Supplementary Material for AN ASYMPTOTIC ANALYSIS OF A CLASS OF DISCRETE NONPARAMETRIC PRIORS

Pierpaolo De Blasi ${ }^{1}$, Antonio Lijoi ${ }^{2}$ and Igor Prünster ${ }^{1}$
${ }^{1}$ University of Torino and Collegio Carlo Alberto, Italy
${ }^{2}$ University of Pavia and Collegio Carlo Alberto, Italy

Abstract

This supplementary materical contains: (i) the proof of Proposition 1 stated in the main manuscript; (ii) an auxiliary technical lemma, which is used for proving Theorem 1 within the main manuscript; (iii) details on the asymptotic derivations concerning the specific examples considered in Section 4. Equations that are specific to this supplementary file are labeled as ($A \star$). All other referenced equations correspond to those of the main paper.

1. Proof of Proposition 1.

Without loss of generality we assume that the support of the prior guess $\mathrm{E}[\tilde{p}(\cdot)]=P^{*}$ coincides with \mathbb{X}. Let us start by considering the case of $\sigma<0$. Let $d_{\mathbb{X}}$ be the distance on \mathbb{X} and let d_{w} denote the Prokhorov distance on $\mathbf{P}_{\mathbb{X}}$. We wish to show that any weak-neighborhood of G_{0} has positive Q mass for any probability measure $G_{0} \in \mathbf{P}_{X}$. Since \mathbb{X} is separable, it is well-known that the set of discrete distributions with a finite number of point masses is dense in $\mathbf{P}_{\mathbb{X}}$, with respect to d_{w}. Hence, for any $\epsilon>0$ there exists a positive integer k_{0}, vector of weights $\left(p_{1}^{0}, \ldots, p_{k_{0}}^{0}\right)$ in the k_{0}-dimensional simplex $\Delta_{k_{0}}$ and points $x_{1}^{0}, \ldots, x_{k_{0}}^{0}$ in \mathbb{X} such that $d_{w}\left(G_{\mathbf{p}^{0}, \mathbf{x}^{0}}, G_{0}\right)<\epsilon / 2$, where $G_{\mathbf{p}^{0}, \mathbf{x}^{0}}=\sum_{i=1}^{k_{0}} p_{i}^{0} \delta_{x_{i}^{0}}$. For any $\eta, \delta>0$ introduce the sets

$$
\begin{aligned}
& U_{0}(\eta)=\left\{\mathbf{p}=\left(p_{1}, \ldots, p_{k_{0}}\right) \in \Delta_{k_{0}}:\left|p_{i}-p_{i}^{0}\right|<\eta \text { for any } i=1, \ldots, k_{0}\right\} \\
& V_{0}(\eta)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{k_{0}}\right) \in \mathbb{X}^{k_{0}}: d_{\mathbb{X}}\left(x_{i}, x_{i}^{0}\right)<\delta \text { for any } i=1, \ldots, k_{0}\right\}
\end{aligned}
$$

and $W_{0}(\eta, \delta)$ stands for the set of discrete probability distributions $G_{\mathbf{p}, \mathbf{x}}=\sum_{i=1}^{k_{0}} p_{i} \delta_{x_{i}}$ for $\mathbf{p} \in U_{0}(\eta)$ and $\mathbf{x} \in V_{0}(\delta)$. Recall that, conditionally on $K=k_{0}$, the vector $\left(p_{1}, \ldots, p_{k^{0}}\right)$ has symmetric Dirichlet distribution with parameter $|\sigma|$. This fact,
combined with the assumptions on π and on P^{*}, entails $Q\left(W_{0}(\eta, \delta)\right)>0$. The proof is completed by showing that, for appropriate choices of η and δ, any $G_{\mathbf{p}, \mathbf{x}}$ in $W_{0}(\eta, \delta)$ is such that $d_{w}\left(G_{\mathbf{p}, \mathbf{x}}, G_{0}\right)<\epsilon$. But this follows by standard arguments. Since

$$
d_{w}\left(G_{\mathbf{p}, \mathbf{x}}, G_{0}\right) \leq d_{w}\left(G_{\mathbf{p}, \mathbf{x}}, G_{\mathbf{p}^{0}, \mathbf{x}^{0}}\right)+\frac{\epsilon}{2},
$$

we next show that $\eta=\delta / k_{0}$ implies that $d_{w}\left(G_{\mathbf{p}, \mathbf{x}}, G_{\mathbf{p}^{0}, \mathbf{x}^{0}}\right)<\delta$ so that $\delta=\epsilon / 2$ would work. For $A \in \mathscr{X}$, the set A^{ρ} stands for A enlarged by its $d_{\mathbb{X}}$-neighbourhood with radius $\rho, A^{\rho}=\left\{x: d_{\mathbb{X}}(x, A)<\rho\right\}$. When $\rho>\delta$, it is obvious that $x_{i}^{0} \in A$ implies that $x_{i} \in A^{\rho}$ whenever $\mathbf{x}=\left(x_{1}, \ldots, x_{k_{0}}\right)$ is in $V_{0}(\delta)$. One can equivalently say that if $I_{0}=\left\{i: x_{i}^{0} \in A\right\}$ and $I=\left\{i: x_{i} \in A^{\rho}\right\}$, then $I \supset I_{0}$ and

