Supplementary Material for AN ASYMPTOTIC ANALYSIS OF A CLASS OF DISCRETE NONPARAMETRIC PRIORS

Pierpaolo De Blasi¹, Antonio Lijoi² and Igor Prünster¹

¹University of Torino and Collegio Carlo Alberto, Italy ²University of Pavia and Collegio Carlo Alberto, Italy

Abstract: This supplementary materical contains: (i) the proof of Proposition 1 stated in the main manuscript; (ii) an auxiliary technical lemma, which is used for proving Theorem 1 within the main manuscript; (iii) details on the asymptotic derivations concerning the specific examples considered in Section 4. Equations that are specific to this supplementary file are labeled as $(A\star)$. All other referenced equations correspond to those of the main paper.

1. Proof of Proposition 1.

Without loss of generality we assume that the support of the prior guess $E[\tilde{p}(\cdot)] = P^*$ coincides with X. Let us start by considering the case of $\sigma < 0$. Let d_X be the distance on X and let d_w denote the Prokhorov distance on \mathbf{P}_X . We wish to show that any weak-neighborhood of G_0 has positive Q mass for any probability measure $G_0 \in \mathbf{P}_X$. Since X is separable, it is well-known that the set of discrete distributions with a finite number of point masses is dense in \mathbf{P}_X , with respect to d_w . Hence, for any $\epsilon > 0$ there exists a positive integer k_0 , vector of weights $(p_1^0, \ldots, p_{k_0}^0)$ in the k_0 -dimensional simplex Δ_{k_0} and points $x_1^0, \ldots, x_{k_0}^0$ in X such that $d_w(G_{\mathbf{p}^0, \mathbf{x}^0}, G_0) < \epsilon/2$, where $G_{\mathbf{p}^0, \mathbf{x}^0} = \sum_{i=1}^{k_0} p_i^0 \delta_{x_i^0}$. For any $\eta, \delta > 0$ introduce the sets

$$U_0(\eta) = \{ \mathbf{p} = (p_1, \dots, p_{k_0}) \in \Delta_{k_0} : |p_i - p_i^0| < \eta \text{ for any } i = 1, \dots, k_0 \}$$
$$V_0(\eta) = \{ \mathbf{x} = (x_1, \dots, x_{k_0}) \in \mathbb{X}^{k_0} : d_{\mathbb{X}}(x_i, x_i^0) < \delta \text{ for any } i = 1, \dots, k_0 \}$$

and $W_0(\eta, \delta)$ stands for the set of discrete probability distributions $G_{\mathbf{p},\mathbf{x}} = \sum_{i=1}^{k_0} p_i \delta_{x_i}$ for $\mathbf{p} \in U_0(\eta)$ and $\mathbf{x} \in V_0(\delta)$. Recall that, conditionally on $K = k_0$, the vector (p_1, \ldots, p_{k_0}) has symmetric Dirichlet distribution with parameter $|\sigma|$. This fact, combined with the assumptions on π and on P^* , entails $Q(W_0(\eta, \delta)) > 0$. The proof is completed by showing that, for appropriate choices of η and δ , any $G_{\mathbf{p},\mathbf{x}}$ in $W_0(\eta, \delta)$ is such that $d_w(G_{\mathbf{p},\mathbf{x}}, G_0) < \epsilon$. But this follows by standard arguments. Since

$$d_w(G_{\mathbf{p},\mathbf{x}},G_0) \le d_w(G_{\mathbf{p},\mathbf{x}},G_{\mathbf{p}^0,\mathbf{x}^0}) + \frac{\epsilon}{2},$$

we next show that $\eta = \delta/k_0$ implies that $d_w(G_{\mathbf{p},\mathbf{x}}, G_{\mathbf{p}^0,\mathbf{x}^0}) < \delta$ so that $\delta = \epsilon/2$ would work. For $A \in \mathscr{X}$, the set A^{ρ} stands for A enlarged by its $d_{\mathbb{X}}$ -neighbourhood with radius ρ , $A^{\rho} = \{x : d_{\mathbb{X}}(x, A) < \rho\}$. When $\rho > \delta$, it is obvious that $x_i^0 \in A$ implies that $x_i \in A^{\rho}$ whenever $\mathbf{x} = (x_1, \ldots, x_{k_0})$ is in $V_0(\delta)$. One can equivalently say that if $I_0 = \{i : x_i^0 \in A\}$ and $I = \{i : x_i \in A^{\rho}\}$, then $I \supset I_0$ and

$$G_{\mathbf{p}^0,\mathbf{x}^0}(A) - G_{\mathbf{p},\mathbf{x}}(A^{\rho}) = \sum_{i \in I_0 \cap I} (p_i^0 - p_i) - \sum_{i \in I \setminus I_0} p_i$$
$$\leq \sum_{i \in I} (p_i^0 - p_i) \leq \eta \operatorname{card}(I) = \eta k_0 = \delta < \rho.$$

