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Appendix: Proofs of Lemmas and Theorems

Proof of Lemma 2

Since A is a balanced D(s1,A,s1) and Cy, 1, 5) = A(;, j) + T(1,1)
for j = 1,..., A, we know that C
the formula (2.1), the label of the i-th row of A can be uniquely represented

I1,..1y) 18 also a balanced D(s1, A, s1). From
as (bio,bi1,...,bix—1)u for i = 1,...,s;. Let B be the s; x A\ matrix with
(bi0, bit, - - -, bia—1) as the i-th row. Clearly, A = Buu'. By using Lemma 1 in
Qian and Wu (2009), we have ¢(A) = Bo(uu').

Next we are ready to prove that ¢(uw’) has full rank over G. Note that
#(a’) = B fori =0,1,...,\ — 1. By performing some row transformations, the

matrix ¢(uu’) can be transfered to

6 . ﬂ)‘_2 /8)\—1
0 0 - 0 ¢(at) — g

0 gzﬁ(a)‘) _ 5)\ ¢(a2>\—3) _ ﬂ2)\_3 (;3(042)‘_2) _ ﬂ2>\_2

which has the same rank as ¢(uu’) over G. Suppose that o is uniquely repre-
sented as by + by + -+ - + by_10 1, where b; € G, 0 < i < X\ —1. If p(a?) = p?,
then ¢(a**!) = ¢(boa + bra? + -+ + by_10) = b + b1 82 + -+ + b1 8> =
Bp(a?) = AL It can be further shown that ¢(a) = 37 for any j, which implies
that ¢ only projects the element zero of F' to zero of GG, a contradiction. Hence,
() # B and ¢(uu’) has full rank over G. Note that B has no repeated rows.
Thus, ¢(A) also has no repeated rows and consists of all the s%‘ possible A-tuples
from G, i.e., p(A) is an OA(s3, s3, A). The part (ii) of Lemma 2 follows by noting
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(b('v(h,‘..,l)\)) = 0 for any (ll7 ey l/\) € Q)\‘
Pick any two distinct A-tuples (I1,...,0,),(},...,l) € Q*. Obviously,
the i-th rows of C(;, ;) and C(l/wa&) are distinct for ¢ = 1,...,s;. Since

-----

shown that C ) and C(l’l,“.,l;) have no same rows. Thus, C has no repeated
A

rows and consists of all the s} possible A-tuples from F, i.e., C is an OA(s}, 57, \).

liyln

The proof of Lemma 2 is complete.

Proof of Theorem 1

Since any element of F' can be uniquely represented in the expression (2.1),
all the elements of u’ Z are distinct and nonzero. By noting that A Z is the matrix
obtained by taking the columns of Ag labeled with the elements of u’Z, we know
that AZ is a balanced D(s1,m,s1). Since C, )2 = AZ + 1811)’(11,..”“)Z7 it
can be shown that C(;, ;)Z is also a balanced D(s1,m, s1). So the part (ii) of
Theorem 1 follows. Furthermore, because H = (o, ..., as-1) ® (C,...1,)Z),
the part (i) of Theorem 1 follows easily from Lemma 1.

Suppose now any t columns of Z are linearly independent over G. Let Z|
be a A x t submatrix of Z. From Lemma 2 (ii), #(C;, . ;,)) is an OA(s), 55, \).
Thus, for any fixed t-tuple 1 from G, the number of times that 1 appears as a
row in ¢(C, . 1,))Zo is equal to the number of A-tuples b’s from G such that
bZy =mn . Since Z( has full column rank over G, it is known that this number
is equal to Sé\*t. Therefore, ¢(C ;,....1,))Z is an OA(s1,s3',t) and the part (iii)

of Theorem 1 follows.

Proof of Theorem 2
Since the part (i) of Theorem 2 can be easily obtained by following the similar
proof of Theorem 1 (ii), here we need only to prove the part (ii) of Theorem 2.
Assume now that there is a A x ¢t submatrix of Z, denoted by Z,, which

has full column rank over G. It can be shown that Z also has full column rank

over F. Otherwise, there exists a nonzero vector (ay,...,a;)" over F such that
Zy(ay,...,at)’ = 0. Note that each a; can be uniquely represented in (2.1) as
the form of bju, where b; is a A-vector over G for i = 1,...,t. Thus, we have

d(Zo(b1,...,b)uu’) = Zy(by,...,b) ¢(un’) = 0. It is known from the proof
of Lemma 2 that ¢(uu’) has full rank over G. Therefore, Zy(by,...,b)) =0, a
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contradiction.

From Lemma 2, we know that C' is an OA(sy, s7, A\) over F and H(Cy...1y))
is an OA(s3, s3,\) over G. Then the conclusion in the part (ii) of Theorem 2 can
be proved similar to Theorem 1 (iii) and so the remainder of the proof is omitted

here.

Proof of Theorem 3

From Theorem 1 (i), it is easy to see that the matrix H constructed in
Method 1 has no repeated rows. Similar to the proof of Theorem 2, it can be
shown that the rows of Z are also linearly independent over F. It is known from
Lemma 2 that C' has no repeated rows. So, the matrix H = C'Z constructed in
Method 2 also has no repeated rows. The similar conclusion for each projected

slice can be obtained by following the above arguments again.

Proof of Lemma 3

When Zy = (Iy,1,) with A > s5, the conclusion obviously holds.

