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Abstract: Starting with a carefully formulated Dirichlet process (DP) mixture

model, we derive a generalized product partition model (GPPM) in which the parti-

tion process is predictor-dependent. The GPPM generalizes DP clustering to relax

the exchangeability assumption through the incorporation of predictors, resulting

in a generalized Pólya urn scheme. In addition, the GPPM can be used for formu-

lating flexible semiparametric Bayes models for conditional distribution estimation,

bypassing the need for expensive computation of large numbers of unknowns charac-

terizing priors for dependent collections of random probability measures. A variety

of special cases are considered, and an efficient Gibbs sampling algorithm is de-

veloped for posterior computation. The methods are illustrated using simulation

examples and an epidemiologic application.
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1. Introduction

In recent years, there has been an increasing need for flexible models for

predictor-dependent clustering and conditional distribution estimation. For ex-

ample, in epidemiologic studies of continuous health outcomes, the primary focus

is often in assessing the effect of exposures on the risk of adverse health responses.

Adverse responses typically correspond to values in the tails, so it becomes im-

portant to allow the response density to change flexibly in location, shape, and

variance with predictors. In addition, in interpreting the results, it is useful to

cluster individuals based on their health response, with the allocation to clusters

depending on exposures and covariates. A similar focus arises in many applica-

tions beyond epidemiology.

Predictor-dependent mixture models provide a natural model-based approach

for addressing these interests, with

f(y |x) =

k∑

h=1

πh(x) fh(y |x, θh), (1.1)
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where y is the response, x is a predictor, k is the number of mixture components,

πh(·) is the probability weight assigned to component h, and fh(· | ·, θh) is a distri-
bution in a parametric family characterized by the finite-dimensional θh, for h =

1, . . . , k. Hierarchical mixtures-of-experts models (Jordan and Jacobs (1994))

characterize πh(x) using a probabilistic decision tree, while letting fh(y |x, θh) =

N(y;x′βh, τ
−1
h ). A number of authors have considered alternative choices of re-

gression models for the weights and experts (e.g., Jiang and Tanner (1999)). For

recent articles, refer to Carvalho and Tanner (2005) and Ge and Jiang (2006).

To bypass issues involved in choosing k, we follow a semiparametric Bayes

approach and let k = ∞. Without the predictor-dependence, this would be
straightforward by letting yi ∼ f(φi), with φi ∼ G and G assigned a Dirichlet

process (DP) prior (Ferguson (1973, 1974)). When a DP prior is used for the

mixture distribution, G, one obtains a DP mixture (DPM) model (Lo (1984)),

Escobar and West (1995)). In marginalizing out G, one induces a prior on the
partition of subjects {1, . . . , n} into clusters, with the cluster-specific parameters

consisting of independent draws from G0, the base distribution in the DP.

As noted by Quintana and Iglesias (2003), this induced prior is a type of
product partition model (PPM) (Hartigan (1990), Barry and Hartigan (1992)).

When the focus is on clustering or generating a flexible partition model for pre-

diction, as in Holmes et al. (2005), it is appealing to marginalize out G in order

to increase efficiency in computation and to simplify interpretation. The DP in-
duces a particular prior on the partition and one can develop alternative classes

of PPMs by replacing the DP prior on G with an alternative choice. Quintana

(2006) applied this strategy for species sampling models (SSMs) (Pitman (1996),

Ishwaran and James (2003)), which are a very broad class of nonparametric pri-
ors that include the DP as a special case.

Our interest is in further generalizing PPMs to include predictor-dependence

by starting with (1.1) in the k = ∞ case, and attempting to obtain a prior

that results in a PPM upon marginalization. There has been considerable re-
cent interest in the nonparametric Bayesian literature on developing priors for

predictor-dependent collections of random probability measures. Starting with a

stick-breaking representation of the DP (Sethuraman (1994)) MacEachern (1999,

2001) proposed a class of dependent DP (DDP) priors. With the probability
weights π being fixed across predictor x, DDP priors have been successfully

implemented in ANOVA modeling (De Iorio et al. (2004)), spatial data analy-

sis (Gelfand, Kottas and MacEachern (2005)), time series (Caron et al. (2006))

and stochastic ordering (Dunson and Peddada (2008)) applications. Unfortu-
nately, the fixed π case does not allow predictor-dependent clustering, moti-

