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Abstract: We consider a general class of varying coefficient mixed models where

random effects are introduced to account for between-subject variation. To address

the question of whether a varying coefficient mixed model can be reduced to a

simpler varying coefficient model, we develop one-sided tests for the null hypothesis

that all the variance components are zero. In addition to the purely null-based

standard quasi-score test (SQT), we propose an extended quasi-score test (EQT)

by constructing estimators that are consistent under both the null and alternative

hypotheses. No assumptions are required for the distributions of random effects and

random errors. Both SQT and EQT are consistent for global alternatives and local

alternatives distinct at certain rates from the null. Furthermore, the asymptotic null

distributions are simple and easy to use in practice. For comparison, we also adapt

the one-sided score test (SST) in Silvapulle and Silvapulle (1995) and the likelihood

ratio test (LRT) in Fan, Zhang, and Zhang (2001). Extensive simulations indicate

that all proposed tests perform well and the EQT is more powerful than SQT, SST,

and LRT. A data example is analyzed for illustration.
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1. Introduction

Varying coefficient models (VCM) are widely used to analyze longitudinal
data because of their flexibility and relative simplicity (Hoover et al. (1998);
Wu and Chiang (2000)). To deal with between-subject variation and within-
subject correlation, various forms of varying coefficient mixed models (VCMM)
have been proposed recently (Wu and Liang (2004); Zhang (2004); and Wu and
Zhang (2006)). One important question is whether a VCMM can be reduced to
a VCM since inference for a VCM is much simpler and potentially more efficient.
In many applications testing homogeneity is of primary interest (Jacqmin-Gadda
and Commenges (1995); Commenges and Jacqmin-Gadda (1997)). The problem
can be cast in a framework of hypothesis testing on variance components of
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random effects. The goal of this article is to develop robust, powerful and easy-
to-use tests for the null hypothesis that all variance components are zero.

Consider the VCMM

yij =
p∑

l=1

xijlfl(tij) + ZT
ijbi + εij , i = 1, . . . ,m, j = 1, . . . , ni, (1.1)

where yij is the observation from subject i at time point tij , xijl’s are covari-
ates for the fixed effects with time varying coefficient functions fl(·)’s, Zij =
(zij1, . . . , zijq)T is a q-dimensional covariate vector for the random effects, bi’s
are i.i.d. q-dimensional random effects with mean zero and covariance σ2D1, and
εij ’s are i.i.d. random errors with mean zero, variance σ2, and finite fourth mo-
ment κ = Eε4ij . We assume that εij ’s are independent of bi’s, and fl(·)’s are
twice-differentiable functions on a finite interval. Without loss of generality, we
take the interval to be [0, 1].

Model (1.1) is a natural extension of the VCM where the random effects
are introduced to model between-subject variation. The coefficient functions
fl(·)’s are modeled nonparametrically using smoothing splines. When the bi’s
are normally distributed and the yij ’s belong to an exponential family, (1.1) is
a special case of the generalized linear mixed models with varying coefficients
proposed in Zhang (2004). Since the fixed-effects component is a time-varying
coefficients model and the random-effects component is a parametric model, (1.1)
may also be regarded as a time-varying coefficients semiparametric mixed effects
model as defined in Chapter 9 of Wu and Zhang (2006). Note that normality
assumptions were made in Wu and Zhang (2006), and they did not consider
inference about variance components. In this paper we propose estimation and
inference methods for VCMM.

We concentrate on testing the hypothesis that all variance components are
zero. This has not been studied for the VCMM. Many hypothesis testing methods
have been developed for various parametric and nonparametric mixed models.
In particular, Lin (1997) and Zhu and Fung (2004) developed score tests for vari-
ance components in a generalized linear mixed model (GLMM) and a semipara-
metric mixed model, respectively. Both tests considered two-sided alternative
hypotheses on variance components. Often, variance components are known to
be non-negative which leads to a one-sided alternative hypothesis (Verbeke and
Molenberghs (2003)). Some existing one-sided tests can be found in Silvapulle
and Silvapulle (1995) and Silvapulle and Sen (2005) When distributions of the
random effects and random errors are known, a common approach is to construct
the LRT. For example, Stram and Lee (1994) applied the theory in Self and Liang
(1987) to linear mixed models with normality assumptions on both the random
effects and random errors.
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In this article we develop quasi-score tests for one-sided alternative hypothe-
sis. We first propose an SQT that uses estimators of parameters that are consis-
tent under the null and inconsistent under the alternative. We then propose an
EQT by constructing estimators that are consistent under both the null and al-
ternative hypotheses. We show that both SQT and EQT are consistent for global
alternatives and sensitive to local alternatives converging at certain rates to the
null. Furthermore, the quasi-score test statistics asymptotically follow distribu-
tions of maximums of several standard normal random variables. Consequently,
these tests are easy to use in practice. Other than moment conditions on random
effects and random errors, no assumptions are made on their distributions. Con-
struction of consistent estimators, in particular for the fourth moment of random
errors κ, is technically challenging. The proposed consistent estimators for the
moments of random errors are of interest in themselves. For comparison, we also
adapt the one-sided score test (SST) in Silvapulle and Silvapulle (1995) and the
LRT in Fan, Zhang, and Zhang (2001). Since nonparametric components appear
in both the null and the alternative hypotheses in our setup, extension of the
test in Stram and Lee (1994) is difficult and beyond the scope of this paper.
Simulations indicate that the EQT is more powerful than SQT, SST, and LRT.

The paper is organized as follows. In Section 2, we derive estimates for the
parameters and nonparametric functions in a VCMM. In Section 3, we construct
quasi-score tests for one-sided hypothesis and present their asymptotic properties.
We also present the SST and LRT in this section. Simulations results are reported
in Section 4. The application to a data set is presented in Section 5. Section 6
gives some conclusions. Some lengthy notations, regularity conditions, sketch of
proofs, and brief derivations are deferred to the Appendix.

2. Estimation

We rewrite model (1.1) in matrix form. Let n =
∑m

i=1 ni, Yi = (yi1, . . . ,
yini)

T and Y = (YT
1 , . . . ,YT

m)T. Notations εi, ε, and b are defined simi-
larly. Let Xl = diag(x11l, . . . , x1n1l, . . . , xm1l, · · ·xmnml) be an n × n matrix
and Zi = (Zi1, . . . ,Zini)

T be a ni × q matrix. Let t0 = (t01, . . . , t
0
r)

T be the
vector of ordered distinct values of the collection of all time points {tij : i =
1, . . . ,m; j = 1, . . . , ni}. Let fl = (fl(t01), . . . , fl(t0r))

T and f = (fT1 , . . . , fTp )T. Let
Nl be the incidence matrix mapping {tij} to t0 such that (fl(t11), . . . , fl(t1n1), . . . ,
fl(tm1), . . . , fl(tmnm))T = Nlfl. Let N = diag(N1, . . . ,Np), Z = diag(Z1, . . . ,Zm),
X = (X1, . . . ,Xp) and X̃ = XN. Then (1.1) can be rewritten as

Y = X̃f + Zb + ε. (2.1)

We model the fl(·)’s using natural cubic smoothing splines (Wahba (1990); Green
and Silverman (1994)). Specifically, we use the value-second derivative represen-
tation in Green and Silverman (1994) to represent coefficient functions f1, . . . , fp.
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Note that (2.1) is a nonparametric model where the vector f is part of the value-
second derivative representation rather than a parameter. We assume that the
number of knots tends to infinity as the sample size tends to infinity. This as-
sumption is implied by condition C1 in Appendix B.

