–(1.6) that

sup
g1,g2∈Gl

∣∣∣〈g1, g2〉n − 〈g1, g2〉
∣∣∣

‖g1‖‖g2‖
≥

∣∣∣infg∈Gl
(‖g‖2

n) − infg∈Gl
(‖g‖2)

∣∣∣
supg∈Gl

‖g‖2
. (1.7)

For g ∈ Gl, by the property of B-splines in de Boor (1978), there exist positive

constants E1, E2 such that

E1

Kl

∑

k

γ2
lk ≤

∫

T
(
∑

k

γlkBlk(t))
2dt ≤

E2

Kl

∑

k

γ2
lk, γlk ∈ R, k = 1, . . . ,Kl.

Hence by Condition A, there exist positive D1 and D2 such that

D1/Kl ≤ λmin(EU′
lWUl/n) ≤ sup

g∈Gl

‖g‖2 = λmax(EU′
lWUl/n) ≤ D2/Kl. (1.8)

Since ‖g‖2
n = γ

′(U′
lWUl/n)γ,

inf
g∈Gl

(‖g‖2
n) = min

γ
γ
′(U′

lWUl/n)γ = λmin(U
′
lWUl/n), and

inf
g∈Gl

(‖g‖2) = min
γ

γ
′(EU′

lWUl/n)γ = λminE(U′
lWUl/n),

the right-hand-side of (1.7) can be expressed as

∣∣∣infg∈Gl
(‖g‖2

n) − infg∈Gl
(‖g‖2)

∣∣∣
supg∈Gl

‖g‖2
=

∣∣∣λmin(U
′
lWUl/n) − λmin(EU′

lWUl/n)
∣∣∣

λmax(EU′
lWUl/n)

.(1.9)
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Now it follows from (1.9) and (1.3) that for s > 0,

P
(
∣∣∣λmin(U

′
lWUl/n) − λmin(EU′

lWUl/n)
∣∣∣

λmax(EU′
lWUl/n)

> s
)

≤ C1K
2
l exp

(
−C2

n

Kl

s2

1 + s

)
(1.10)

To prove the second inequality, letting s = 1/2D1D
−1
2 in (1.10), we have

P
(∣∣∣λmin(U

′
lWUl) − λmin(EU′

lWUl)
∣∣∣ > 1/2D1K

−1
l

)

≤ C1K
2
l exp

(
−c4nK−1

l

)
, (1.11)

for some positive constant c4. By (1.8), it follows that

P (|λmin(U
′
lWUl/n) − λmin(EU′

lWUl/n)| ≥ 1/2λmin(EU′
lWUl/n))

≤ C1K
2
l exp

(
−c4nK−1

l

)
, (1.12)

for some positive constants C1 and c4.

The second part of the lemma thus follows from the fact that λmin(H)−1 =

λmax(H
−1), if we establish that

P

(∣∣∣∣
{
λmin(U

′
lWUl)

}−1
−
{
λmin(EU′

lWUl)
}−1

∣∣∣∣ ≥
{
λmin(EU′

lWUl)
}−1

)

≤ C1K
2
m exp

(
−c4nK−1

m

)
, (1.13)

by using (1.12). A similar argument in Lemma 5 of Fan et al. (2011) applies

hence we omit the details. The desired result follows be letting c5 = C1. �

Lemma 4. Under Conditions A, B, D and E, for any δ > 0,

P (‖U′
lWY − EU′

lWY‖2 ≥ Klδ
2)

≤ 4Kl exp(−δ2/2(c7N
2ω2nK−1

l + c8Nωδ)), (1.14)

for some positive constants c7 and c8.

Proof of Lemma 4. . Recall that Uli = (Uli1, . . . ,Ulini
)′, Wli = wiIni

and

εi = (ǫi1, . . . , ǫini
)′. Ỹij = Xi(tij)

′
α(tij), Ỹi = (Ỹi1, . . . , Ỹini

)′, Ỹ = (Ỹ1, . . . , Ỹn)′.
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We have

U′
lWY =

∑

i

U′
liWliYi =

∑

i

(U′
liWliỸi + U′

liWliεi).

Note that

U′
liWiYi = wi

∑

j

UlijYij = wi

∑

j

XlijYij(Bl1(tij), . . . , BlKl
(tij))

′, and

∑

i

U′
liWiYi =

(∑

i

wi

∑

j

XlijYijBl1(tij), . . . ,
∑

i

wi

∑

j

XlijYijBlKl
(tij)

)′
.