vating articles on order-based DDPs (Griffin and Steel (2006)), weighted mix-

tures of DPs (Dunson, Pillai and Park (2007)) and kernel stick-breaking pro-

cesses (Dunson and Park (2008)).
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To improve computational efficiency, we focus on obtaining a general-

ized product partition model (GPPM), that would allow large numbers of

parameters to be marginalized out before posterior computation. Section 2

reviews the PPM and its relationship with the DP. Section 3 induces predictor-

dependence in the PPM through a carefully-specified joint DPM model related to

Müller, Erkanli and West (1996). Section 4 describes a simple and efficient Gibbs

sampler for posterior computation. Section 5 illustrates the methods through

simulation studies, and Section 6 contains an application to an epidemiologic

data example. The results are discussed in Section 7.

2. Product Partition Models and Dirichlet Process Mixtures

Let S∗ = (S∗
1, . . . ,S

∗
k) denote a partition of identification numbers (IDs)

In = {1, . . . , n} for n subjects, with the elements of S∗
h corresponding to the IDs

of those subjects in cluster h and the number k of clusters ranging from one to n.

PPMs are defined by first expressing the prior probability for S∗ as the product

of nonnegative cohesions c(S∗
h) for S∗

h ∈ S∗, h = 1, . . . , k:

π(S∗) = c0

k∏

h=1

c(S∗
h), (2.1)

where c0 is a normalizing constant that sums to one over all possible partitions.

Given S∗, let yh = {yi : i ∈ S∗
h} denote the data for subjects in cluster h, for

h = 1, . . . , k. Then the specification of the PPM is completed by specifying the

conditional likelihood function for y = (y1, . . . , yn)′,

f(y|S∗) =
k∏

h=1

fh(yh), (2.2)

where fh(yh) =
∫ ∏

i∈S∗
h
f(yi | θh)dG0(θh), f(· | θ) is a likelihood characterized

by θ, and the elements of θ = (θ1, . . . , θk)
′ are independently and identically

distributed with prior G0. Note that the partitioning is obtained for subject-

specific parameters, with the data within each cluster assumed to be conditionally

independent given the cluster-specific parameters, while the data for different

clusters are marginally independent.

The PPMs in (2.1) and (2.2) have the appealing properties of consistency and

conjugacy. Let Si indicate the partition set subject i belongs to, and superscript

(i) on any matrix or vector indicate that the contribution of subject i has been

removed. The prior distribution π(S∗(n)) of a partition of the first n−1 IDs In−1

can be also obtained by integrating π(S∗) out with respect to Sn (consistency

with respect to sample size). In addition, the posterior distribution of S∗ given

y has a PPM form, but with the posterior cohesion c(S∗
h)fh(yh) (conjugacy).
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Alternatively, a PPM can be induced through the hierarchical model

yi |θ,S
ind
∼ f(θ∗Si

),

Si
i.i.d.
∼

k∑

l=1

πlδl, θ∗l
i.i.d.
∼ G0, (2.3)

where S = (S1, . . . , Sn)′ is the cluster membership indicator vector, π = (π1, . . .,

πk)
′ is the probability weighting, and taking the number k of components to

infinity induces a nonparametric PPM. Equivalently, one can let yi ∼ f(φi) with

φi ∼ G and G =
∑k

l=1 πhδθ∗
l
, with δθ a probability measure concentrated at θ. In

these hierarchical models, the partition S∗ is induced by grouping subjects based

on S and θ corresponds to the unique values of {φi}
n
i=1. Therefore, a prior on

the weight π induces a particular form for π(S∗), and hence the cohesion c(·).

As motivated by Quintana and Iglesias (2003), a convenient choice corre-

sponds to the Dirichlet process prior, G ∼ DP (αG0), with α a precision param-

eter and G0 a non-atomic base measure. By the Dirichlet process prediction rule

(Blackwell and MacQueen (1973)), the conditional prior of φi given φ(i), with

φ = (φ1, . . . , φn)′, and marginalizing out G, is

(
φi |φ

(i)
)
∼

(
α

α+ n− 1

)
G0(φi) +

(
1

α+ n− 1

)∑

j 6=i

δφj
(φi), (2.4)

which generates new values from G0 with probability α/(α+n−1) and otherwise

sets φi equal to one of the existing values φ(i) chosen by sampling from a discrete

uniform. Hence, the joint distribution of φ is

π(φ) =
n∏

i=1

{
αG0(φi) +

∑
j<i δφj

(φi)