The covariance matrix of b is σ2D, where D = diag(D1, . . . ,D1). Here we
develop estimates for f1(·), . . . , fp(·), σ2, and D. We note that our estimation
methods are robust in the sense that they do not require specifying distributions
for random effects and random errors. For fixed D, as Lin and Zhang (1999), Gu
and Ma (2005), and Wu and Zhang (2006), we estimate f1(·), . . . , fp(·) and b by
minimizing the penalized least squares

(Y − X̃f − Zb)
T
(Y − X̃f − Zb) + bTD−1b +

p∑
l=1

λl

∫ 1

0
{f ′′

l (t)}2dt. (2.2)

Similar to O’Sullivan, Yandell, and Raynor (1986), it can be shown that the
solutions of fl(·)’s belong to finite dimensional spaces. Thus, (2.2) reduces to

(Y − X̃f − Zb)
T
(Y − X̃f − Zb) + bTD−1b + fTΛKf, (2.3)

where Λ = diag(λ1Ir, . . . , λpIr), K = diag(K1, . . . ,Kp), λl’s are smoothing pa-
rameters, and Kl are the non-negative definite smoothing matrices defined in
(2.3) of Green and Silverman (1994). The solutions to (2.3) are

f̂ = (X̃
T
V−1X̃ + ΛK)−1X̃

T
V−1Y,

b̂ = (ZTZ + D−1)−1ZT(Y − X̃f̂), (2.4)

where V = In +ZDZT. We construct moment-based estimators of D1 and σ2 as

D̂1 = (Σ̃z)−1/2B̂(Σ̃z)−1/2, (2.5)

σ̂2 =
(Y − X̃f̂)T(Y − X̃f̂)

n − trH̃λ + tr(ZD̂ZT)
, (2.6)

where Σ̃z and B̂ are defined in (A.1) and (A.2) in Appendix A, D̂ = diag(D̂1, . . .,
D̂1), H̃λ = X̃(X̃

T
V̂

−1
X̃ + ΛK)−1X̃

T
V̂

−1
, and V̂ = In + ZD̂ZT. Appendix D

provides a brief derivation of D̂1. D̂1 and σ̂2 are consistent under both the null
and the alternative (Lemma 2 in Appendix C).

When D = 0, which corresponds to a VCM, we have

f̂0 = (X̃
T
X̃ + ΛK)−1X̃

T
Y,

σ̂2
0 =

(Y − X̃f̂0)T(Y − X̃f̂0)
n − trHλ

, (2.7)
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where Hλ = X̃(X̃
T
X̃ + ΛK)X̃

T
. The estimator σ̂2

0 is consistent under the null
and inconsistent under the alternative (Lemma 2 in Appendix C).

Smoothing parameters λ1, . . . , λp are crucial to the performance of the spline
estimators. We apply generalized cross-validation (GCV) to select these smooth-
ing parameters in simulations and data analysis. Specifically, the GCV estimates
of smoothing parameters are minimizers of

GCV (λ1, . . . , λp) =
nYT(In − Hλ)2Y

(n − tr(Hλ))2
.

As in Fan and Huang (2005), the same smoothing parameters are used for con-
structing estimators under both the null and the alternative hypotheses.

3. Tests

When making inference for variance components, it is often the case that
these variances are known to be non-negative. One-sided test should be used in
these situations (Verbeke and Molenberghs (2003)). In this section we assume
that the diagonal of D1 is a linear function of θ = (θ1, . . . , θd) with θi ≥ 0, and
D1 = 0 if θ = 0. Thus, we consider the one-sided hypothesis

H0 : θ = 0 versus HA : θ ≥ 0 and θi > 0 for some 1 ≤ i ≤ d. (3.1)

When all diagonal elements of D1 are free parameters, one may set θ to be these
diagonal elements. The above formulation is more general and allows certain
relationships among diagonal elements of D1. For example, θ may represent
distinct diagonal elements when some diagonal elements are equal. The nonneg-
ativity constraint on θ is used in the construction of one-sided tests, while the
information that D1 is a non-negative definite matrix is ignored.

Our construction of test statistics is motivated by arguments based on ex-
tended quasi-likelihood. Conditional on b, the extended quasi-likelihood is (Nelder
and Pregibon (1987))

qy(b) = −‖Y − X̃f − Zb‖2

2σ2
− n

2
log σ2.

The marginal extended quasi-likelihood is

l(Y; f, σ2, θ)

= log
∫

exp{qy(b)}dF (b, θ)

= log
∫

exp{qy(0)}
[
1 + q̇y(0)b +

1
2
bT

{
q̇y(0)q̇T

y (0) + q̈y(0)
}
b + Ω

]
dF (b,θ)
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= log[exp{qy(0)}] + log
(

1 +
σ2

2
tr

[{
q̇y(0)q̇T

y (0) + q̈y(0)
}
D

]
+ R

)
≈ qy(0) +

σ2

2
tr

[{
q̇y(0)q̇T

y (0) + q̈y(0)
}
D

]
+ R, (3.2)

where F is the distribution of b, q̇y(0) = {∂qy(b)/∂b} |b=0, q̈y(0) = {∂2qy(0)/
∂b∂bT} |b=0, and the residual Ω contains the third and higher order terms of b.
We derive test statistics based on approximating the extended quasi-likelihood
using the first two terms in (3.2). This approximation is appropriate for the
normal case since R is of o(‖θ‖). In the general situation, R may not be of o(‖θ‖).
We emphasize that both extended quasi-likelihood and its approximation are used
for motivating test statistics only, neither of them is required in the theoretical
development.

Let ε̃ = Y − X̃f. It is easy to check that qy(0) = −‖ε̃‖2/(2σ2) − n log σ2/2,
q̇y(0) = ZTε̃/σ2 and q̈y(0) = −ZTZ/σ2. Then we have the approximate marginal
extended quasi-likelihood

la(Y; f, σ2,θ) = −‖ε̃‖2

2σ2
+

ε̃TZDZTε̃

2σ2
− 1

2
tr(ZDZT) − 1

2
n log σ2. (3.3)

Let Uθ(f, σ2, θ) = ∂la/∂θ be the quasi-score. It is easy to verify that the
ith element of Uθ(f, σ2,θ) is ε̃TQiε̃/(2σ2) − trQi/2, where Qi = ZḊiZT and
Ḋi = ∂D/∂θi.

Lemma 1. Under H0 and conditions C.1, C.2, C.3(i), C.4, and C.5 in Appendix
B,

n−1/2Uθ(f̂0, σ̂
2
0, 0) d→ N(0,M) and n−1/2Uθ(f̂, σ̂2, 0) d→ N(0,M),

where M = {2σ4M0+(κ−3σ4)Mz}/(4σ4), limn→∞ n−1Mn0 = M0, limn→∞ n−1

Mnz = Mz,

Mn0 = {(Mn0)i,j}d×d, (Mn0)i,j = tr(QiQj) −
(trQi)(trQj)

n
, (3.4)

Mnz = {(Mnz)i,j}d×d, (Mnz)i,j = tr{diag(Qi)diag(Qj)} −
(trQi)(trQj)

n
.

