

Construction of sliced space-filling designs based on balanced sliced orthogonal arrays

Mingyao Ai¹, Bochuan Jiang^{1,2}, Kang Li¹

¹*Peking University and ²Science and Technology on Complex Land Systems Simulation Laboratory*

Appendix: Proofs of Lemmas and Theorems

Proof of Lemma 2

Since \mathbf{A} is a balanced $D(s_1, \lambda, s_1)$ and $\mathbf{C}_{(l_1, \dots, l_\lambda)}(:, j) = \mathbf{A}(:, j) + \Gamma(1, l_j)$ for $j = 1, \dots, \lambda$, we know that $\mathbf{C}_{(l_1, \dots, l_\lambda)}$ is also a balanced $D(s_1, \lambda, s_1)$. From the formula (2.1), the label of the i -th row of \mathbf{A} can be uniquely represented as $(b_{i0}, b_{i1}, \dots, b_{i, \lambda-1})\mathbf{u}$ for $i = 1, \dots, s_1$. Let \mathbf{B} be the $s_1 \times \lambda$ matrix with $(b_{i0}, b_{i1}, \dots, b_{i, \lambda-1})$ as the i -th row. Clearly, $\mathbf{A} = \mathbf{B}\mathbf{u}\mathbf{u}'$. By using Lemma 1 in Qian and Wu (2009), we have $\phi(\mathbf{A}) = \mathbf{B}\phi(\mathbf{u}\mathbf{u}')$.

Next we are ready to prove that $\phi(\mathbf{u}\mathbf{u}')$ has full rank over G . Note that $\phi(\alpha^i) = \beta^i$ for $i = 0, 1, \dots, \lambda - 1$. By performing some row transformations, the matrix $\phi(\mathbf{u}\mathbf{u}')$ can be transferred to

$$\begin{pmatrix} 1 & \beta & \dots & \beta^{\lambda-2} & \beta^{\lambda-1} \\ 0 & 0 & \dots & 0 & \phi(\alpha^\lambda) - \beta^\lambda \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \phi(\alpha^\lambda) - \beta^\lambda & \dots & \phi(\alpha^{2\lambda-3}) - \beta^{2\lambda-3} & \phi(\alpha^{2\lambda-2}) - \beta^{2\lambda-2} \end{pmatrix},$$

which has the same rank as $\phi(\mathbf{u}\mathbf{u}')$ over G . Suppose that α^λ is uniquely represented as $b_0 + b_1\alpha + \dots + b_{\lambda-1}\alpha^{\lambda-1}$, where $b_i \in G$, $0 \leq i \leq \lambda - 1$. If $\phi(\alpha^\lambda) = \beta^\lambda$, then $\phi(\alpha^{\lambda+1}) = \phi(b_0\alpha + b_1\alpha^2 + \dots + b_{\lambda-1}\alpha^\lambda) = b_0\beta + b_1\beta^2 + \dots + b_{\lambda-1}\beta^\lambda = \beta\phi(\alpha^\lambda) = \beta^{\lambda+1}$. It can be further shown that $\phi(\alpha^j) = \beta^j$ for any j , which implies that ϕ only projects the element zero of F to zero of G , a contradiction. Hence, $\phi(\alpha^\lambda) \neq \beta^\lambda$ and $\phi(\mathbf{u}\mathbf{u}')$ has full rank over G . Note that \mathbf{B} has no repeated rows. Thus, $\phi(\mathbf{A})$ also has no repeated rows and consists of all the s_2^λ possible λ -tuples from G , i.e., $\phi(\mathbf{A})$ is an $OA(s_2^\lambda, s_2^\lambda, \lambda)$. The part (ii) of Lemma 2 follows by noting

$\phi(\mathbf{v}_{(l_1, \dots, l_\lambda)}) = \mathbf{0}$ for any $(l_1, \dots, l_\lambda) \in Q^\lambda$.