α+ i− 1

}
. (2.5)

Let k = n(S∗
n) denote the number of partition sets, k∗h = n(S∗

h) the cardi-

nality of S∗
h, φh = {φi : i ∈ S∗

h}, and φh,l the parameter for the lth subject in

cluster h, with subjects ordered by IDs. Lo (1984) and Quintana and Iglesias

(2003) show that (2.5) is equivalent to

π(φ) =
∑

S∗∈P

1∏n
l=1(α+ l − 1)

k∏

h=1

α(k∗h − 1)!G0(φh,1)

k∗
h∏

j=2

δφh,1
(φh,j)

= c0
∑

S∗∈P

k∏

h=1

c(S∗
h)πh(φh), (2.6)
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where P is the set of all partitions of {1, . . . , n}, c0 =
∏n

l=1(α+ l− 1)−1, c(S∗
h) =

α(k∗h − 1)!, and πh(φh) is the prior on φh. The marginal likelihood of y is then

f(y) = c0
∑

S∗∈P

k∏

h=1

c(S∗
h)

∫ ∏

i∈S∗
h

f(yi|θ)dG0(θ),

which is a special case of the form implied by (2.2) corresponding to a PPM

with cohesion c(S∗
h) = α(k∗h − 1)!. This implies that simple and efficient Markov

Chain Monte Carlo (MCMC) algorithms developed for DPMs can be used for

posterior computation in PPMs. However, the class of PPMs induced by the

DPM specification above assumes that the subjects are exchangeable, and does

not allow for the incorporation of predictors.

3. Predictor Dependent Product Partition Models

3.1 Proposed formulation

Our goal is to incorporate predictor values of X = (x1, . . . ,xn)′ into a class

of PPMs, so that the prior on the partition S∗ has the form

π(S∗|X) ∝
k∏

h=1

c(S∗
h, X

∗
h), (3.1)

where X∗
h = {xi : i ∈ S∗

h} for h = 1, . . . , k, and the cohesion c(·) depends

on the subjects predictor values. Expression (3.1) has two appealing properties.

First, the posterior distribution of the partition S∗
n updated with the likelihood of

response y = (y1, . . . , yn)′ is still in a class of PPMs, but with updated cohesion

c(S∗
h,X

∗
h)fh(yh). Secondly, there is a direct influence of predictor X on the

partition process. Previous incorporation of predictors in PPMs instead relies

on replacing f(yi | θh) with f(yi |xi, θh) in (2.2), which allows the predictor effect

to vary across clusters, but does not allow the clustering process itself to be

predictor dependent.

To specify cohesion c(S∗
h,X

∗
h), we exploit the connection between PPMs and

DPMs. For simplicity of notation, we focus on a univariate response y, though

multivariate generalizations are straightforward. Suppose zi = (yi,x
′
i)
′ follows

the hierarchical model

f(zi |φi) = f(yi,xi|ϕi, γi) = f1(yi|xi, ϕi)f2(xi|γi),

φi ∼ G, G ∼ DP (αG0), (3.2)

where G0 = G0ϕ
⊗
G0γ is the product measure of G0ϕ and G0γ , components

inducing a base prior for ϕi and γi, respectively. This DPM model will induce
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partitioning of the subjects {1, . . . , n} into k ≤ n clusters, with i ∈ S∗
h denoting

that subject i belongs to cluster h, which implies that ϕi = ϕ∗
h and γi = γ∗h,

where γ∗ = (γ∗1 , . . . , γ
∗
k)′ and ϕ∗ = (ϕ∗

1, . . . , ϕ
∗
k)′ denote the unique values of

γ = (γ1, . . . , γn)′ and ϕ = (ϕ1, . . . , ϕn)′, respectively.

Under (3.2), we can obtain a joint distribution of ϕ and γ using the same

approach used in deriving expression (2.6). If we then multiply by the conditional

likelihood
∏n

i=1 f2(xi|γi) and marginalize out γ, the joint distribution of ϕ and

X is

π(ϕ,X) =
∑

S∗∈P

[
c0

k∏

h=1

α(k∗h − 1)!