Now suppose that there exist a A x A submatrix of Z,, denoted by Zg, and
a nonzero vector b = (b, ...,by_1)" over G such that b'Z; = 0. Let ¥(Y) =
bo + b1Y + -+ + by VAL

Now consider the case of Zy = (e1, ey, Wy). Note that b'Z = (¥(0),by_1,
U(B),...,¥(p271)). If ey is a column of Zy, then by_; =0 and ¥(Y) has A — 1
distinct roots over GG, a contradiction. Otherwise, ¥(Y) = 0 has A distinct roots
over (7, a contradiction again. Thus, the above Zy doesn’t exist.

Next, we focus on the case of Zy = (I3, W3) with the conditions that A = 3
and s is even. Note that b'Zy = (¥(0), b1, b, ¥(3),...,¥(5271)). From the
previous paragraph, we need only to consider the situation when ey is a column
of Zg. Then b; = 0. If e3 is also a column of Z, then by = 0 and by = 0, a
contradiction. Otherwise, there exist two elements of G, say 11 and 7, satisfying
bo + ban? = by + ban3 = 0. By using the fact 72 = 73 if and only if 1; = 72 when
so is even, we conclude that by = by = 0, a contradiction again. Thus, the above
Z doesn’t exist yet.

Finally, we consider the case of Z5 = (Wg, I, 1) with the conditions that
A = s9 — 1 and s9 is even. Note that b'Zy = (W4, b). If Zy = I, 1, then

b = 0, a contradiction. Otherwise, without loss of generality, suppose the last
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s2 — 2 — k columns of I,,_; are involved in Z(, where 0 < k < 2. Then b; =0
for k < i < s9 — 2. Obtain a matrix W by collecting the k£ + 1 columns of WY
involved in Zg. Then W = 0 and (b, .. ., bk)W(kH) = 0, where W*+1) g the
submatrix obtained by taking the first k£ + 1 rows of W. It can be easily verified
that any (k4 1) x (k + 1) submatrix of W3 has full rank over G for 0 < k < 2
when s9 is even. Thus, b; = 0 for 0 < ¢ < k, a contradiction again. So, the above
Z doesn’t exist yet.

In all, the conclusion in Lemma 3 holds for different generator matrices Z»

in (4.2). The proof is complete.

Proof of Lemma 4

By noting that B; is a subarray of the multiplication table of F', the part
(i) of Lemma 4 follows. Recall that I'(:,1) is a permutation of all elements in
Fy = {ap + a1z + -+ + ay,—12"2 " ta; € GF(p)}. From Lemma 2 in Qian and
Wu (2009), we know o(B11) = ¢(I'(;,1))(L'(:,1)) for ug > 2ugz — 1 and thus
©(B11) is a D(sg,s2,52). For 1 < k1 < ko < ¢, from the formula (2.5) we have
@(Bij(:, k1)) — o(Bij (i, k2)) = o(Bui(:, k1)) — ¢(Bu(:, k2)) + o(T'(k1, 1)ei(z) —
I'(k2,1)c;(x)). Hence, ¢(Bj;) is also a D(s, s2,52) for 4,5 =1,...,¢q.

Proof of Theorem 9

Since H = (T'(:,1),...T(:,q)") @ Ba, the part (i) of Theorem 9 follows from
Lemma 1 and Lemma 4. Note that ¢(Bj2) is a D(s2, s2,s2) and ¢(I'(:,4)) is an
OA(s2,3,1). By following Lemma 1, we know p(H ;) is an OA(s3,s3?,2) for
,5=1,...,q.

Let deg{ f(z)} denote the degree of a polynomial f(z) € F, or more precisely
the polynomial f(z) modulo p;(x). If two elements of F' are in the same column
of T, from the formula (2.5) we know the degree of their difference is less than
ug. Now partition the elements of I'(:, 1) into p groups, each of size ¢ = s1/s9 =
p
are in the same group if and only if deg{fi(z) — fa(z)} < uy — 2. Suppose
I'(l1,1),T(l2,1),...,T(lg,1) are from the same group. For 1 < k < sy, we have
Bjs(l1,k) — Bja(la, k) = [I'(l1,1) = T (l2, 1)][T'(k, 1) + c2(x)], where deg{ca(z)} =
ug. Then deg{Bj2(li,k) — Bja(l2,k)} > ug and Bja(l1,k) and Bja(la, k) are

in different columns of I'. As a result, Bjs(l1,k),...,Bj2(ly, k) are in distinct

ug—1

, according to the rule that any two elements fi(z) and fa(x) of T'(:,1)
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columns of I" and thus each column of I' contains exactly p elements of Bja(:, k).
From Hj(:, k) =T(:,i) ® Bja(:, k) =T'(;,1) ® Bja(:, k) + ¢i(x), it can be easily
verified that H;(:, k) is balanced for 4,5 = 1,...,¢. The proof is complete.

Proof of Theorem 10

Since the k-th elements of w1, ..., u;, form a permutation of {1,..., ¢} for
k=1,...,t, it is easy to see that each H; is balanced for i = 1,...,¢""!. For
any (I1,...,l;) € Q!, by noting that the first ¢ columns of p(H ;...1,)) have each
of the sb possible t-tuples from G as a row and the last column is the sum of
the first ¢ columns, we know that p(Hj, ;) is an OA(sb, sbt1.1). The proof is

complete.

Proof of Theorem 11

The part (ii) of Theorem 11 follows by noting that p(A) = Ag and p(v(;, . 1,))
= 0 for any (l1,...,lt) € Q' Since any s x t submatrix of Hg, ., or
p(H(lh...,lt)) has no repeated rows, it can be shown that any s x ¢ submatrix of
H has no repeated rows and thus consists of all the s{ possible t-tuples from F,

i.e., H is an OA(s}, s 1),