Let Tlkij = Blk(tij)XlijYij − EBlk(tij)XlijYij. Hence

U′
lWY − EU′

lWY =
(∑

i

wi

∑

j

Tl1ij , . . . ,
∑

i

wi

∑

j

TlKlij

)′
. (1.15)

Since Yij = Ỹij + ǫij , we can write Tlkij = Tlkij1 + Tlkij2, where

Tlkij1 = Blk(tij)Xlij Ỹij − EBlk(tij)Xlij Ỹij ,

and Tlkij2 = Blk(tij)Xlijǫij .

By Properties of B-splines in de Boor (1978), Blk(t) ≥ 0,
∑Kl

k=1 Blk(t) = 1.

EBlk(tij) ≤ C3K
−1
l for some C3 > 0. By Conditions A, B, E, we have

|
∑

j

Tlkij1| ≤ 2niB1M3,

var(
∑

j

Tlkij1) ≤ n2
i EB2

lk(tij)X
2
lij Ỹ

2
ij ≤ n2

i C3B
2
1M2

3 K−1
l . (1.16)

By Bernstein’s inequality, for any δ1 > 0,

P (
∣∣∣
∑

i

wi

∑

j

Tlkij1

∣∣∣ > δ1)

≤ 2 exp
(
−

1

2

δ2
1

nN2w2C3M2
3 B2

1K−1
l + 2NwB1M3δ1/3

)
, (1.17)

where w = maxi wi and N = maxi ni. Now we bound the tail of Tlkij2. Note
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that for k = 1, . . . ,Kl, m ≥ 2, E
∣∣∣
∑

j Tlkij2

∣∣∣
m

= E
∣∣∣
∑

j XlijǫijBlk(tij)
∣∣∣
m

≤

{br}≥0∑
Pni

r=1
br=m

(
m

b1

)(
m − b1

b2

)
· · ·

(
m −

∑ni−2
r=1 br

bni−1

)
E
∣∣∣Tlki12

∣∣∣
b1
· · ·E

∣∣∣Tlkini2

∣∣∣
bni

.

By Condition E, for any br ≥ 1, r = 1, . . . , ni,
∑ni

r=1 br = m ≥ 2,

E
∣∣∣Tlkir2

∣∣∣
br

= E
∣∣∣XlirǫirBlk(tir)

∣∣∣
br

≤ E
(∣∣∣Xbr

lirBlk(tir)
br

∣∣∣E(|ǫir|
br |Xlir)

)

≤ br!B
−br

2 C3E exp(B2|εi||Xi)M
br

3 K−1
l ≤ B3C3br!B

−br

2 M br

3 K−1
l .

Hence E
∣∣∣wi

∑

j

XlijǫijBlk(tij)
∣∣∣
m

≤ m!wm
i nm

i B4K
−1
l B−m

2 Mm
3 , for some constant B4 > 0.

By Bernstein’s inequality, for any δ2 > 0,

P
(∣∣∣

n∑

i=1

wi

∑

j

XlijǫijBlk(tij)
∣∣∣ > δ2

)

≤ 2 exp
(
−

1

2

δ2
2

2nw2N2B−2
2 M2

3 B4K
−1
l + wNB−1

2 M3δ2

)
. (1.18)

Combining (1.17) and (1.18), taking c7 = max(C3M
2
3 B2

1 , 2B−2
2 M2

3 B4) and

c8 = max(2/3B1M3, B
−1
2 M3),

P
(∣∣∣

n∑

i=1

wi

∑

j

Tlkij

∣∣∣ > δ
)
≤ 4 exp

(
−

1

2

δ2

c7N2ω2nK−1
l + c8Nωδ

)
. (1.19)

The desired result now follows from the union bound of probability,

P (‖U′
lWY− EU′

lWY‖2 ≥ Klδ
2) ≤ 4Kl exp(−δ2/2(c7N

2ω2nK−1
l + c8Nωδ)).

�

Throughout the rest of the proof, for any matrix A, let ‖A‖ =
√

λmax(A
TA)

be the operator norm and ‖A‖∞ = maxi,j |Aij| be the infinity norm. The next

lemma is about the tail probability of the eigenvalues of the design matrix.
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Lemma 5. Under Conditions A, B, D and E, for any δ > 0,

P (
∣∣∣‖γ̂ l‖

2 − ‖γ̃l‖
2
∣∣∣ ≥ c2Kln

−2κ) ≤

(8Kl + 2K2
l ) exp(−c3N

−2ω−2n1−4κK−3
l ) + 6K2

l exp
(
−c4nK−1

l

)
.