{ ∫ ∏

i∈S∗
h

f2(xi|γ
∗
h)dG0γ(γ∗h)

}
G0ϕ(ϕh,1)

×

k∗
h∏

j=2

δϕh,1
(ϕh,j)

]
, (3.3)

where ϕh,l is the parameter for the response y of the lth subject, ordered by the

IDs, in cluster h. Therefore, the conditional distribution of ϕ given X is

π(ϕ|X) = c∗0
∑

S∗∈P

[ k∏

h=1

α(k∗h − 1)!

{ ∫ ∏

i∈S∗
h

f2(xi|γ
∗
h)dG0γ(γ∗h)

}
G0ϕ(ϕh,1)

×

k∗
h∏

j=2

δϕh,1
(ϕh,j)

]

= c∗0
∑

S∗∈P

k∏

h=1

c(S∗
h,X

∗
h)πh(ϕh), (3.4)

where c∗0 is a normalizing constant so that the sum over P is unity, πh(ϕh) is a

prior on partitioned set ϕh, and c(S∗
h,X

∗
h) = α(k∗h−1)!

∫ ∏
i∈S∗

h
f2(xi|γ)dG0γ (γ).

Hence, we have induced a GPPM of the form shown in (3.1) starting with a

joint DPM model for the response and predictors related to that proposed by

Müller, Erkanli and West (1996). A related idea was independently developed

by Fernando Quintana and collaborators in recent work (unpublished communi-

cation), though our subsequent development differs from theirs.

In addition to the appealing properties of (3.1), our specification results in

the interesting feature that the GPPM is still consistent with respect to the

sample size. Since the prior on the partition S∗ given X can be expressed as

π(S∗|X) = π(Sn,S
∗(n)|X) = π(Sn|S

∗(n),X)π(S∗(n)|X),
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by summing over Sn and taking the conditional expectation with respect to xn

given X(n), we have

π(S∗(n)|X(n)) =

∫ k∑

Sn=1

π(Sn|S
∗(n),X)π(S∗(n)|X)g(xn|X

(n))dxn,

where

g(xn|X
(n))=

∑
S∗∈P c0

∏k
h=1 α(k∗h − 1)!

{ ∫ ∏
i∈S∗

h
f2(xi|γ

∗
h)dG0γ(γ∗h)

}

∑
S∗(n)∈P(n) c

(n)
0

∏k(n)

h=1 α(k
∗(n)
h − 1)!

{∫ ∏
i∈S

∗(n)
h

f2(xi|γ
∗
h)dG0γ(γ∗h)

} .

3.2. Generalized Pòlya urn scheme

It is not obvious from (3.4) how the predictor and hyperparameter values

impact clustering. However, we can show that the proposed GPPM induces a

simple predictor-dependent generalization of the Blackwell and MacQueen Pólya

urn scheme of the DP in (2.4), which should be useful both in interpretation and

posterior computation.

Theorem 1. The full conditional prior of ϕi given α, ϕ(i), and X, or equiva-

lently given α, ϕ∗(i), S(i), and X, is

(
ϕi |α,ϕ

∗(i),S(i),X
)
,∼ w0(xi)G0ϕ +

k(i)∑

h=1

wh({xi,X
∗(i)
h })δ

ϕ
∗(i)
h

, (3.5)

with the probability weights

w0(xi) = c̃α

∫
f2(xi|γ)dG0γ (γ)

wh({xi,X
∗(i)
h }) = c̃k

∗(i)
h

∫
f2(xi|γ)dG

∗
0γ(γ|X

∗(i)
h ),

where c̃ is a normalizing constant and G∗
0γ(·|X

∗(i)
h ) is the posterior distribution

updated with the likelihood of predictor cluster h excluding the contribution from

the ith subject.

The proof is in Appendix A. Theorem 1 implies that subject i is assigned

to either a new generated value (creating a new cluster) or one of the existing

unique values, with the probability weights being proportional to a product of

the DP probability weights and the marginal likelihoods at its predictor value
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varying across clusters. Therefore, if the predictor value of subject i is close to

values X∗
h for subjects in cluster h, with the measure of closeness depending on

the choice of f2(·), the contribution of subject i to the marginal likelihood will

tend to be highest if that subject is allocated to cluster h.