On the other hand, if $\rho < \delta$, then there exists some set A in \mathscr{X} such that $x_i^0 \in A$ and $x_i \notin A^{\rho}$ so that is not possible to bound $G_{\mathbf{p}^0,\mathbf{x}^0}(A) - G_{\mathbf{p},\mathbf{x}}(A^{\rho})$ by ρ . This completes the proof of the case $\sigma < 0$. The Dirichlet case is well known (Ferguson, 1973; Majumdar, 1992) and the general $\sigma = 0$ case follows by direct extension of the results concerning the Dirichlet process. The case of $\sigma > 0$ follows immediately from the representation of Gibbs-type partitions with $\sigma > 0$ in terms of stable completely random measures (Gnedin and Pitman, 2005, Theorem 12 (iii)). \Box

2. An auxiliary lemma.

Lemma 1. Let I(n,k) be defined as in (3.3). Then

$$I(n,k) = \left(\frac{V_{n+2,k}}{V_{n+1,k}} - \frac{V_{n+2,k+1}}{V_{n+1,k+1}}\right)(n-\sigma k) + \frac{V_{n+2,k}}{V_{n+1,k}}$$
(A1)

$$I(n,k) = \frac{V_{n+2,k+2}}{V_{n+1,k+1}} - \frac{V_{n+2,k+1}}{V_{n+1,k}} + \frac{V_{n+2,k+1}}{V_{n+1,k+1}}(1-\sigma)$$
(A2)

$$\frac{V_{n+2,k}}{V_{n+1,k}} - \frac{V_{n+2,k+1}}{V_{n+1,k+1}} \tag{A3}$$

$$\stackrel{\leq}{(>)} [n+1-\sigma(k+1)] \left(\frac{V_{n+2,k+2}}{V_{n+1,k+1}} - \frac{V_{n+2,k+1}}{V_{n+1,k}}\right) \quad for \quad \substack{0 \le \sigma < 1}{(\sigma < 0)}$$

Proof. The proof relies on the backward recursion defining the weights of Gibbstype priors, which is stated in (1.4). As for equation (A1),

$$\begin{split} \left(\frac{V_{n+2,k}}{V_{n+1,k}} - \frac{V_{n+2,k+1}}{V_{n+1,k+1}}\right) (n - \sigma k) + \frac{V_{n+2,k}}{V_{n+1,k}} \\ &= \frac{V_{n+2,k}}{V_{n+1,k}} (n + 1 - \sigma k) - \frac{V_{n+2,k+1}}{V_{n+1,k+1}} (n - \sigma k) \\ &= 1 - \frac{V_{n+2,k+1}}{V_{n+1,k}} - \frac{V_{n+2,k+1}}{V_{n+1,k+1}} (n - \sigma k) \\ &= 1 - \frac{V_{n+2,k+1}}{V_{n+1,k}} \left(1 + \frac{V_{n+1,k}}{V_{n+1,k+1}} (n - \sigma k)\right) \\ &= 1 - \frac{V_{n+2,k+1}}{V_{n+1,k}} \frac{V_{n,k}}{V_{n+1,k+1}} = I(n,k) \end{split}$$

where we used the backward recursion (1.4) for (n + 1, k) in the second equality and for (n, k) in the last equality.

As for equation (A2), we use the backward recursion (1.4) for (n + 1, k + 1)to get $V_{n+2,k+2} + V_{n+2,k+1}(1 - \sigma) = V_{n+1,k+1} - (n - \sigma k)V_{n+2,k+1}$. Then