$$
\begin{aligned}
G_{\mathbf{p}^{0}, \mathbf{x}^{0}}(A)-G_{\mathbf{p}, \mathbf{x}}\left(A^{\rho}\right) & =\sum_{i \in I_{0} \cap I}\left(p_{i}^{0}-p_{i}\right)-\sum_{i \in I \backslash I_{0}} p_{i} \\
& \leq \sum_{i \in I}\left(p_{i}^{0}-p_{i}\right) \leq \eta \operatorname{card}(I)=\eta k_{0}=\delta<\rho .
\end{aligned}
$$

On the other hand, if $\rho<\delta$, then there exists some set A in \mathscr{X} such that $x_{i}^{0} \in A$ and $x_{i} \notin A^{\rho}$ so that is not possible to bound $G_{\mathbf{p}^{0}, \mathbf{x}^{0}}(A)-G_{\mathbf{p}, \mathbf{x}}\left(A^{\rho}\right)$ by ρ. This completes the proof of the case $\sigma<0$. The Dirichlet case is well known (Ferguson, 1973; Majumdar, 1992) and the general $\sigma=0$ case follows by direct extension of the results concerning the Dirichlet process. The case of $\sigma>0$ follows immediately from the representation of Gibbs-type partitions with $\sigma>0$ in terms of stable completely random measures (Gnedin and Pitman, 2005, Theorem 12 (iii)).

2. An auxiliary lemma.

Lemma 1. Let $I(n, k)$ be defined as in (3.3). Then

$$
\begin{gather*}
I(n, k)=\left(\frac{V_{n+2, k}}{V_{n+1, k}}-\frac{V_{n+2, k+1}}{V_{n+1, k+1}}\right)(n-\sigma k)+\frac{V_{n+2, k}}{V_{n+1, k}} \tag{A1}\\
I(n, k)=\frac{V_{n+2, k+2}}{V_{n+1, k+1}}-\frac{V_{n+2, k+1}}{V_{n+1, k}}+\frac{V_{n+2, k+1}}{V_{n+1, k+1}}(1-\sigma) \tag{A2}\\
\frac{V_{n+2, k}}{V_{n+1, k}}-\frac{V_{n+2, k+1}}{V_{n+1, k+1}} \tag{A3}\\
\leq\left[(>)[1-\sigma(k+1)]\left(\frac{V_{n+2, k+2}}{V_{n+1, k+1}}-\frac{V_{n+2, k+1}}{V_{n+1, k}}\right) \quad \text { for } \quad \begin{array}{l}
0 \leq \sigma<1 \\
(\sigma<0)
\end{array}\right.
\end{gather*}
$$

Proof. The proof relies on the backward recursion defining the weights of Gibbstype priors, which is stated in (1.4). As for equation (A1),

$$
\begin{aligned}
\left(\frac{V_{n+2, k}}{V_{n+1, k}}-\frac{V_{n+2, k+1}}{V_{n+1, k+1}}\right)(n-\sigma k) & +\frac{V_{n+2, k}}{V_{n+1, k}} \\
& =\frac{V_{n+2, k}}{V_{n+1, k}}(n+1-\sigma k)-\frac{V_{n+2, k+1}}{V_{n+1, k+1}}(n-\sigma k) \\
& =1-\frac{V_{n+2, k+1}}{V_{n+1, k}}-\frac{V_{n+2, k+1}}{V_{n+1, k+1}}(n-\sigma k) \\
& =1-\frac{V_{n+2, k+1}}{V_{n+1, k}}\left(1+\frac{V_{n+1, k}}{V_{n+1, k+1}}(n-\sigma k)\right) \\
& =1-\frac{V_{n+2, k+1}}{V_{n+1, k}} \frac{V_{n, k}}{V_{n+1, k+1}}=I(n, k)
\end{aligned}
$$

where we used the backward recursion (1.4) for $(n+1, k)$ in the second equality and for (n, k) in the last equality.