Remark 1. (i) Up to a scalar constant, Mn0 in (3.4) is the same as the efficient
information matrix Iθ of θ in Zhu and Fung (2004). (ii) The form of quasi-
score Uθ(f, σ2, 0) is first computed under the assumption that the off-diagonal
elements of D1 are known. This quasi-score is used to construct the test statistics
for the general case where the off-diagonal elements may be unknown. We note
that the assumption about the off-diagonal entries was used for test statistics
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construction rather than for theoretical development. Specifically, conclusions in
Lemma 1 and the theorems hold when unknown off-diagonal entries are replaced
by their estimates.

We can construct a quasi-score test based on Lemma 1. Note that Mn ≡
{2σ4Mn0+(κ−3σ4)Mnz}/(4σ4). The dependence of Mn on σ2 and κ is expressed
explicitly as Mn(σ2, κ). Estimators of σ2 are given in Section 2. We construct
two estimators for κ, κ̂0, and κ̂, where the definitions of κ̂0 and κ̂ are given in
Appendix A; κ̂0 is consistent under the null and κ̂ is consistent under both the
null and alternative (Lemma 3 in Appendix C).

We now consider a one-sided test as in Verbeke and Molenberghs (2003) and
Bolfarine and Valenca (2005). From Lemma 1, extending one-sided test based on
univariate normal distribution to the multivariate case, we consider the one-sided
test statistic

Tn0 = max
1≤i≤d

{
lTi M−1/2

n (σ̂2
0, κ̂0)Uθ (̂f0, σ̂2

0, 0)
}

, (3.5)

where li is the d-dimensional vector with the ith element being 1 and all other
elements being 0. Since Tn0 in (3.5) is constructed using estimators that are
consistent under the null, the test based on Tn0 is referred to as the standard
quasi-score test (SQT). Note that σ̂2

0 is inflated when the alternative is true
(Lemma 2). Thus using such an estimator may deteriorate the power of the
test; see relevant discussions in Chen, Härdle, and Li (2003) and Koul and Song
(2008). The following test statistic is then derived by replacing f, σ2, and κ with
estimators that are consistent under both the null and the alternative,

Tn = max
1≤i≤d

{
lTi M−1/2

n (σ̂2, κ̂)Uθ (̂f, σ̂2, 0)
}

. (3.6)

The test statistic Tn is referred to as the extended quasi-score test (EQT).

Theorem 1. Suppose that conditions C.1, C.2, C.3(i), and C.4−C.8 in Appendix
B hold. Then under H0, Tn0 and Tn have an asymptotic distribution Φd(·) as
n → ∞, where Φ(·) is the standard normal distribution function.

It is easy to see that the α upper quantile Cα of the asymptotic distribution
is the 1 − (1 − α)1/d upper quantile of the standard normal distribution.

To investigate the power of the proposed SQT and EQT, we consider a
sequence of alternative hypotheses indexed by n as HAn : θ = cnθ0 for some
fixed nonzero and non-negative vector θ0. As n → ∞, HAn is a global alternative
when cn is bounded away from zero or a local alternative when cn converges to
zero.

Theorem 2. Under HAn and conditions C.1∼ C.8 in Appendix B, if limn→∞
nα0cn = k0 where α0 is defined in condition C.3 in Appendix B and k0 is a fixed
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constant, then Tn and Tn0 have an asymptotic distribution Πd
i=1Φ(x−mi) where

mi is the ith component of k0M
−1/2ω/2 and ω = (ω1, . . . , ωd)T, with ωi defined

in C.3 in Appendix B.

Remark 2. Condition C.3 in Appendix B implies that the m′
is are nonnegative

and that there exists at least one mi > 0. Consequently the mean of the asymp-
totic distribution of Tn is positive under HAn and large values of Tn support HAn.
The asymptotic null distributions of Tn0 and Tn do not depend on convergence
rates of the alternatives to the null. In addition, based on Conditions C.3 and
C.6(i), we have α0 = 1/2 when q = 1. In fact, α0 = 1/2 is the key for C.3. Thus
the tests Tn0 and Tn can both detect the local alternatives approaching the null
at rates up to root n.

For comparison, we now adapt the score-test in Silvapulle and Silvapulle
(1995) and LRT test in Fan, Zhang, and Zhang (2001). Following the argument
in Silvapulle and Silvapulle (1995) we have the SST statistic

SST = UT
θ̃
(̂f0, σ̂2

0, 0)M̃
−1
n (σ̂2

0, κ̂0)Uθ̃ (̂f0, σ̂
2
0, 0)

−inf
{
(Uθ̃ (̂f0, σ̂

2
0, 0) − θ̃)TM̃

−1
n (σ̂2

0, κ̂0)(Uθ̃ (̂f0, σ̂
2
0, 0) − θ̃) : θ̃ ∈ f

}
,

where Uθ̃(f, σ
2, θ̃) = ∂la/∂θ̃ with la defined in (3.3), θ̃ includes all free param-

eters in D1, and f is the parametric space of θ̃, M̃n(σ̂2
0, κ̂0) = {2σ̂4

0M̃n0 +
(κ̂0 − 3σ̂4

0)M̃nz)/(4σ̂4
0} with M̃n0 and M̃nz matrices with the (i, j)th elements

tr(QiQj) − n−1(trQi)(trQj) and tr{diag(Qi)diag(Qj)} − n−1(trQi)(trQj), re-
spectively. Note that the first part of SST is the standard two-sided score test
statistic.

Following arguments in the proofs of Lemma 1 and Theorem 3, under H0

and HÃn : θ̃ = n−1/2θ̃0 for some fixed nonzero vector θ̃0, we have

n−1/2UT
θ̃
(̂f0, σ̂2

0, 0) d→ N(0, M̃), and n−1/2UT
θ̃
(̂f0, σ̂2

0, 0) d→ N(
ω̃

2
, M̃),

where M̃ = limn→∞ n−1M̃n and the ith element of ω̃ is limn→∞ n−1{tr(Q̃0Qi)−
n−1trQ̃0trQi} for i = 1, . . . , d, d is the dimension of θ̃, and Q̃0 = ZD̃0ZT with
D̃0 the covariance matrix corresponding to θ̃0. Applying the results in Silvapulle
and Silvapulle (1995, p.180) the asymptotic null distribution of the SST is a
mixture of χ2−distributions

∑d
l=0 ωi(d, M̃ ,A)χ2

l , where A is the approximating
cone of f defined in Section 4.7 in Silvapulle and Sen (2005) As pointed out by
Silvapulle and Sen (2005) the exact computation of this distribution is difficult.
The critical value is usually computed by Monte Carlo (Silvapulle and Sen (2005,
p.78)).

With Gaussian assumptions for both the random effects and random errors,
we have Y ∼ N(X̃f, σ2I) under H0 and Y ∼ N(X̃f, σ2V) under HA. Let l(H0)



TESTS FOR VARIANCE COMPONENTS 131

and l(HA) be log-likelihoods under H0 and HA, respectively. As in Fan, Zhang,
and Zhang (2001), we define the MLE of f1(·), . . . , fp(·), and σ2 under H0 as the
minimizers of −l(H0), and the MLE of f1(·), . . . , fp(·), σ2 and D1 under HA as
the minimizers of −l(HA), both subject to the constraints

∫ 1
0 {f

′′
l (t)}2dt ≤ Cl,

l = 1, . . . , p. By introducing Lagrange multipliers, the estimates of σ2 are σ̂2
0 =

(Y − X̃f̂0)T (Y − X̃f̂0)/n under H0 and σ̂2 = (Y − X̃f̂)TV−1(Y − X̃f̂)/n under
HA. Similar to Fan, Zhang, and Zhang (2001), we define the LRT statistic as

LRT = 2{l(HA) − l(H0)} = n log σ̂2
0 − n log σ̂2 − log |I + ZD̂ZT |,

where D̂ is the MLE of D. We note that the LRT in Fan, Zhang, and Zhang
(2001) was not initially designed for testing for variance components in VCMM.
Unlike theirs, we estimate nonparametric functions using smoothing splines and
test hypothesis about variance components.