$$\begin{aligned} \frac{V_{n+2,k+2}}{V_{n+1,k+1}} &- \frac{V_{n+2,k+1}}{V_{n+1,k}} + \frac{V_{n+2,k+1}}{V_{n+1,k+1}} (1-\sigma) \\ &= \frac{V_{n+1,k+1} - V_{n+2,k+1} (n-\sigma k)}{V_{n+1,k+1}} - \frac{V_{n+2,k+1}}{V_{n+1,k}} \\ &= 1 - \frac{V_{n+2,k+1}}{V_{n+1,k+1}} (n-\sigma k) - \frac{V_{n+2,k+1}}{V_{n+1,k}} \\ &= 1 - \frac{V_{n+2,k+1}}{V_{n+1,k+1}} \left((n-\sigma k) + \frac{V_{n+1,k+1}}{V_{n+1,k}} \right) \\ &= 1 - \frac{V_{n+2,k+1}}{V_{n+1,k}} \frac{V_{n,k}}{V_{n+1,k}} = I(n,k) \end{aligned}$$

where we used again the backward recursion for (n, k) in the last equality.

As for equation (A3), use the backward recursion (1.4) for (n + 1, k + 1) and (n + 1, k) on the right hand side, respectively, to get

$$\begin{aligned} \frac{V_{n+2,k+2}}{V_{n+1,k+1}} &- \frac{V_{n+2,k+1}}{V_{n+1,k}} \\ &= \left(1 - \frac{V_{n+2,k+1}}{V_{n+1,k+1}} (n+1 - \sigma(k+1))\right) - \left(1 - \frac{V_{n+2,k}}{V_{n+1,k}} (n+1 - \sigma k)\right) \\ &= (n+1 - \sigma(k+1)) \left(\frac{V_{n+2,k}}{V_{n+1,k}} \frac{n+1 - \sigma k}{n+1 - \sigma(k+1)} - \frac{V_{n+2,k+1}}{V_{n+1,k+1}}\right). \end{aligned}$$

Finally, consider that $\frac{n+1-\sigma k}{n+1-\sigma(k+1)} \ge 1$ for $0 \le \sigma \le 1$ implies the first inequality and that $\frac{n+1-\sigma k}{n+1-\sigma(k+1)} < 1$ for $\sigma < 0$ implies the second inequality.

3. Details for the determination of (4.3) and (4.5).

Determination of (4.3). Consider (4.2) with $\kappa_n = n$ for any n a.s.- P_0^{∞} , which corresponds to the case of diffuse P_0 . By virtue of Eq. (17) of Erdélyi, Magnus, Oberhettinger and Tricomi (1953, Section 6.13.2), the functions ${}_1F_1(n; 2n; \lambda)$ and ${}_1F_1(n+1; 2n+2; \lambda)$ have the same asymptotic expansion as $n \to \infty$, namely

$$\frac{\sqrt{2\pi}\Gamma(2n)}{\sqrt{n/2}\Gamma(n)\Gamma(n)} e^{\lambda/2} \left(\frac{1}{2}\right)^{2n} \left[1 + O(1/n)\right].$$

This means that

$$\frac{{}_1F_1(n;2n;\lambda)}{{}_1F_1(n+1;2n+2;\lambda)} \to 1$$

as $n \to \infty$, and therefore (4.3) follows.

Determination of (4.5). A diffuse P_0 implies $\kappa_n = n$ for any n a.s.- P_0^{∞} in (4.4). Then, by Eq. (16) in Erdélyi, Magnus, Oberhettinger and Tricomi (1953, Section 2.3.2), one obtains the following asymptotic expansions, as $n \to \infty$,

$${}_{2}F_{1}(n+1,n+2;2n+2;\eta) \sim \left(\frac{2}{\eta}\right)^{4+2n} \left(2-\eta-2\sqrt{1-\eta}\right)^{n+2} C(\eta)$$
$${}_{2}F_{1}(n,n+1;2n;\eta), \sim \left(\frac{2}{\eta}\right)^{2+2n} \left(2-\eta-2\sqrt{1-\eta}\right)^{n+1} C(\eta),$$

where $C(\eta) = \left[(1 + 2\sqrt{1 - \eta}/\eta)^2 - ((2 - \eta)/\eta)^2 \right]^{-\frac{3}{2}}$. These asymptotic equivalences immediately yield (4.5).

References

- Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G. (1953). *Higher Trascendental Functions*, Vol. 1,McGraw-Hill, New York.
- Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209–230.
- Gnedin, A. and Pitman, J. (2005). Exchangeable Gibbs partitions and Stirling triangles. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 325, 83-102 (translation in Journal of Mathematical Sciences 138 (2006), 5674–5685).
- Majumdar, S. (1992). On topological support of Dirichlet prior. *Statist. Probab. Lett.* **15**, 385–388.