As for equation (A2), we use the backward recursion (1.4) for $(n+1, k+1)$ to get $V_{n+2, k+2}+V_{n+2, k+1}(1-\sigma)=V_{n+1, k+1}-(n-\sigma k) V_{n+2, k+1}$. Then

$$
\begin{aligned}
& \frac{V_{n+2, k+2}}{V_{n+1, k+1}}-\frac{V_{n+2, k+1}}{V_{n+1, k}}+\frac{V_{n+2, k+1}}{V_{n+1, k+1}}(1-\sigma) \\
&=\frac{V_{n+1, k+1}-V_{n+2, k+1}(n-\sigma k)}{V_{n+1, k+1}}-\frac{V_{n+2, k+1}}{V_{n+1, k}} \\
&=1-\frac{V_{n+2, k+1}}{V_{n+1, k+1}}(n-\sigma k)-\frac{V_{n+2, k+1}}{V_{n+1, k}} \\
&=1-\frac{V_{n+2, k+1}}{V_{n+1, k+1}}\left((n-\sigma k)+\frac{V_{n+1, k+1}}{V_{n+1, k}}\right) \\
&=1-\frac{V_{n+2, k+1}}{V_{n+1, k}} \frac{V_{n, k}}{V_{n+1, k}}=I(n, k)
\end{aligned}
$$

where we used again the backward recursion for (n, k) in the last equality.
As for equation (A3), use the backward recursion (1.4) for $(n+1, k+1)$ and $(n+1, k)$ on the right hand side, respectively, to get

$$
\begin{aligned}
\frac{V_{n+2, k+2}}{V_{n+1, k+1}} & -\frac{V_{n+2, k+1}}{V_{n+1, k}} \\
& =\left(1-\frac{V_{n+2, k+1}}{V_{n+1, k+1}}(n+1-\sigma(k+1))\right)-\left(1-\frac{V_{n+2, k}}{V_{n+1, k}}(n+1-\sigma k)\right) \\
& =(n+1-\sigma(k+1))\left(\frac{V_{n+2, k}}{V_{n+1, k}} \frac{n+1-\sigma k}{n+1-\sigma(k+1)}-\frac{V_{n+2, k+1}}{V_{n+1, k+1}}\right) .
\end{aligned}
$$

Finally, consider that $\frac{n+1-\sigma k}{n+1-\sigma(k+1)} \geq 1$ for $0 \leq \sigma \leq 1$ implies the first inequality and that $\frac{n+1-\sigma k}{n+1-\sigma(k+1)}<1$ for $\sigma<0$ implies the second inequality.

3. Details for the determination of (4.3) and (4.5).

Determination of (4.3). Consider (4.2) with $\kappa_{n}=n$ for any n a.s. $-P_{0}^{\infty}$, which corresponds to the case of diffuse P_{0}. By virtue of Eq. (17) of Erdélyi, Magnus, Oberhettinger and Tricomi (1953, Section 6.13.2), the functions ${ }_{1} F_{1}(n ; 2 n ; \lambda)$ and ${ }_{1} F_{1}(n+1 ; 2 n+2 ; \lambda)$ have the same asymptotic expansion as $n \rightarrow \infty$, namely

$$
\frac{\sqrt{2 \pi} \Gamma(2 n)}{\sqrt{n / 2} \Gamma(n) \Gamma(n)} \mathrm{e}^{\lambda / 2}\left(\frac{1}{2}\right)^{2 n}[1+O(1 / n)] .
$$

This means that

$$
\frac{{ }^{1} F_{1}(n ; 2 n ; \lambda)}{{ }_{1} F_{1}(n+1 ; 2 n+2 ; \lambda)} \rightarrow 1
$$

as $n \rightarrow \infty$, and therefore (4.3) follows.
Determination of (4.5). A diffuse P_{0} implies $\kappa_{n}=n$ for any n a.s. $-P_{0}^{\infty}$ in (4.4). Then, by Eq. (16) in Erdélyi, Magnus, Oberhettinger and Tricomi (1953, Section 2.3.2), one obtains the following asymptotic expansions, as $n \rightarrow \infty$,

$$
\begin{aligned}
{ }_{2} F_{1}(n+1, n+2 ; 2 n+2 ; \eta) & \sim\left(\frac{2}{\eta}\right)^{4+2 n}(2-\eta-2 \sqrt{1-\eta})^{n+2} C(\eta) \\
{ }_{2} F_{1}(n, n+1 ; 2 n ; \eta), & \sim\left(\frac{2}{\eta}\right)^{2+2 n}(2-\eta-2 \sqrt{1-\eta})^{n+1} C(\eta),
\end{aligned}
$$

where $C(\eta)=\left[(1+2 \sqrt{1-\eta} / \eta)^{2}-((2-\eta) / \eta)^{2}\right]^{-\frac{3}{2}}$. These asymptotic equivalences immediately yield (4.5).

References

Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G. (1953). Higher Trascendental Functions, Vol. 1,McGraw-Hill, New York.
Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209-230.
Gnedin, A. and Pitman, J. (2005). Exchangeable Gibbs partitions and Stirling triangles. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 325, 83-102 (translation in Journal of Mathematical Sciences 138 (2006), 5674-5685).
Majumdar, S. (1992). On topological support of Dirichlet prior. Statist. Probab. Lett. 15, 385-388.