Proof of Lemma 5. Recall that

γ̃ l =
(
EU′

lWUl

)−1
EU′

lWY, and β̃l(t) = Bl(t)
′
γ̃ l.

Let an = U′
lWY, Bn = (U′

lWUl)
−2, a = EU′

lWY and B = (EU′
lWUl)

−2.

By some algebra,

a′
nBnan − a′Ba = (an − a)′Bn(an − a) + 2(an − a)′Bna + a′

n(Bn − B)a,

we have

‖γ̂ l‖
2 − ‖γ̃ l‖

2 = S1 + S2 + S3, (1.20)

where

S1 =
(
U′

lWY− EU′
lWY

)′
(U′

lWUl)
−2
(
U′

lWY− EU′
lWY

)
,

S2 = 2
(
U′

lWY− EU′
lWY

)′
(U′

lWUl)
−2EU′

lWY,

S3 = (EU′
lWY)′

(
(U′

lWUl)
−2 − (EU′

lWUl)
−2
)
EU′

lWY.

Note that

S1 ≤ λmax((U
′
lWUl)

−2) · ‖U′
lWY− EU′

lWY‖2. (1.21)

By Lemma 4,

P (‖U′
lWY− EU′

lWY‖2 ≥ Klδ
2) ≤ 4Kl exp(−δ2/2(c7N

2ω2nK−1
l + c8Nωδ)).

Recall the result in Lemma 3 that,

P
{∣∣∣λmax

(
(U′

lWUl)
−1
)
− λmax

(
(EU′

lWUl)
−1
)∣∣∣ ≥ λmax

(
(EU′

lWUl)
−1
)}

≤ C1K
2
m exp

(
−c4nK−1

m

)
.
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Since by the property of B-spline in de Boor (1978),

λmax

(
(EU′

lWUl)
−2
)
≤ n−2D−2

1 K2
m,

it follows that

P
{

λmax

(
(U′

lWUl)
−2
)
≥ 4D−2

1 K2
l n−2

}
≤ C1K

2
m exp

(
−c4nK−1

m

)
. (1.22)

Combining (1.21)–(1.22) and the union bound of probability, we have

P (S1 ≥ 4n−2D−2
1 K3

mδ2)

≤ 4Kl exp(−δ2/2(c7N
2ω2nK−1

m + c8Nωδ))

+C1K
2
m exp

(
−c4nK−1

m

)
. (1.23)

To bound S2, we note that

|S2| ≤ 2‖U′
lWY− EU′

lWY‖ · ‖(U′
lWUl)

−2EU′
lWY‖

≤ 2‖U′
lWY− EU′

lWY‖ · ‖(U′
lWUl)

−2‖ · ‖EU′
lWY‖. (1.24)

Since by Condition D,

‖EU′
lWY‖2 =

Kl∑

k=1

(
E
∑

i

wi

∑

j

Blk(tij)XlijYij

)2
(1.25)

=

Kl∑

k=1

(
E
∑

i

wi

∑

j

Blk(tij)Xlij Ỹij

)2
≤ n2B2

1M2
3 N2w2

Kl∑

k=1

EB2
lk ≤ C4N

2ω2n2,

for some C4 > 0, it follows from (1.14), (1.22), (1.24), (1.25) and the union bound

of probability that

P (|S2| ≥ 8D−2
1 C

1/2
4 n−1K

5/2
l δ)

≤ 4Kl exp(−δ2/2(c7N
2ω2nK−1

l + c8Nωδ))

+C1K
2
l exp

(
−c4nK−1

l

)
. (1.26)



10 Rui Song AND Feng Yi AND Hui Zou

Now we bound S3. Note that

S3 = (EU′
lWY)′

(
(U′

lWUl)
−2 − (EU′

lWUl)
−2
)
EU′

lWY.