Theoretical properties and asymptotic null distributions of the LRT are be-
yond the scope of the current article. The Bootstrap method can be used to
determine the critical value of the LRT. An alternative approach to constructing
a LRT is to use the connection between smoothing splines and linear mixed-
effects models (Wang (1998); Liu and Wang (2004); Crainiceanu et al. (2005)).
This alternative approach merits future research.

4. Simulations

We conducted simulations to evaluate the finite sample performance of the
SQT and EQT, and to compare them with the SST and LRT. Data were gener-
ated from the model

yij = xij1f1(tij) + xij2f2(tij) + ZT
ijbi + εij , i = 1, . . . ,m; j = 1, . . . , 10, (4.1)

where tij = trun[{i + (m/5 − 1)}/(m/5)]/50 + 0.10(j − 1), trun denotes the
truncation operator, the xij1 are independently Uniform[tij/10, i + tij/10], the
xij2 are independently N(10tij , 0.602), f1(t) = t2 + 2t, and f2(t) = cos(πt). We

considered two cases of random errors: εij
i.i.d.∼ N(0, 1) and εij

i.i.d.∼ (Γ(2, 1) −
2)/

√
2, where Γ(2, 1) is the Gamma distribution with shape parameter 2 and

scale parameter 1, standardized to have mean zero and variance 1; Zij = 1 and
the random effects bi are i.i.d. samples from

• Normal N(0, θ) with θ = 0, 0.04, 0.07 and 0.10.

• Normal mixture 0.25N(−0.75ϕ, φ2)+0.75N(0.25ϕ, φ2), with four combinations
of ϕ and φ such that the variance θ = φ2 + 0.1875ϕ2 takes on the same four
values 0, 0.04, 0.07, and 0.10 as above; the four values for ϕ are 0, 0.05, 0.20,
and 0.70, respectively.
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The null hypothesis for this setting is H0 : θ = 0. We considered three
sample sizes m = 50, 75, 100 and repeated the simulation 500 times. Cubic B-
splines were used to estimate the fl(·)′s; the smoothing parameters were selected
by the extended GCV method; the significance level was set to be 0.05.

Critical values of SQT and EQT are calculated from their asymptotic dis-
tributions, the critical values of SST are calculated by the recommended Monte
Carlo method (with 10,000 replication) in Silvapulle and Sen (2005) according
to the asymptotic distribution, and the critical values of LRT are calculated by
the bootstrap method (with 2,000 the bootstrap sample size). The estimates for
the LRT are computed using the EM algorithm in Laird and Ware (1982) and
Laird, Lange, and Stram (1987). Powers of all four tests are listed in Tables 1
and 2. We conclude that all four tests performed well: type I errors were close
to the nominal level and powers approached 1 quickly. Power increased with
the increase of variance components and/or the increase of sample size m. As
expected, the EQT was more powerful than SQT, SST, and LRT. No test was
uniformly better between SQT and SST. The LRT did not perform better than
others in the normal case for the following possible reasons: the LRT was not
initially designed for testing for variance components in VCMM; the smoothing
parameters were not selected to optimize the performance of LRT as in Fan,
Zhang, and Zhang (2001). Further research on LRT is necessary. It is interesting
to note that, even though derived under normality assumptions, the LRT per-
formed well for non-Gaussian case; this agrees with the comments made in Fan,
Zhang, and Zhang (2001).

To further investigate the performance of EQT and SQT, we conducted
another simulation with bivariate random effects bi = (bi1, bi2)T and Zij =
(1, tij)T. Let Var(bi1) = θ1, Var(bi2) = θ2, and Cor(bi1, bi2) = ρ. The random
effects bi are generated from a bivariate normal mixture, 0.25N(−0.75ϕ,D) +
0.75N(0.25ϕ,D), with six combinations of ϕ and D such that (θ1, θ2, ρ) equals
(0, 0, 0), (0.02, 0.03, 0), (0.02, 0.03, 0.30), (0.03, 0.04,−0.50), (0.03, 0.04, 0), and
(0.03, 0.04, 0.70). The choices of ϕ corresponding to these six combinations are
(0, 0)T, (0, 0)T, (0, 0)T, (0.10, 0.20)T, (0.10, 0.20)T, and (0, 0)T. Random errors
are generated from the standard normal distribution. The null hypothesis for
this two-dimensional setting is H0 : θ1 = θ2 = 0. Smoothing parameters are
selected by the extended GCV method. Since more parameters are involved in
the two-dimensional case, three sample sizes m = 50, 100, 200 are considered.
The simulation was repeated 1,000 times and the results are listed in Table 3.
Type I errors got closer to the nominal level 0.05 with the increase of sample
size. The EQT was more powerful than SQT.

To further evaluate the accuracy of asymptotic distributions for the EQT
and SQT tests, we computed their distributions with unknown parameters cal-
culated from the simulated data. Figure 1 shows the theoretical and asymptotic
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Table 1. Powers of SQT, EQT, SST, and LRT with standard normal random
errors.

m
distribution θ tests 50 75 100

0.00 EQT(SQT) 0.054(0.038) 0.062(0.048) 0.056(0.044)
LRT(SST) 0.036(0.044) 0.040(0.056) 0.044(0.046)

0.04 EQT(SQT) 0.518(0.420) 0.656(0.562) 0.820(0.790)
Normal LRT(SST) 0.282(0.424) 0.346(0.566) 0.610(0.800)

0.07 EQT(SQT) 0.812(0.746) 0.940(0.904) 0.970(0.940)
LRT(SST) 0.608(0.740) 0.792(0.904) 0.810(0.960)

0.10 EQT(SQT) 0.950(0.932) 0.986(0.980) 1.000(0.990)
LRT(SST) 0.822(0.930) 0.912(0.982) 0.940(0.990)

0.00 EQT(SQT) 0.064(0.046) 0.060(0.048) 0.054(0.048)
LRT(SST) 0.046(0.046) 0.042(0.044) 0.044(0.048)

Normal 0.04 EQT(SQT) 0.538(0.448) 0.654(0.574) 0.736(0.668)
LRT(SST) 0.324(0.442) 0.410(0.508) 0.610(0.670)

Mixture 0.07 EQT(SQT) 0.814(0.724) 0.910(0.888) 0.974(0.942)
LRT(SST) 0.576(0.700) 0.774(0.860) 0.840(0.920)

0.10 EQT(SQT) 0.946(0.932) 0.988(0.982) 1.000(1.000)
LRT(SST) 0.760(0.932) 0.948(0.982) 0.990(1.000)

Table 2. Powers of SQT, EQT, SST, and LRT with Gamma random errors.