Pick any two distinct λ -tuples $(l_1, \dots, l_\lambda), (l'_1, \dots, l'_\lambda) \in Q^\lambda$. Obviously, the i -th rows of $\mathbf{C}_{(l_1, \dots, l_\lambda)}$ and $\mathbf{C}_{(l'_1, \dots, l'_\lambda)}$ are distinct for $i = 1, \dots, s_1$. Since $\phi(\mathbf{C}_{(l_1, \dots, l_\lambda)}) = \phi(\mathbf{C}_{(l'_1, \dots, l'_\lambda)}) = \phi(\mathbf{A})$ and $\phi(\mathbf{A})$ has no repeated rows, it can be shown that $\mathbf{C}_{(l_1, \dots, l_\lambda)}$ and $\mathbf{C}_{(l'_1, \dots, l'_\lambda)}$ have no same rows. Thus, \mathbf{C} has no repeated rows and consists of all the s_1^λ possible λ -tuples from F , i.e., \mathbf{C} is an $OA(s_1^\lambda, s_1^\lambda, \lambda)$. The proof of Lemma 2 is complete.

Proof of Theorem 1

Since any element of F can be uniquely represented in the expression (2.1), all the elements of $\mathbf{u}'\mathbf{Z}$ are distinct and nonzero. By noting that $\mathbf{A}\mathbf{Z}$ is the matrix obtained by taking the columns of \mathbf{A}_0 labeled with the elements of $\mathbf{u}'\mathbf{Z}$, we know that $\mathbf{A}\mathbf{Z}$ is a balanced $D(s_1, m, s_1)$. Since $\mathbf{C}_{(l_1, \dots, l_\lambda)}\mathbf{Z} = \mathbf{A}\mathbf{Z} + \mathbf{1}_{s_1}\mathbf{v}'_{(l_1, \dots, l_\lambda)}\mathbf{Z}$, it can be shown that $\mathbf{C}_{(l_1, \dots, l_\lambda)}\mathbf{Z}$ is also a balanced $D(s_1, m, s_1)$. So the part (ii) of Theorem 1 follows. Furthermore, because $\mathbf{H} = (\alpha_0, \dots, \alpha_{s_1-1})' \oplus (\mathbf{C}_{(l_1, \dots, l_\lambda)}\mathbf{Z})$, the part (i) of Theorem 1 follows easily from Lemma 1.

Suppose now any t columns of \mathbf{Z} are linearly independent over G . Let \mathbf{Z}_0 be a $\lambda \times t$ submatrix of \mathbf{Z} . From Lemma 2 (ii), $\phi(\mathbf{C}_{(l_1, \dots, l_\lambda)})$ is an $OA(s_2^\lambda, s_2^\lambda, \lambda)$. Thus, for any fixed t -tuple $\boldsymbol{\eta}$ from G , the number of times that $\boldsymbol{\eta}$ appears as a row in $\phi(\mathbf{C}_{(l_1, \dots, l_\lambda)})\mathbf{Z}_0$ is equal to the number of λ -tuples \mathbf{b} 's from G such that $\mathbf{b}\mathbf{Z}_0 = \boldsymbol{\eta}$. Since \mathbf{Z}_0 has full column rank over G , it is known that this number is equal to $s_2^{\lambda-t}$. Therefore, $\phi(\mathbf{C}_{(l_1, \dots, l_\lambda)})\mathbf{Z}$ is an $OA(s_1, s_2^m, t)$ and the part (iii) of Theorem 1 follows.

Proof of Theorem 2

Since the part (i) of Theorem 2 can be easily obtained by following the similar proof of Theorem 1 (ii), here we need only to prove the part (ii) of Theorem 2.

