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Abstract: This supplementary materical contains: (i) the proof of Proposition 1

stated in the main manuscript; (ii) an auxiliary technical lemma, which is used

for proving Theorem 1 within the main manuscript; (iii) details on the asymptotic

derivations concerning the specific examples considered in Section 4. Equations that

are specific to this supplementary file are labeled as (A?). All other referenced

equations correspond to those of the main paper.

1. Proof of Proposition 1.

Without loss of generality we assume that the support of the prior guess

E[p̃( · )] = P ∗ coincides with X. Let us start by considering the case of σ < 0.

Let dX be the distance on X and let dw denote the Prokhorov distance on PX.

We wish to show that any weak-neighborhood of G0 has positive Q mass for any

probability measure G0 ∈ PX . Since X is separable, it is well-known that the set

of discrete distributions with a finite number of point masses is dense in PX, with

respect to dw. Hence, for any ε > 0 there exists a positive integer k0, vector of

weights (p01, . . . , p
0
k0

) in the k0-dimensional simplex ∆k0 and points x01, . . . , x
0
k0

in

X such that dw(Gp0,x0 , G0) < ε/2, where Gp0,x0 =
∑k0

i=1 p
0
i δx0i

. For any η, δ > 0

introduce the sets

U0(η) = {p = (p1, . . . , pk0) ∈ ∆k0 : |pi − p0i | < η for any i = 1, . . . , k0}

V0(η) = {x = (x1, . . . , xk0) ∈ Xk0 : dX(xi, x
0
i ) < δ for any i = 1, . . . , k0}

andW0(η, δ) stands for the set of discrete probability distributionsGp,x =
∑k0

i=1 piδxi

for p ∈ U0(η) and x ∈ V0(δ). Recall that, conditionally on K = k0, the vector

(p1, . . . , pk0) has symmetric Dirichlet distribution with parameter |σ|. This fact,

1



combined with the assumptions on π and on P ∗, entails Q(W0(η, δ)) > 0. The

proof is completed by showing that, for appropriate choices of η and δ, any Gp,x in

W0(η, δ) is such that dw(Gp,x, G0) < ε. But this follows by standard arguments.

Since

dw(Gp,x, G0) ≤ dw(Gp,x, Gp0,x0) +
ε

2
,

we next show that η = δ/k0 implies that dw(Gp,x, Gp0,x0) < δ so that δ = ε/2

would work. For A ∈X , the set Aρ stands for A enlarged by its dX-neighbourhood

with radius ρ, Aρ = {x : dX(x,A) < ρ}. When ρ > δ, it is obvious that x0i ∈ A
implies that xi ∈ Aρ whenever x = (x1, . . . , xk0) is in V0(δ). One can equivalently

say that if I0 = {i : x0i ∈ A} and I = {i : xi ∈ Aρ}, then I ⊃ I0 and

Gp0,x0(A)−Gp,x(Aρ) =
∑
i∈I0∩I

(p0i − pi)−
∑
i∈I\I0

pi

≤
∑
i∈I

(p0i − pi) ≤ η card(I) = ηk0 = δ < ρ.

On the other hand, if ρ < δ, then there exists some set A in X such that x0i ∈ A
and xi /∈ Aρ so that is not possible to bound Gp0,x0(A) − Gp,x(Aρ) by ρ. This

completes the proof of the case σ < 0. The Dirichlet case is well known (Ferguson,

1973; Majumdar, 1992) and the general σ = 0 case follows by direct extension of

the results concerning the Dirichlet process. The case of σ > 0 follows immediately

from the representation of Gibbs-type partitions with σ > 0 in terms of stable

completely random measures (Gnedin and Pitman, 2005, Theorem 12 (iii)). �

2. An auxiliary lemma.

Lemma 1. Let I(n, k) be defined as in (3.3). Then

I(n, k) =

(
Vn+2,k

Vn+1,k
−
Vn+2,k+1

Vn+1,k+1

)
(n− σk) +

Vn+2,k

Vn+1,k
(A1)

I(n, k) =
Vn+2,k+2

Vn+1,k+1
−
Vn+2,k+1

Vn+1,k
+
Vn+2,k+1

Vn+1,k+1
(1− σ) (A2)

Vn+2,k

Vn+1,k
−
Vn+2,k+1

Vn+1,k+1
(A3)

≤
(>)

[n+ 1− σ(k + 1)]