m
distribution θ tests 50 75 100

0.00 EQT(SQT) 0.066(0.048) 0.045(0.040) 0.056(0.046)
LRT(SST) 0.034(0.060) 0.040(0.042) 0.038(0.056)

0.04 EQT(SQT) 0.568(0.480) 0.654(0.578) 0.774(0.712)
Normal LRT(SST) 0.330(0.484) 0.450(0.554) 0.552(0.746)

0.07 EQT(SQT) 0.842(0.780) 0.922(0.900) 0.972(0.950)
LRT(SST) 0.600(0.718) 0.712(0.880) 0.836(0.966)

0.10 EQT(SQT) 0.934(0.908) 0.996(0.980) 0.996(0.996)
LRT(SST) 0.748(0.910) 0.904(0.984) 0.952(0.996)

0.00 EQT(SQT) 0.058(0.048) 0.045(0.040) 0.056(0.046)
LRT(SST) 0.034(0.060) 0.040(0.042) 0.038(0.056)

Normal 0.04 EQT(SQT) 0.542(0.466) 0.640(0.554) 0.736(0.678)
LRT(SST) 0.324(0.468) 0.414(0.562) 0.558(0.678)

Mixture 0.07 EQT(SQT) 0.850(0.772) 0.928(0.900) 0.970(0.954)
LRT(SST) 0.576(0.774) 0.766(0.900) 0.840(0.960)

0.10 EQT(SQT) 0.950(0.926) 0.988(0.980) 0.996(0.996)
LRT(SST) 0.768(0.926) 0.932(0.980) 0.946(0.996)

null distributions for normal errors. As expected, as m increases, the asymptotic
distributions get closer to the theoretical distributions. Furthermore, as sug-
gested by Theorem 1, the densities for the one-dimensional case are symmetric
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Table 3. Powers of EQT and SQT in the two-dimensional case with normal
random errors.

m
(θ1, θ2, ρ) tests 50 100 200
(0,0,0) EQT(SQT) 0.069(0.059) 0.058(0.045) 0.053(0.047)

(0.02,0.03,0) EQT(SQT) 0.347(0.218) 0.541(0.361) 0.739(0.551)
(0.02,0.03,0.30) EQT(SQT) 0.451(0.283) 0.658(0.446) 0.893(0.734)
(0.03,0.04,-0.50) EQT(SQT) 0.372(0.221) 0.575(0.382) 0.775(0.566)

(0.03,0.04,0) EQT(SQT) 0.582(0.393) 0.827(0.644) 0.976(0.861)
(0.03,0.04,0.70) EQT(SQT) 0.778(0.559) 0.967(0.831) 1.000(0.973)

and the densities for the two-dimensional case are skewed.

5. Application

We analyzed a subset of the Multi-Center AIDS Cohort Study that includes
repeated measurements from 283 homosexual men who were infected with HIV
during the period between 1984 and 1991. Not all subjects were observed at
a common set of time points due to missed visits and random infection time.
The number of repeated measurements per subject ranged from 1 to 14, with a
median of 6 and a mean of 6.4205. The number of distinct measurement time
points was 59. Further details can be found in Kaslow et al. (1987)

As did Wu and Chiang (2000) and Huang, Wu, and Zhou (2004), we inves-
tigated the effects of cigarette smoking, pre-HIV infection CD4 percentage and
age at HIV infection on the mean CD4 percentage after the infection. Let tij be
the time in years of the jth measurements from subject i after HIV infection, yij

be the ith subject’s CD4 percentage at time tij , xij1 be smoking status (1 if the
ith subject always smokes cigarettes and 0 if he never smokes cigarettes), xij2 be
the ith individual’s centered age at HIV infection computed by subtracting the
sample average age at infection from the ith subject’s age at infection, and xij3 be
the ith subject’s centered pre-infection CD4 percentage computed by subtracting
the average pre-infection CD4 percentage of the sample from the ith subject’s
actual pre-infection CD4 percentage. We fit the VCMM

yij = f0(tij) + xij1f1(tij) + xij2f2(tij) + xij3f3(tij) + ZT
ijbi + εij , (5.1)

where εij ’s are i.i.d. random error, Zij = (1, tij)T, and the bi’s are i.i.d. random
effects with mean zero and an unstructured covariance matrix.

Cubic splines were used to estimate the varying coefficients and the smooth-
ing parameters were selected by the extended GCV method. Figure 2 shows
the estimators of coefficient functions and their bootstrap confidence intervals
based on 200 bootstrap replications. The conclusions about the fixed effects are
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Figure 1. Plots of simulated null distributions in solid lines and asymptotic
null distributions in dashed lines.
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Figure 2. Estimated coefficient functions and their 0.95 bootstrap pointwise
confidence intervals.

the same as those in Wu and Chiang (2000) and Huang, Wu, and Zhou (2004):
effects of smoking and age of HIV infection are not statistically significant, the
baseline CD4 percentage of the population depletes over time with a rate that
slows down gradually, and pre-infection CD4 percentage is positively associated
with high post-infection percentage, which effect does not change over time.

We checked whether the VCMM (5.1) could be reduced to a VCM by testing
the hypothesis H0 : θ1 = θ2 = 0. The SQT, EQT, SST and LRT statistics
were SQT = 40.95, EQT = 42.15, SST = 2479.26, and LRT = 914.18, with P -
values approximately zero for all tests. With the null hypothesis of homogeneity
rejected, we find the VCMM useful for predicting subject-specific trajectories.

6. Conclusions

We have proposed and compared four one-sided tests for the null hypothesis
that all variance components are zero in a VCMM. All tests performed well
in simulations, with the EQT more powerful than SQT, SST and LRT. The
SQT, EQT and SST are robust in the sense that they do not require specifying
distributions for random effects and random errors. The LRT test performed



TESTS FOR VARIANCE COMPONENTS 137

well even when the distributions for random errors and random effects were non-
Gaussian. The asymptotic null distributions of SQT and EQT are simple and
easy to use. The proposed estimation method is new and is itself of interest.
In particular, the development of consistent estimators for the fourth moment is
technically difficult.

When the null hypothesis that all variance components are zero is rejected,
it is of interest to test whether some of the variance components are zero. We will
investigate this problem in our future research. Another interesting future re-
search topic is to extend the proposed quasi-score tests to the setting of generalize
linear models.

Acknowledgement

The authors thank Colin O. Wu for allowing us to use the “MACS Public
Use Data Set Release PO4 (1984-1991)”. We also thank the Editor, An Associate
editor, and two referees for constructive comments that substantially improved
an earlier draft. The research was supported by a grant (HKBU2030/07P) from
the Research Grants Council of Hong Kong, a grant from the National Natu-
ral Science Foundation of China (No.11001267, 11071253) and the Fundamental
Research Funds for the Central Universities in China(NO.2009QS02); Wang’s
research was supported by a grant from the National Science Foundation (DMS-
0706886).