Assume now that there is a $\lambda \times t$ submatrix of \mathbf{Z} , denoted by \mathbf{Z}_0 , which has full column rank over G . It can be shown that \mathbf{Z}_0 also has full column rank over F . Otherwise, there exists a nonzero vector $(a_1, \dots, a_t)'$ over F such that $\mathbf{Z}_0(a_1, \dots, a_t)' = \mathbf{0}$. Note that each a_i can be uniquely represented in (2.1) as the form of $\mathbf{b}'_i\mathbf{u}$, where \mathbf{b}_i is a λ -vector over G for $i = 1, \dots, t$. Thus, we have $\phi(\mathbf{Z}_0(\mathbf{b}_1, \dots, \mathbf{b}_t)'\mathbf{u}\mathbf{u}') = \mathbf{Z}_0(\mathbf{b}_1, \dots, \mathbf{b}_t)'\phi(\mathbf{u}\mathbf{u}') = \mathbf{0}$. It is known from the proof of Lemma 2 that $\phi(\mathbf{u}\mathbf{u}')$ has full rank over G . Therefore, $\mathbf{Z}_0(\mathbf{b}_1, \dots, \mathbf{b}_t)' = \mathbf{0}$, a

contradiction.

From Lemma 2, we know that \mathbf{C} is an $OA(s_1^\lambda, s_1^\lambda, \lambda)$ over F and $\phi(\mathbf{C}_{(l_1, \dots, l_\lambda)})$ is an $OA(s_2^\lambda, s_2^\lambda, \lambda)$ over G . Then the conclusion in the part (ii) of Theorem 2 can be proved similar to Theorem 1 (iii) and so the remainder of the proof is omitted here.

Proof of Theorem 3

From Theorem 1 (i), it is easy to see that the matrix \mathbf{H} constructed in Method 1 has no repeated rows. Similar to the proof of Theorem 2, it can be shown that the rows of \mathbf{Z} are also linearly independent over F . It is known from Lemma 2 that \mathbf{C} has no repeated rows. So, the matrix $\mathbf{H} = \mathbf{C}\mathbf{Z}$ constructed in Method 2 also has no repeated rows. The similar conclusion for each projected slice can be obtained by following the above arguments again.

Proof of Lemma 3

When $\mathbf{Z}_2 = (\mathbf{I}_\lambda, \mathbf{1}_\lambda)$ with $\lambda \geq s_2$, the conclusion obviously holds.

Now suppose that there exist a $\lambda \times \lambda$ submatrix of \mathbf{Z}_2 , denoted by \mathbf{Z}_0 , and a nonzero vector $\mathbf{b} = (b_0, \dots, b_{\lambda-1})'$ over G such that $\mathbf{b}'\mathbf{Z}_0 = \mathbf{0}$. Let $\Psi(Y) = b_0 + b_1Y + \dots + b_{\lambda-1}Y^{\lambda-1}$.

Now consider the case of $\mathbf{Z}_2 = (\mathbf{e}_1, \mathbf{e}_\lambda, \mathbf{W}_\lambda)$. Note that $\mathbf{b}'\mathbf{Z}_2 = (\Psi(0), b_{\lambda-1}, \Psi(\beta), \dots, \Psi(\beta^{s_2-1}))$. If \mathbf{e}_λ is a column of \mathbf{Z}_0 , then $b_{\lambda-1} = 0$ and $\Psi(Y)$ has $\lambda - 1$ distinct roots over G , a contradiction. Otherwise, $\Psi(Y) = 0$ has λ distinct roots over G , a contradiction again. Thus, the above \mathbf{Z}_0 doesn't exist.

Next, we focus on the case of $\mathbf{Z}_2 = (\mathbf{I}_3, \mathbf{W}_3)$ with the conditions that $\lambda = 3$ and s_2 is even. Note that $\mathbf{b}'\mathbf{Z}_2 = (\Psi(0), b_1, b_2, \Psi(\beta), \dots, \Psi(\beta^{s_2-1}))$. From the previous paragraph, we need only to consider the situation when \mathbf{e}_2 is a column of \mathbf{Z}_0 . Then $b_1 = 0$. If \mathbf{e}_3 is also a column of \mathbf{Z}_0 , then $b_2 = 0$ and $b_0 = 0$, a contradiction. Otherwise, there exist two elements of G , say η_1 and η_2 , satisfying $b_0 + b_2\eta_1^2 = b_0 + b_2\eta_2^2 = 0$. By using the fact $\eta_1^2 = \eta_2^2$ if and only if $\eta_1 = \eta_2$ when s_2 is even, we conclude that $b_0 = b_2 = 0$, a contradiction again. Thus, the above \mathbf{Z}_0 doesn't exist yet.