Conceptually, this idea is related to the Bayesian partition model (BPM) of

Holmes et al. (2005) in that subjects close together in the predictor space will

tend to have similar response distributions. However, instead of measuring close-

ness by assuming a particular distance metric, our specification automatically

induces a distance metric through a flexible nonparametric model for the joint

distribution of the predictors. This allows the measure of closeness to be adaptive

depending on location in the predictor space, automatically producing spatially-

adaptive bandwidth selection. In the special case of a degenerate distribution

for x, f2(x|γ) = δγ(x), (3.5) reduces to the Blackwell and MacQueen Pòlya urn

scheme of (2.4).

An apparent disadvantage of our formulation is that, by inducing a prior for

the conditional distribution of yi given xi through a prior for the joint distribution

of yi and xi, we are implicitly assuming that the predictors are random variables.

In fact, in many applications one or more of the predictors may be fixed by

design, representing spatial location, time of observation, or an experimental

condition. The predictor-dependent urn scheme shown in Theorem 1 is still

useful and coherent in such cases, as this urn scheme is defined conditionally on

the predictor values. This urn scheme clearly results in a coherent joint prior

for ϕ, conditionally on X, that is invariant to permutations in the ordering of

the subjects. It is in general very difficult to define a predictor-dependent urn

scheme, that satisfies these conditions.

In order for the weights in (3.5) to be in a closed form, the marginal likelihood∫
f2(xi|γ)dG0γ(γ) must be available in closed form. Hence, by using a conjugate

base measure G0γ , computation can be simplified. However, in non-conjugate

cases, one can follow the standard strategy of instead using an approximation to

the marginal likelihood, such as the Laplace. Among many choices, we focus on

two special cases: a normal-Wishart prior and a Poisson-gamma prior. Suppose

that a normal-Wishart distribution is assumed for continuous p × 1 predictor x

and parameter γ = (µx,Σx)′:

x|µx, cx,Σx ∼N(µx, c
−1
x Σx),

µx|µ0x, cµ,Σ0x ∼N(µ0x, c
−1
µ Σx),

Σ−1
x |νx,Σ0x ∼W(Σ−1

0x , νx), (3.6)

where c−1
x and c−1

µ are multiplicative constants, and W(Σ−1
0x , νx) is a Wishart with

degrees of freedom νx and expectation νxΣ
−1
0x . Then the marginal likelihood of xi,
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in probability weight w0(xi) in (3.5), is a non-central multivariate t-distribution

with degrees of freedom ν = νx − p + 1, location µ = µ0x, and scale Σ =

(cx + cµ)/(νcxcµ)Σ0x, denoted by tp(xi; ν,µ,Σ):

f(x|µ, ν,Σ) =
Γ((ν + p)/2)

(πν)p/2Γ(ν/2)|Σ|1/2

(
1 +

1

ν
(x− µ)′Σ−1(x − µ)

)−(ν+p)/2

,

while that in probability weight wh({xi,X
(i)
h }), h = 1, . . . , k(i), is also a noncen-

tral multivariate t-distribution, but with updated hyperparameters:

µ∗
0x =

cµµ0x + cxk
∗(i)
h x̄

(i)
h

cµ + cxk
∗(i)
h

, c∗µ = cµ + cxk
∗(i)
h , ν∗x = νx + k

∗(i)
h ,

Σ∗
0x =

{
Σ−1

0x + k
∗(i)
h D

(i)
h +

k
∗(i)
h cxcµ

cµ + cxk
∗(i)
h

(x̄
(i)
h − µ0x)(x̄

(i)
h − µ0x)′

}−1

, (3.7)

where x̄
(i)
h =

∑
j:S

(i)
j =h

xj/k
∗(i)
h and D

(i)
h =

∑
j:S

(i)
j =h

(xj − x̄
(i)
h )(xj − x̄

(i)
h )′/k

∗(i)
h .

Note that the structure in (3.6) is slightly different from the commonly used

normal-Wishart priors in that a constant is multiplied not only to the variance of

the expectation of x but also to the variance of x. We find that the additional flex-

ibility provided by the additional multiplier is useful in avoiding over-clustering

problems that sometimes arise using the standard formulation. In the typical

normal-Wishart prior, when the prior is updated with the data likelihood, the

posterior variance of the expected value µx is smaller than that of x, because

the updated multiplicative constant c∗µ is always greater than 1. This can lead

to clustering of subjects with dissimilar predictors in some cases.