Appendix A: Notations

The V ec function stacks column vectors of a matrix; ⊗ denotes the Kronecker
operation of two matrices or vectors. X̃i is the submatrix of X̃ with rows from
(n1 + · · · + ni−1 + 1) to (n1 + · · · + ni); C(ij) denotes the (i, j)th element of a
matrix C. Let

Σ̃z = n−1
m∑

i=1

ZT
i Zi, Z̃i = ZiΣ̃

−1/2
z , Σ̃zz = n−1

m∑
i=1

(ZT
i Zi) ⊗ (ZT

i Zi); (A.1)

c̃11 = n−1
m∑

i=1

(Z̃
T
i Z̃i)211, c̃12 = n−1

m∑
i=1

(Z̃
T
i Z̃i)11(Z̃

T
i Z̃i)22, c̃13 = n−1

m∑
i=1

(Z̃
T
i Z̃i)212;

Â = n−1
m∑

i=1

Z̃
T
i (Yi − X̃if̂0)(Yi − X̃if̂0)TZ̃i

−n−1
m∑

i=1

(Yi − X̃if̂0)T(Yi − X̃if̂0)Iq;

B̂ =
Â

c̃12 + c̃13
+

{2c̃13 − (c̃11 − c̃12)}diag(Â)
(c̃11 − c̃13)(c̃12 + c̃13)
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− (c̃13 − 1)tr(Â)Iq

(c̃11 − c̃13){c̃11 − c̃13 + q(c̃13 − 1)}
; (A.2)

Î0 = n−1
m∑

i=1

{(Yi − X̃if̂)T(Yi − X̃if̂)}2;

Î1 = σ̂4{tr(Σ̃zD̂1) + (n−1
m∑

i=1

n2
i − 1) + 2n−1

m∑
i=1

nitr(ZT
i ZiD̂1)};

Ĵ = n−1
m∑

i=1

V ec[V ec{ZT
i (Yi − X̃if̂)(Yi − X̃if̂)TZi}

×V ecT{ZT
i (Yi − X̃if̂)(Yi − X̃if̂)TZi}];

J0 = n−1
m∑

i=1

{(ZT
i Zi) ⊗ (ZT

i Zi)} ⊗ {(ZT
i Zi) ⊗ (ZT

i Zi)};

J2 = n−1
m∑

i=1

ni∑
j=1

V ec{(ZijZT
ij) ⊗ (ZijZT

ij)};

R0
n = V ecT(Σ̃zz)V ec

[
E

{
V ec(b1bT

1 )V ecT(b1bT
1 )

}]
+σ4(6 − 2n−1

m∑
i=1

n2
i )tr(Σ̃zD1)

+σ4[2n−1
m∑

i=1

nitr(ZT
i ZiD1) − (n−1

m∑
i=1

n2
i − 1){tr(Σ̃zD1)}2]. (A.3)

Let Eni(l1, l2) be an ni × ni matrix with the (l1, l2)th element 1 and others
0. Take

En2
i
=


Ini − Eni(1, 1) Eni(1, 2) + Eni(2, 1) · · · Eni(1, ni)+Eni(ni, 1)

Eni(2, 1) + Eni(1, 2) Ini − Eni(2, 2) · · · Eni(2, ni) + Eni(ni, 2)
...

...
...

...
Eni(ni, 1)+Eni(1, ni) Eni(ni, 2)+Eni(2, ni) · · · Ini − Eni(ni, ni)

,

where Ini is the ni × ni identity matrix. Let

Ĵ1 = σ̂4n−1
m∑

i=1

(ZT
i ⊗ ZT

i ) ⊗ {(ZT
i Zi) ⊗ (ZT

i Zi)}V ec{V ec(D̂1)V ecT(Ini)}

+σ̂4n−1
m∑

i=1

{(ZT
i ⊗ (ZT

i Zi)} ⊗ {ZT
i ⊗ (ZT

i Zi)}V ec(Ini ⊗ D̂1)

+σ̂4n−1
m∑

i=1

{(ZT
i Zi) ⊗ ZT

i } ⊗ {ZT
i ⊗ (ZT

i Zi)}
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×V ec{(Ini ⊗ d̂1, Ini ⊗ d̂2, . . . , Ini ⊗ d̂q)}

+σ̂4n−1
m∑

i=1

{ZT
i ⊗ (ZT

i Zi)} ⊗ {(ZT
i Zi) ⊗ ZT

i }

×V ec{(Ini ⊗ d̂1, Ini ⊗ d̂2, . . . , Ini ⊗ d̂q)T}

+σ̂4n−1
m∑

i=1

{(ZT
i Zi) ⊗ ZT

i } ⊗ {(ZT
i Zi) ⊗ ZT

i }V ec(D̂1 ⊗ Ini)

+σ̂4n−1
m∑

i=1

{(ZT
i Zi) ⊗ (ZT

i Zi)} ⊗ (ZT
i ⊗ ZT

i )V ec{V ec(Ini)V ecT(D̂1)}

+σ̂4n−1
m∑

i=1

(ZT
i ⊗ ZT

i ) ⊗ (ZT
i ⊗ ZT

i )V ec(En2
i
),

where d̂l is the lth column vector of D̂1, l = 1, . . . , q. Define

κ̂0 , n−1
m∑

i=1

{
(Yi − X̃if̂0)T(Yi − X̃if̂0)

}2
− n−1

m∑
i=1

ni(ni − 1)σ̂4
0,

κ̂ , {1 − V ecT(Σ̃zz)J−1
0 J2}−1{Î0 − Î1 − V ecT(Σ̃zz)J−1

0 (Ĵ − Ĵ1)}.

Appendix B: Regularity Conditions

C.1 {ni} is a bounded sequence of positives integers, and there exists 1 ≤ υ < ∞
such that υIr − NT

l Nl is positive definite, l = 1, . . . , p.
C.2 The second derivatives of function fl(·) are bounded, and the eigenvalues of

XTX are bounded.
C.3 (i) The eigenvalues of Qi are bounded, and the M of Lemma 1 is positive

definite.
(ii) The eigenvalues of Q0 are bounded, where Q0 = ZD0ZT, D0 the covari-

ance matrix of random effects bi corresponding to θ0 under the global
alternative. In addition, there exists a positive constant α0 such that

lim
n→∞

tr(Q0Qi) − n−1trQ0trQi

nα0+1/2
= ωi,

tr(Q0Qi)
nα0+1/2

= O(1), i=1, . . . , d,

where ωi are constants and not all ωi are zero.

C.4 There exists a continuous strictly positive density function w(·) on [0,1] such
that

∫ t0i
0 w(t)dt = (2i − 1)/2r, i = 1, . . . , r.

C.5 For l = 1, . . . , p, n → ∞ and λl → 0 in such a way that nλl → ∞;
n−1/2‖(In − Hλ)µ‖2 → 0 as n → ∞, where µ = X̃f and Hλ = X̃(X̃

T
X̃ +

ΛK)−1X̃
T
.
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C.6 (i) There exists a q× q positive definite matrix Σz such that limn→∞ Σ̃z =
Σz.

(ii) There exist a q2 × q2 non-negative definite matrix Σzz, a q4 × q4 pos-
itive definite matrix J00 and a q4-dimensional vector J20 such that
limn→∞ Σ̃zz = Σzz, limn→∞ J0 = J00, limn→∞ J2 = J20, and V ecT(Σzz)
J−1

00 J20 < 1.

C.7 There exist positive constants c11, c12, and c13 such that

lim
n→∞

n−1
m∑

i=1

(Z̃
T
i Z̃i)l1,l′1

(Z̃
T
i Z̃i)l2,l′2

=



c11, 1 ≤ l1 = l′1 = l2 = l′2 ≤ q,

c12, l1 = l′1 6= l2 = l′2, 1 ≤ l1, l2 ≤ q,

c13, l1 = l2 6= l′1 = l′2, or l1 = l′2 6= l′1 = l2, 1 ≤ l1, l
′
1, l2, l

′
2 ≤ q,

0, otherwise.