Finally, we consider the case of $\mathbf{Z}_2 = (\mathbf{W}'_3, \mathbf{I}_{s_2-1})$ with the conditions that $\lambda = s_2 - 1$ and s_2 is even. Note that $\mathbf{b}'\mathbf{Z}_2 = (\mathbf{b}'\mathbf{W}'_3, \mathbf{b}')$. If $\mathbf{Z}_0 = \mathbf{I}_{s_2-1}$, then $\mathbf{b} = \mathbf{0}$, a contradiction. Otherwise, without loss of generality, suppose the last

$s_2 - 2 - k$ columns of \mathbf{I}_{s_2-1} are involved in \mathbf{Z}_0 , where $0 \leq k \leq 2$. Then $b_i = 0$ for $k < i \leq s_2 - 2$. Obtain a matrix \mathbf{W} by collecting the $k + 1$ columns of \mathbf{W}'_3 involved in \mathbf{Z}_0 . Then $\mathbf{b}'\mathbf{W} = 0$ and $(b_0, \dots, b_k)\mathbf{W}^{(k+1)} = 0$, where $\mathbf{W}^{(k+1)}$ is the submatrix obtained by taking the first $k + 1$ rows of \mathbf{W} . It can be easily verified that any $(k + 1) \times (k + 1)$ submatrix of \mathbf{W}_3 has full rank over G for $0 \leq k \leq 2$ when s_2 is even. Thus, $b_i = 0$ for $0 \leq i \leq k$, a contradiction again. So, the above \mathbf{Z}_0 doesn't exist yet.

In all, the conclusion in Lemma 3 holds for different generator matrices \mathbf{Z}_2 in (4.2). The proof is complete.

Proof of Lemma 4

By noting that \mathbf{B}_j is a subarray of the multiplication table of F , the part (i) of Lemma 4 follows. Recall that $\mathbf{\Gamma}(:, 1)$ is a permutation of all elements in $F_0 = \{a_0 + a_1x + \dots + a_{u_2-1}x^{u_2-1} | a_j \in GF(p)\}$. From Lemma 2 in Qian and Wu (2009), we know $\varphi(\mathbf{B}_{11}) = \varphi(\mathbf{\Gamma}(:, 1))\varphi(\mathbf{\Gamma}(:, 1))'$ for $u_1 \geq 2u_2 - 1$ and thus $\varphi(\mathbf{B}_{11})$ is a $D(s_2, s_2, s_2)$. For $1 \leq k_1 < k_2 \leq q$, from the formula (2.5) we have $\varphi(\mathbf{B}_{ij}(:, k_1)) - \varphi(\mathbf{B}_{ij}(:, k_2)) = \varphi(\mathbf{B}_{11}(:, k_1)) - \varphi(\mathbf{B}_{11}(:, k_2)) + \varphi(\mathbf{\Gamma}(k_1, 1)c_i(x) - \mathbf{\Gamma}(k_2, 1)c_i(x))$. Hence, $\varphi(\mathbf{B}_{ij})$ is also a $D(s_2, s_2, s_2)$ for $i, j = 1, \dots, q$.

Proof of Theorem 9

Since $\mathbf{H} = (\mathbf{\Gamma}(:, 1)', \dots, \mathbf{\Gamma}(:, q)')' \oplus \mathbf{B}_2$, the part (i) of Theorem 9 follows from Lemma 1 and Lemma 4. Note that $\varphi(\mathbf{B}_{j2})$ is a $D(s_2, s_2, s_2)$ and $\varphi(\mathbf{\Gamma}(:, i))$ is an $OA(s_2, s_2^1, 1)$. By following Lemma 1, we know $\varphi(\mathbf{H}_{ij})$ is an $OA(s_2^2, s_2^{s_2}, 2)$ for $i, j = 1, \dots, q$.