It can be further expressed as

S3 = (EU′
lWY)′(U′

lWUl)
−2
(
(EU′

lWUl)
2 − (U′

lWUl)
2
)
·

(EU′
lWUl)

−2EU′
lWY. (1.27)

By the fact that ‖AB‖ ≤ ‖A‖ · ‖B‖, we have

|S3| ≤ ‖(U′
lWUl)

2 − (EU′
lWUl)

2‖ · ‖(U′
lWUl)

−2‖ ·

‖(EU′
lWUl)

−2‖ · ‖EU′
lWY‖2. (1.28)

Since for any symmetric matrix ‖A + B‖ ≤ ‖A‖ + ‖B‖, and U′
lWUl is

symmetric,

‖(U′
lWUl)

2 − (EU′
lWUl)

2‖ (1.29)

= ‖(U′
lWUl − EU′

lWUl)(U
′
lWUl − EU′

lWUl + 2EU′
lWUl)‖

≤ ‖U′
lWUl − EU′

lWUl‖
2 + 2‖U′

lWUl − EU′
lWUl‖ · ‖EU′

lWUl‖.

Since for Kl-dimensional square matrix D, ‖D‖ ≤ Kl‖D‖∞, we have

∥∥U′
lWUl − EU′

lWUl

∥∥ ≤ Kl‖U
′
lWUl − EU′

lWUl‖∞. (1.30)

We now use Bernstein’s inequality to bound the right-hand side of (1.30).

Since ‖Blk‖∞ ≤ 1, we have that for k,m ≤ Kl, j ≤ ni,

var
( ni∑

j=1

Blk(tij)Blm(tij)X
2
lij

)
≤ niM

2
3 EB2

lk(tij)B
2
lm(tij) ≤ niM

2
3 EB2

lk(tij) ≤ NM2
3 C3K

−1
l .
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By Bernstein’s inequality, for any δ > 0,

P
(
|

n∑

i=1

ωi

ni∑

j=1

X2
lijBlk(tij)Blm(tij) − E

n∑

i=1

ωi

ni∑

j=1

X2
lijBlk(tij)Blm(tij)| > δ

)
≤

2 exp
{
−

δ2

2(Nw2M2
3 C3nK−1

l + 2wNM2
3 δ/3)

}
. (1.31)

By (1.29) and (1.31), we have

P
(
‖(U′

lWUl)
2 − (EU′

lWUl)
2‖ > K2

l δ2 + 2D2nδ
)
≤

2 exp
{
−

δ2

2(Nw2M2
3 C3nK−1

l + 2wNM2
3 δ/3)

}
. (1.32)

By(1.22), (1.25), (1.28), (1.30)-(1.32) and the union bound of probability, it

follows that

P (|S3| ≥ 8C4D
−4
1 D2K

4
l n−1δ + 4K6

l D−4
1 n−2δ2)

≤ 2K2
l exp(−δ2/2(c7N

2ω2nK−1
l + c8Nωδ))

+2K2
l C1 exp

(
−c4nK−1

l

)
. (1.33)

It follows from (1.20), (1.23), (1.26), (1.33) and the union bound of proba-

bility that for some positive constants c9, c10, c11 and c12,

P
(∣∣∣‖γ̂ l‖

2 − ‖γ̃ l‖
2
∣∣∣ ≥ c9K

3
l δ2/n2 + c10K

5/2
l δ/n + c11K

4
l δ/n + c12K

6
l δ2/n2

)

≤ (8Kl + 2K2
l ) exp(−δ2/2(c7N

2ω2nK−1
l + c8Nωδ))

+6K2
l C1 exp

(
−c4nK−1

l

)
. (1.34)

In (1.34), let c9K
3
l δ2/n2 +c10K

5/2
l δ/n+c11K

4
l δ/n+c12K

6
l δ2/n2 = c2Kln

−2κ

for any given c2 > 0, i.e., taking δ = n1−2κK−2
l c2/c11, there exist some positive

constants c3 and c4 such that

P (
∣∣∣‖γ̂ l‖

2 − ‖γ̃ l‖
2
∣∣∣ ≥ c2Kln

−2κ)

≤ (8Kl + 2c5K
2
l ) exp(−c3n

1−4κK−3
l ) + 6c5K

2
l exp

(
−c4nK−1

l

)
. �

Proof of Theorem 1.
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Note that |
∫
T β̂l(t)

2dt −
∫
T β̃l(t)

2dt| =

∣∣∣γ̂′
l

∫

T
Bl(t)Bl(t)

′dtγ̂l − γ̃
′
l

∫

T
Bl(t)Bl(t)

′dtγ̃ l

∣∣∣ =
∣∣∣(γ̂ l − γ̃ l)

′

∫

T
Bl(t)Bl(t)

′dt(γ̂ l + γ̃l)
∣∣∣.