C.8 There exist a δ > 0 such that the (4 + δ)th moments of both bi and εij are
finite.
The condition on sample sizes in condition C.1 is reasonable since it is com-

mon in longitudinal studies that the number of subjects is large and the number of
observations for each subject is limited. In addition, condition C.1 ensures that,
as m → ∞, the number of distinct time points r → ∞ and r = O(n). Thus,
under the condition C.1, n → ∞ indicates m → ∞ and the ni are bounded.
Conditions C.2 and C.4 are standard. As far as Mn and its limit M in C.3(i) are
concerned, it is sufficient that n−1

∑m
i=1

∑ni
j=1{V ec(ZijZT

ij)V ecT(ZijZT
ij)} con-

verges to some non-negative definite matrix. This condition can be seen as a
natural extension of the second part of Condition 3 in Zhu and Fung (2004)
when the normal distribution assumption is removed. The assumptions in Con-
dition C.3(ii) are similar to those of Crainiceanu et al. (2005) for LMM with
only one unknown variance component. Condition C.5 was also assumed by
Chiang, Rice, and Wu (2001), and is similar to a condition in Eubank and
Thomas (1993) and Zhu and Fung (2004). Condition C.6(i) is a commonly used
condition for fixed design points. When q = 1, Condition C.6(ii) reduces to
{n−1

∑m
i=1(

∑ni
j=1 Z2

ij)
2}2/{n−1

∑m
i=1(

∑ni
j=1 Z2

ij)
4} < 1, which is always true as

long as m < n. Condition C.7 is mild. As a special case, when ZT
i Zi is the

identity matrix, c11 = c12 = limn→∞ n/m and c13 = 0.



TESTS FOR VARIANCE COMPONENTS 141

Appendix C: Theoretical Results and Sketch of Proofs

For simplicity, c is a generic constant which may be different in different
places.

Lemma 2. As n → ∞,
(i) under conditions C.1, C.4−C.6, and C.8, σ̂2

0
p→ σ2 + σ2tr(ΣzD1), where

Σz = limn→∞ Σ̃z;

(ii) under conditions C.1, C.4, C.5, C.6(i), C.7, and C.8, D̂1 = D1 + Op(n−1/2);

(iii)under conditions C.1 and C.5−C.8, σ̂2 p→ σ2.

Remark 3. Note that even though the varying coefficient functions are modeled
nonparametrically using cubic splines, averages of the nonparametric estimators
evaluated at the design points lead to the root n convergence rate for D̂1. This
phenomenon has previously been shown for kernel estimation (Stute and Zhu
(2005); Zhu and Fang (1996) and splines estimation (Zhu and Yu (2007)).

Lemma 3. As n → ∞,
(i) under H0 and conditions C.1, C.4, C.5, and C.8, κ̂0

p→ κ; under HA and
conditions C.1, C.2, and C.5−C.8, κ̂0

p→ κ+limn→∞ R0
n, where R0

n is defined
in (A.3) in Appendix A.

(ii) under conditions C.1, C.2, and C.5−C.8, κ̂
p→ κ.

Lemma 4. Under Conditions C.1, C.2, C.4, and C.5, we have
(i) all eigenvalues of In − Hλ lie between 0 and 1, and n−1/2tr(Hj

λ) → 0 as
n → ∞ for j = 1, . . . .

(ii) all eigenvalues of In − H̃λ lie between 0 and 1, n−1/2‖(In − H̃λ)µ‖2 → 0,
n−1/2tr(H̃

j
λ) → 0, and n−1/2tr(H̃

T
λ H̃λ)j → 0 for j = 1, . . ..

Lemma 5. Let An be a symmetric matrix, δ(n) be the maximum eigenvalue of
A2

n, and ε be as in model (2.1). Then under the null hypothesis and condition
C.8, δ(n)/tr(A2

n) → 0 implies that

εTAnε − σ2trAn

{(κ − 3σ4)aT
nan + 2σ4tr(A2

n)}1/2

d→ N(0, 1),

where an is the column vector composed of the diagonal components of An.
We provide a sketch of proof for Lemma 1 only; proofs of the other lemmas

are given in the supplement to the paper.

Proof of Lemma 1. We only need verify that, for any d-dimensional constant
vector a = (a1, a2, . . . , ad)T, n−1/2aTUθ (̂f, σ̂2, 0) converges to N(0,aTMa) in
distribution under the null.
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Note that, under the null hypothesis,

n−1/2aTUθ (̂f, σ̂2, 0)

=
YT(In−H̃λ)T

[∑d
i=1 ai

{
Qi − IntrQi/(n−trH̃λ+tr(ZD̂ZT))

}]
(In − H̃λ)Y

2
√

nσ̂2

=
εTAnε − σ2tr(An)

2
√

nσ̂2
+

2µTAnε

2
√

nσ̂2
+

σ2trAn

2
√

nσ̂2
+

µTAnµ

2
√

nσ̂2
, (C.1)

where An = (In−H̃λ)T
(∑d

i=1 ai

[
Qi − IntrQi/{n − trH̃λ + tr(ZD̂ZT)}

])
(In−

H̃λ).
We show that, as n → ∞,

n−1tr(A2
n) → aTM0a,

trAn√
tr(A2

n)
→ 0,

µTAnµ√
tr(A2

n)
→ 0,

which implies that the third term and the fourth term in (C.1) converge to zero.
Let Ana =

∑d
i=1 ai

[
Qi − Intr(Qi)/{n − trH̃λ + tr(ZD̂ZT)}

]
, and let δ(n)

be the maximum eigenvalue of A2
n. Note that under the null hypothesis, by Con-

dition C3(i), Lemmas 2 and 4, n−1tr(A2
na) = n−1aTMn0a + op(1) = aTM0a +

op(1). Then, as n → ∞,

n−1tr(A2
n) = n−1tr{(In − H̃λ)TAna(In − H̃λ)(In − H̃λ)TAna(In − H̃λ)}

= n−1tr(A2
na)

+n−1O{tr(H̃λ + H̃
T
λ +H̃λH̃

T
λ +H̃

T
λ H̃λH̃λ+H̃λH̃

T
λ H̃λH̃

T
λ )}

→ aTM0a; (C.2)
δ(n) ≤ max

‖ξ‖2=1
ξT(In − H̃λ)TAna(In − H̃λ)(In − H̃λ)TAna(In − H̃λ)ξ

≤ max
‖ξ‖2=1

ξTA2
naξ

≤ cC2
0 . (C.3)

Condition C.5, Lemma 4, and the fact that tr(Ana) → 0 imply

n−1/2tr(An) = n−1/2[tr(Ana) + O{tr(H̃λ + H̃
T
λ H̃λ)}] → 0, n → ∞.

Combining this with (C.2), we obtain trAn/
√

tr(A2
n) → 0. In addition, (C.2),

Condition C.3(i), and Lemma 4(ii) lead to µTAnµ/
√

tr(A2
n) → 0.