Let $\deg\{f(x)\}$ denote the degree of a polynomial $f(x) \in F$, or more precisely the polynomial $f(x)$ modulo $p_1(x)$. If two elements of F are in the same column of $\mathbf{\Gamma}$, from the formula (2.5) we know the degree of their difference is less than u_2 . Now partition the elements of $\mathbf{\Gamma}(:, 1)$ into p groups, each of size $q = s_1/s_2 = p^{u_2-1}$, according to the rule that any two elements $f_1(x)$ and $f_2(x)$ of $\mathbf{\Gamma}(:, 1)$ are in the same group if and only if $\deg\{f_1(x) - f_2(x)\} \leq u_2 - 2$. Suppose $\mathbf{\Gamma}(l_1, 1), \mathbf{\Gamma}(l_2, 1), \dots, \mathbf{\Gamma}(l_q, 1)$ are from the same group. For $1 \leq k \leq s_2$, we have $\mathbf{B}_{j2}(l_1, k) - \mathbf{B}_{j2}(l_2, k) = [\mathbf{\Gamma}(l_1, 1) - \mathbf{\Gamma}(l_2, 1)][\mathbf{\Gamma}(k, 1) + c_2(x)]$, where $\deg\{c_2(x)\} = u_2$. Then $\deg\{\mathbf{B}_{j2}(l_1, k) - \mathbf{B}_{j2}(l_2, k)\} \geq u_2$ and $\mathbf{B}_{j2}(l_1, k)$ and $\mathbf{B}_{j2}(l_2, k)$ are in different columns of $\mathbf{\Gamma}$. As a result, $\mathbf{B}_{j2}(l_1, k), \dots, \mathbf{B}_{j2}(l_q, k)$ are in distinct

columns of $\mathbf{\Gamma}$ and thus each column of $\mathbf{\Gamma}$ contains exactly p elements of $\mathbf{B}_{j2}(:, k)$. From $\mathbf{H}_{ij}(:, k) = \mathbf{\Gamma}(:, i) \oplus \mathbf{B}_{j2}(:, k) = \mathbf{\Gamma}(:, 1) \oplus \mathbf{B}_{j2}(:, k) + c_i(x)$, it can be easily verified that $\mathbf{H}_{ij}(:, k)$ is balanced for $i, j = 1, \dots, q$. The proof is complete.

Proof of Theorem 10

Since the k -th elements of $\mathbf{u}_{i1}, \dots, \mathbf{u}_{iq}$ form a permutation of $\{1, \dots, q\}$ for $k = 1, \dots, t$, it is easy to see that each \mathbf{H}_i is balanced for $i = 1, \dots, q^{t-1}$. For any $(l_1, \dots, l_t) \in Q^t$, by noting that the first t columns of $\rho(\mathbf{H}_{(l_1, \dots, l_t)})$ have each of the s_2^t possible t -tuples from G as a row and the last column is the sum of the first t columns, we know that $\rho(\mathbf{H}_{(l_1, \dots, l_t)})$ is an $OA(s_2^t, s_2^{t+1}, t)$. The proof is complete.

Proof of Theorem 11

The part (ii) of Theorem 11 follows by noting that $\rho(\mathbf{A}) = \mathbf{A}_0$ and $\rho(\mathbf{v}_{(l_1, \dots, l_t)}) = 0$ for any $(l_1, \dots, l_t) \in Q^t$. Since any $s_2^t \times t$ submatrix of $\mathbf{H}_{(l_1, \dots, l_t)}$ or $\rho(\mathbf{H}_{(l_1, \dots, l_t)})$ has no repeated rows, it can be shown that any $s_1^t \times t$ submatrix of \mathbf{H} has no repeated rows and thus consists of all the s_1^t possible t -tuples from F , i.e., \mathbf{H} is an $OA(s_1^t, s_1^{t+1}, t)$.