(
Vn+2,k+2

Vn+1,k+1
−
Vn+2,k+1

Vn+1,k

)
for

0 ≤ σ < 1

(σ < 0)
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Proof. The proof relies on the backward recursion defining the weights of Gibbs-

type priors, which is stated in (1.4). As for equation (A1),(
Vn+2,k

Vn+1,k
−
Vn+2,k+1

Vn+1,k+1

)
(n− σk) +

Vn+2,k

Vn+1,k

=
Vn+2,k

Vn+1,k
(n+ 1− σk)−

Vn+2,k+1

Vn+1,k+1
(n− σk)

= 1−
Vn+2,k+1

Vn+1,k
−
Vn+2,k+1

Vn+1,k+1
(n− σk)

= 1−
Vn+2,k+1

Vn+1,k

(
1 +

Vn+1,k

Vn+1,k+1
(n− σk)

)
= 1−

Vn+2,k+1

Vn+1,k

Vn,k
Vn+1,k+1

= I(n, k)

where we used the backward recursion (1.4) for (n + 1, k) in the second equality

and for (n, k) in the last equality.

As for equation (A2), we use the backward recursion (1.4) for (n + 1, k + 1)

to get Vn+2,k+2 + Vn+2,k+1(1− σ) = Vn+1,k+1 − (n− σk)Vn+2,k+1. Then

Vn+2,k+2

Vn+1,k+1
−
Vn+2,k+1

Vn+1,k
+
Vn+2,k+1

Vn+1,k+1
(1− σ)

=
Vn+1,k+1 − Vn+2,k+1(n− σk)

Vn+1,k+1
−
Vn+2,k+1

Vn+1,k

= 1−
Vn+2,k+1

Vn+1,k+1
(n− σk)−

Vn+2,k+1

Vn+1,k

= 1−
Vn+2,k+1

Vn+1,k+1

(
(n− σk) +

Vn+1,k+1

Vn+1,k

)
= 1−

Vn+2,k+1

Vn+1,k

Vn,k
Vn+1,k

= I(n, k)

where we used again the backward recursion for (n, k) in the last equality.

As for equation (A3), use the backward recursion (1.4) for (n+ 1, k + 1) and

(n+ 1, k) on the right hand side, respectively, to get

Vn+2,k+2

Vn+1,k+1
−
Vn+2,k+1

Vn+1,k

=

(
1−

Vn+2,k+1

Vn+1,k+1
(n+ 1− σ(k + 1))

)
−
(

1−
Vn+2,k

Vn+1,k
(n+ 1− σk)

)
= (n+ 1− σ(k + 1))

(
Vn+2,k

Vn+1,k

n+ 1− σk
n+ 1− σ(k + 1)

−
Vn+2,k+1

Vn+1,k+1

)
.
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Finally, consider that n+1−σk
n+1−σ(k+1) ≥ 1 for 0 ≤ σ ≤ 1 implies the first inequality

and that n+1−σk
n+1−σ(k+1) < 1 for σ < 0 implies the second inequality.

3. Details for the determination of (4.3) and (4.5).

Determination of (4.3). Consider (4.2) with κn = n for any n a.s.-P∞0 , which

corresponds to the case of diffuse P0. By virtue of Eq. (17) of Erdélyi, Magnus,

Oberhettinger and Tricomi (1953, Section 6.13.2), the functions 1F1(n; 2n;λ) and

1F1(n+ 1; 2n+ 2;λ) have the same asymptotic expansion as n→∞, namely
√

2πΓ(2n)√
n/2Γ(n)Γ(n)

eλ/2
(

1

2

)2n[
1 +O(1/n)

]
.

This means that
1F1(n; 2n;λ)

1F1(n+ 1; 2n+ 2;λ)
→ 1

as n→∞, and therefore (4.3) follows. �

Determination of (4.5). A diffuse P0 implies κn = n for any n a.s.-P∞0 in (4.4).

Then, by Eq. (16) in Erdélyi, Magnus, Oberhettinger and Tricomi (1953, Section

2.3.2), one obtains the following asymptotic expansions, as n→∞,

2F1(n+ 1, n+ 2; 2n+ 2; η) ∼

(
2

η

)4+2n(
2− η − 2

√
1− η

)n+2
C(η)

2F1(n, n+ 1; 2n; η), ∼

(
2

η

)2+2n(
2− η − 2

√
1− η

)n+1
C(η),

where C(η) =
[
(1+2

√
1− η/η)2−((2−η)/η)2

]− 3
2 . These asymptotic equivalences

immediately yield (4.5). �
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