In the case of discrete predictors, we can also obtain a closed form marginal

likelihood of x. In order to simplify calculations, we assume a priori independence

for the different predictors, while dependence among continuous predictors is

allowed through Σx in (3.6). Suppose that xj , j = 1, . . . , p, follows a Poisson

distribution with mean Γj, which is assigned a Gamma prior with mean aj/bj ,

G(aj , bj), as the base measure G0γ . The marginal distribution of x in w0 is a

product of negative binomials with the number of successes rj = aj and success

probability pj = bj/(1 + bj):

Pr(Xj = k) =
Γ(rj + k)

k!Γ(rj)
p

rj

j (1 − pj)
k, j = 1, . . . , p.

The marginal distribution in wh, h = 1, . . . , k(i), is also a product of negative

binomials, but with hyperparameters a∗j = aj +
∑

j:S
(i)
j =h

xj and b∗j = bj + k
∗(i)
h .

For bounded discrete predictors, we can instead use a multinomial likelihood
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with a Dirichlet prior for the category probabilities. The case of mixed discrete
and continuous predictors can also be easily dealt with.

4. Posterior Computation

One of the appealing features of our predictor-dependent urn scheme is
that we can rely on efficient Pólya urn Gibbs sampling algorithms devel-
oped for computation in marginalized DPMs, with minimal modifications. In

addition, although we focus here on posterior computation through MCMC,
our predictor-dependent urn scheme could similarly be used to develop sequen-
tial importance sampling (SIS) algorithms (MacEachern, Clyde and Liu (1999),
Quintana and Newton (2000)). modified weighted Chinese restaurant (WCR)

sampling algorithms (Ishwaran and James (2003), as well as fast variational
Bayes approximations (Kurihara, Welling and Vlassis (2006)).

For DPMs the algorithm of Bush and MacEachern (1996) is one of the most
widely-used approaches due to the combination of simplicity and computational

efficiency. Their approach first updates the configuration of subjects to clus-
ters based on the Pólya urn scheme in (2.4), and then separately updates clus-
ter specific parameters given the cluster configuration. This separate updating

process makes their algorithm distinguishable from that in Escobar (1994) and
Escobar and West (1995), and helps to improve rates of mixing and convergence.
Our proposed approach relies on a direct generalization of Bush and MacEachern
(1996). Although their algorithm and our generalization require the use of

conjugate priors, extension to non-conjugate priors can proceed as proposed
by MacEachern and Müller (1998) and Neal (2000) for the DP case relying on
Metropolis-Hastings (Hastings (1970)).

From Theorem 1, the full conditional posterior distribution of ϕi can be

derived as

(
ϕi |α,ϕ

∗(i),S(i),X,y
)
,∼ qi,0G0ϕ,i +

k(i)∑

h=1

qi,hδϕ∗(i)
h

, (4.1)

where the posterior obtained by updating the prior G0ϕ with the likelihood of yi

is

G0ϕ,i(ϕi) =
G0ϕ(ϕi)f1(yi|xi, ϕi)∫
f1(yi|xi, ϕi)dG0ϕ(ϕi)

=
G0ϕ(ϕi)f1(yi|xi, ϕi)

hi(yi|xi)
,

qi,0 = c̃w0(xi)hi(yi|xi), qi,h = c̃wh({xi,X
(i)})f1(yi|xi, ϕ

∗(i)
h ), and c̃ is a normaliz-

ing constant. Instead of sampling directly from (4.1) in implementing the Gibbs

sampling, we first sample Si, i = 1, . . . , n, from its multinomial conditional pos-
terior distribution with

Pr(Si = h|ϕ∗(i),S(i),X,y) = qi,h, h = 0, 1, . . . , k(i). (4.2)
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When Si = 0, ϕi is set to a new value generated from G0ϕ,i. As a result of

updating S, the number k of clusters is automatically updated. As a next step,

we update ϕ∗ conditional on S and k from

(
ϕ∗

h|ϕ
∗(h),S, k,X,y

)
∝

{ ∏

i:Si=h

f1(yi|xi, ϕh)

}
G0ϕ(ϕ∗

h). (4.3)

When there are some unknown parameters ψ characterizing the base measure

G0ϕ, we include an additional step for updating ψ based on the full conditional

posterior distribution

(
ψ|ϕ,y

)
∝ π(ψ)

{ k∏

h=1

G0ϕ(ϕ∗
h|ψ)

}
. (4.4)

We have found this algorithm to be simple to implement and efficient in those

cases we have considered. The full conditional posterior distributions for the

model considered in Sections 5 and 6 are in Appendix B.