Since by B-splines property, λmax{
∫
T Bl(t)Bl(t)

′dt} ≤ C5K
−1
l for some positive

constant C5, the above can be bounded by

≤ λmax{

∫

T
Bl(t)Bl(t)

′dt}
∣∣∣(γ̂ l − γ̃ l)

′(γ̂ l + γ̃ l)
∣∣∣ = C5K

−1
l

∣∣∣‖γ̂ l‖
2 − ‖γ̃ l‖

2
∣∣∣. (1.35)

Therefore on the event

Bn ≡ {max
l∈M⋆

∣∣∣‖γ̂ l‖
2 − ‖γ̃ l‖

2
∣∣∣ ≤ c1C

−1
5 L1ξKmn−2κ/2},

we have

max
l∈M⋆

1

|T |

∣∣∣
∫

T
β̂l(t)

2dt −

∫

T
β̃l(t)

2dt
∣∣∣ ≤ c1ξn

−2κ/2.

Meanwhile by Lemma 1, we have

1

|T |

∣∣∣
∫

T
β̂l(t)

2dt ≥ c1ξn
−2κ/2, for all l ∈ M⋆. (1.36)

Hence, by the choice of νn, we have M⋆ ⊂ M̂νn
. Let c2 = c1C

−1
5 L1ξ, the result

now follows from Lemma 5 and a simple union bound:

P (Bc
n) ≤ sn

{
(8Km + 2c5K

2
m) exp

(
−c3N

−2ω−2n1−4κK−1
m

)
+ 6c5K

2
m exp

(
−c4nK−1

m

)}
. �

Proof of Theorem 2.

The proof takes two steps. Let U = (U1, . . . ,Up)
′. In the first step we show

that

‖EUWY‖2 = O(λmax(EUWU′)). (1.37)

Define the joint regression coefficients in the population

αn = argminαE(Y − U′
α)′W(Y − U′

α).
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By the score equation of αn, we get

EUW(Y− U′
αn) = 0.

Hence, ‖EUWY‖2 = α
′
nEUWU′EUWU′

αn ≤ λmax(Σ)α′
nEUWU′

αn. It

now follows from the orthogonal decomposition that

var(Y) = var(U′
αn) + var(Y −U′

αn).

Since var(Y) = O(1), we conclude that var(U′
αn) = O(1), i.e.

α
′
nEUWU′

αn = O(1).

For the second step, by definition and the fact that ‖Blk‖∞ ≤ 1, we have

pn∑

l=1

‖γ̃l‖
2 ≤ max

1≤l≤pn

λmax{(EU′
lWUl)

−2}‖EUWY‖2 = O(K2
mλmax(Σ)).

This implies that the number of {l : ‖γ̃ l‖
2 > εKmn−2κ} can not exceed O(n2κλmax(Σ))

for any ε > 0. Since on the set

Bn = { max
1≤l≤pn

∣∣∣ ‖γ̃ l‖
2 − ‖γ̂ l‖

2
∣∣∣ ≤ εKmn−2κ},

the number of {l : ‖γ̂ l‖
2 > 2εKmn−2κ} can not exceed the number of {l : ‖γ̃ l‖

2 >

εKmn−2κ}, which is bounded by O{n2κλmax(Σ)} Moreover, on set Bn we have

max
l∈M⋆

1

|T |

∣∣∣
∫

T
β̂l(t)

2dt −

∫

T
β̃l(t)

2dt
∣∣∣ ≤ εC5L

−1
1 n−2κ.

Let ε = c6C
−1
5 L1/2, the number of {l : 1

|T |

∫
T β̂l(t)

2dt > c6n
−2κ} can not ex-

ceed the number of {l : ‖γ̂ l‖
2 > εKmn−2κ}, which is bounded by O{n2κλmax(Σ)}.

Thus we have

P [|M̂νn
| ≤ O{n2κλmax(Σ)}] ≥ P (Bn).

The conclusion follows from Theorem 1. This completes the proof. �.

2. Figures
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Figure 2.1: Estimated time-varying transcriptional effects for 21 known yeast TFs related to
cell cycle process. LEU3 and REB1 are not selected, so there are no estimates for these two.
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Figure 2.2: Estimated time-varying transcriptional effects for 14 TFs identified by IVIS on an
augmented higher dimension dataset.