Note that as n → ∞,

E

(
µTAnε√

n

)2

=
σ2µTA2

nµ

n
≤ cC2

0‖(In − H̃λ)µ‖2

n
→ 0.
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Then by Lemma 4(ii), the second term in (C.1) converges to zero in probability.
By (C.2) and (C.3), we have

δ(n)

tr(A2
n)

→ 0, n → ∞. (C.4)

Furthermore, if an and ana are the column vectors composed of the principal
diagonal elements of An and Ana respectively, then

lim
n→∞

n−1aT
nan = aTMza. (C.5)

In fact, under the null hypothesis, Condition C.3(i), Lemma 4(ii), and Lemma 2
imply

n−1aT
naana = n−1

d∑
l1=1

d∑
l2=1

al1al2tr

[
diag

{
Ql1 −

IntrQl1

n − trH̃λ + tr(ZD̂ZT)

}

diag

{
Ql2 −

IntrQl2

n − trH̃λ + tr(ZD̂ZT)

}]

= n−1
d∑

l1=1

d∑
l2=1

al1al2

[
tr{diag(Ql1)diag(Ql2)} −

trQl1trQl2

n

]

+

{
1 − n

n − trH̃λ + tr(ZD̂ZT)

}2 d∑
l1=1

d∑
l2=1

al1al2

trQl1trQl2

n2

= aTMnza + op(1)
p→ aTMza, n → ∞. (C.6)

Besides, from Condition C.3(i), Lemma 4, and the Cauchy-Schwartz inequal-
ity, we have

n−1aT
nan − n−1aT

naana = n−1O[tr{H̃T
λ H̃λ + H̃λH̃

T
λ H̃λ + (H̃

T
λ H̃λ)2}]

→ 0, n → ∞. (C.7)

Thus, (C.5) is obtained from (C.6) and (C.7). Using (C.2), (C.4), (C.5), and
Lemma 5, we have

εTAnε − σ2trAn

2
√

nσ̂2

=
εTAnε − σ2trAn

2σ̂2

√
(κ − 3σ4)aT

nan + 2σ4tr(A2
n)

√
(κ − 3σ4)

aT
nan

n
+ 2σ4

tr(A2
n)

n
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d→ N(0,aTMa), n → ∞. (C.8)

Altogether, we have n−1/2Uθ (̂f, σ̂2, 0) d→ N(0,M).
The result n−1/2Uθ (̂f0, σ̂2

0, 0) d→ N(0,M) can be proved similarly.

Proof of Theorem 1. Note that M−1/2
n (σ̂2, κ̂)Uθ (̂f, σ̂2, 0) d→ N(0, Id). Then

for any x ∈ R,
lim

n→∞
P (Tn ≤ x) = Φd(x),

where Φ(·) is the standard normal distribution function. Thus the asymptotic
property of Tn under the null is verified. The asymptotic null distribution of Tn0

can be proved similarly.

Proof of Theorem 2: For notational simplicity, let Yn0 be Y under the null.
Then, for any d-dimensional vector a,

n−1/2aTUθ (̂f, σ̂2, 0) =
YT

n0AnYn0

2
√

nσ2
+

YT
n0AnZb√

nσ2
+

bTZTAnZb
2
√

nσ2

, II1 + II2 + II3, (C.9)

where An is defined in (C.1). According to the proof for Lemma 1, II1
d→

N(0,aT
0 Ma0). Hence, we only need show that II2 and II3 converge in probability

to zero and aTω/2, respectively.
By condition C.8, C.3, and (C.2) in the proof for Lemma 1, we have

E

(
II3

nα0cn

)2

=
E{tr(ZTAnZbbT)}2

4σ4n1+2α0c2
n

=
V ecT(ZTAnZ)E{V ec(bbT)V ecT(bbT)}V ec(ZTAnZ)

4σ4n1+2α0c2
n

≤ ctr(ZTAnZ)2

n2α0 · n
≤ cn−(1+2α0)tr(A2

n) → 0, n → ∞.

In addition, by Condition C.3 and Lemma 4, we have

EII3

nα0cn
=

tr(Q0An)
2nα0+1/2

=
1

2nα0+1/2

d∑
i=1

ai{tr(Q0Qi) − n−1trQ0trQi}

+
1

2nα0+1/2

d∑
i=1

ai
trQ0trQi

n

{
1 − n

n − trH̃λ + cntr(Q0)

}
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+n−α0O
{

n−1/2tr(H̃λ + H̃
T
λ H̃λ)

}
=

aTω

2
+

d∑
i=1

aitrQ0trQi

2nnα0+1/2

cnn−1trQ0

1 + cnn−1trQ0

+ o(1)

=
aTω

2
+ o(1).

Therefore,

II3 =
k0aTω

2
+ op(1). (C.10)

For II2, it is easy to see that

YT
n0

AnZb
√

n
=

µTAnZb√
n

+
(Yn0 − µ)TAnZb√

n
= op(1). (C.11)

In fact, E(µTAnZb/
√

n) = 0. Lemma 4 and Condition C.5 imply

E

(
µTAnZb√

n

)2

=
σ2cntr(µTAnQ0Anµ)

n
≤ ccnµTA2

nµ

n
→ 0, as n → ∞.

Hence, the first term of (C.11) converges to zero in probability.
We now deal with the second term in (C.11). By Condition C.3(i), limn→∞

nα0cn = k0, and (C.2) in the proof for Lemma 1,

E

(
εTAnZb√

n

)2

=
cnσ2tr(Q0A

2
n)

n
→ 0, n → ∞.

Combining (C.9), (C.10), with (C.11) and Lemma 1, we have

aTUθ (̂f, σ̂2, 0)√
n

d→ N(
k0aTω

2
,aTMa).

By the same argument as in the proof of Theorem 1, the power property of
Tn is obtained.

The proof for the power property of Tn0 is similar and is outlined below.
From (C.1) in the proof for Lemma 1,

n−1/2aTUθ (̂f0, σ̂2
0, 0) =

YT
n0AnYn0

2
√

nσ̂2
0

+
2YT

n0AnZb
2
√

nσ̂2
0

+
bTZTAnZb

2
√

nσ̂2
0

, II0
1 + II0

2 + II0
3 .

By Lemmas 1 and 2, we have

II0
1

d→ N(0,
aTMa

{1 + limn→∞ cntr(ΣzD0
1)}2

).
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In addition, II0
3/(nα0cn)

p→ aTω/{2(1 + limn→∞ cntr(ΣzD0
1))} 6= 0. There-

fore, if cn is bounded away from zero, we have Tn0
d→ ∞. If nα0cn → k0,

then σ̂2
0

p→ σ2 from Lemma 2(i), and κ̂0
p→ κ from Lemma 3(i). Therefore,

M−1/2
n (σ̂2

0, κ̂0)Uθ (̂f0, σ̂2
0, 0) d→ N(k0M−1/2ω/2, Id).

Appendix D: Sketch of the Derivation of D̂1

Consider Ã = n−1
∑m

i=1 Z̃
T
i ε̃iε̃

T
i Z̃i − n−1

∑m
i=1 ε̃T

i ε̃iIq, where ε̃i = Zibi + εi

and Z̃i is defined in (A.1) in Appendix A. Following the arguments of Cui, Ng,
and Zhu (2004), we have Ã = A + op(1), where

A = σ2{(c12 + c13)B + (c13 − 1)(trB)Iq + (c11 − c12 − 2c13)diag(B)}, (D.1)

the c1j ’s are defined in Condition C.7, B = (Σz)1/2D1(Σz)1/2, diag(B) is the
diagonal matrix composed of the diagonal elements of B, and Σz is defined
in Condition C.6(i) in Appendix B. Solving equation (D.1) by examining the
diagonal and off-diagonal elements separately, we have

B =
A

c12 + c13
+

2c13 − (c11 − c12)
(c11 − c13)(c12 + c13)

diag(A)

− (c13 − 1)trA
(c11 − c13){c11 − c13 + q(c13 − 1)}

Iq.

Using the fact that D1 = (Σz)−1/2B(Σz)−1/2 and plugging in estimators of Σz

and B leads to the estimator (2.5).
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