5. Simulation Examples

5.1. Model specification

In this section, we illustrate the proposed method with simulations focus-

ing on conditional density regression. Predictor-dependent partitioning will be

evaluated with a data example in Section 6. We consider the following infinite

mixture model:

f(yi|x̃i) =

∞∑

h=1

πh(x̃i) f1(yi | x̃i, ϕ
∗
h),

where x̃i = (1,x′
i)
′ = (1, xi1, . . . , xip)

′ and f1(yi| x̃i, ϕ
∗
h) = N(yi;µh, σ

2
y,h) with

ϕ∗
h = (µh, σ

2
y,h)′ for the first simulation, and f1(yi| x̃i, ϕ

∗
h) = N(yi; x̃

′
iβh, σ

2
y,h)

with ϕ∗
h = (βh, σ

2
y,h)′ for the second simulation. The GPPM proposed in Section

3 is used to place a prior on the partition S∗ and atoms ϕ∗. Although there are

k ≤ n mixture components represented in the sample of n subjects under the

GPPM, there are conceptually infinitely many components, since the number of

components increases stochastically as subjects are added.

In the absence of prior knowledge about the scale, it is recommended that

continuous predictors be standardized to simplify prior elicitation. We require G0

to correspond to a proper distribution, since marginal likelihoods will be used

in calculating conditional posterior probabilities for partitioning. To simplify

updating of the scale parameter, cx, we assume a discrete uniform prior on (0, 1].

For discrete predictors, we fix aj = bj = 1, j = 1, . . . , p − 1. In addition, let
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σ−2
y,h ∼ G(ay , by), µh ∼ N(µ, κ−1σ2

y,h), βh ∼ N(β, σ2
y,hV) with V = κ−1n(X̃′X̃)−1

and X̃ = (x̃1, . . . , x̃n)′, µ ∼ N(µ0, κ
−1σ2

µ), β ∼ N(β0, κ
−1V0), and κ ∼ G(aκ, bκ).

The last three prior distributions on ψ = (µ, κ)′ or ψ = (β, κ)′ are for additional

flexibility. In the implementation, we let α = 1, µ0x = 0, Σ−1
0x = 4Ip×p, νx = p,

µ0 = 0, β0 = 0, V0 = n(X̃′X̃)−1, and ay = by = aκ = bκ = 1. Other choices

of these parameters were also considered to check sensitivity of models to our

primary choice.

5.2. Implementation and results

We consider two cases in which n = 500, p = 1, and xi1 is generated from a

uniform distribution over (0, 1). We first simulated data from a normal distribu-

tion with mean x2
i1 and variance 0.04, N(yi;x

2
i1, 0.04). The data were analyzed

using a mixture of normals with the prior specification of Section 5.1, and with

the MCMC algorithm of Section 4 implemented for 10,000 iterations, discarding

the initial 1,000 iterations as a burn-in. After the burn-in period, it took the

algorithm 0.51 second per iteration on Matlab, performed on Windows XP R©

with IntelTM Core R©2 Duo E7300 2.66GHz/1066MHz/3MB L2. Figure 1 shows

selected results. The algorithm converged rapidly and mixing was good based on

trace plots of µ, the number of clusters, and f(y = 1.5|x̃ = (1, 0.25)′), where the

data point for y was randomly selected among possible values (the left panel of

Figure 1). As shown in the right panel of Figure 1, the predictive densities and

mean function of y (solid lines) well approximated the true values (dotted lines),

that are completely embedded within pointwise 99% credible intervals (dashed

lines). The posterior mean of the number of clusters was 2.4 with a 95% credible

interval of [2, 4] and the estimated normal means were almost equally spaced over

(0, 1).

As a more challenging second simulation case, we simulated data to ap-

proximately mimic the data in the reproductive epidemiology study considered

in Section 6. In particular, we generated data from the mixture of two linear

models

f(yi|xi) = (1 − x4
i1)N(yi; 1, 0.04) + x4

i1N(yi; , 1 − x2
i1, 0.01),

where a secondary peak appears in the left tail of the response distribution,

moving closer to zero as xi1 increases. This behavior, in which the tail of the

distribution, corresponding to those subjects with the most extreme response, is

particularly sensitive to changes in an exposure variable, is common in toxicology

and epidemiology studies. We analyzed the data using a mixture of regression

models with the GPPM approach specified in Section 5.1, and also using the

DPM-based PPM described in Section 2. These two approaches result in mixtures



BAYESIAN GENERALIZED PRODUCT PARTITION MODEL 1215

* )
* )

0

0

0
0

0
0

0

0
0

0

0

2000

2000

2000

4000

4000

4000

6000

6000

6000

8000

8000

8000

10000

10000

10000

0.2 0.4 0.6 0.8

-2

-1

-1

-1

-1

-0.5

-0.5

2

2

2

2

2

1

1

1

1

1

1

1

1

3

3

1.5

0.5

0.5

0.5

4

6

µ

k
y

y

y

x

f(y=0.14|x∗=1, 0.25))

f
(y
|x
∗
)

f
(y
|x
∗
)

x=0.25

x=0.75

Figure 1. Results for the first simulation example. The left column provides
trace plots for representative quantities, while the right panel shows the
conditional distributions for two different values of x, as well as the mean
function estimation along with the raw data. Posterior means are solid lines,
pointwise 99% credible intervals are dashed lines, and true values are dotted
lines.

of normal linear regressions, but the first approach allows the mixture weights

to be predictor-dependent, while the second does not. The precision parameter

α and the base measure G0 for the DPM-based PPM were set to be the same as

those used in the GPPM approach. Both analyses were run for 30,000 iterations

with a 10,000 iteration burn-in; there were good mixing and convergence rates
in both cases, based on examination of trace plots and diagnostics.

From Figure 2, it is clear that the GPPM provided a more flexible model

capturing the rapid changes in the distribution across local regions of the predic-

tor space, even for the somewhat small sample size of n = 500. In our experience,

GPPMs based on mixing linear regressions with variances varying across compo-

nents tend to do a very good job in sparsely characterizing complex changes in
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Figure 2. Estimated predictive densities from the PPM (left panel) and the
GPPM (right panel) at the 10th, 50th and 90th percentiles of the empiri-
cal distribution of x: posterior means (solid lines), pointwise 99% credible
intervals (dashed lines), and true values (dotted lines).

conditional densities with predictors, with sparsity corresponding to allocation of

subjects to a small number of clusters. In simulation case 2, the posterior mean

number of components used was 3.2 (95% credible interval=[3, 6]). We repeated

the analysis of the second simulation including a discrete predictor, obtained

by truncating the continuous predictor into l groups. It was observed that the

proposed method worked well for a variety choices of l (results are not shown).

6. Epidemiologic Application

We applied the proposed method to the data used in Longnecker et al. (2001)

and Dunson and Park (2008). A synthetic pesticide DDT (Dichloro-diphenyl-

trichloroethane) has been widely used and shown to be effective against malaria-

transmitting mosquitoes, but several health-threatening effects of DDT have been



BAYESIAN GENERALIZED PRODUCT PARTITION MODEL 1217

reported. Longnecker et al. (2001) used the data from the US Collaborative

Perinatal Project to investigate the association between DDT and preterm birth,

defined as delivery before 37 weeks of complete gestation. The authors showed

that adjusted for other covariates, increasing concentrations of maternal serum

DDE, a persistent metabolite of DDT, led to high rate of preterm birth by fitting

a logistic regression model with categorized DDE levels. Dunson and Park (2008)

applied a kernel stick-breaking process mixture of linear regression models to the

same data with a focus on the predictive density of gestational age at delivery

(GAD), concluding strong evidence of a steadily increasing left tail with DDE

dose. For more information on the study design and data structure, refer to

Longnecker et al. (2001).

We let xi1 and xi2 be the DDE dose for child i and the mother’s age after

normalization, respectively. There were 2, 313 children left in the study after

removing children with GAD > 45 weeks, taken as unrealistic values in repro-

ductive epidemiology. By running the algorithm of the GPPM approach applied

to the first simulation example for 30,000 iterations with a 10,000 iteration burn-

in, we obtained the estimated predictive densities of GAD at selected percentiles

(10, 30, 70, 90) of the empirical distribution of DDE (Figure 3), with the maternal

age being fixed at its mean. The shape and location of the estimated densities

did not change much at different values of the maternal age. The results also

showed the left tail of the distribution increasing for high DDE dose, with the

credible intervals wider at high DDE values due to relatively few observations in

this region. Observe from Figure 4 that the conditional predictive mean of GAD

had a slightly decreasing nonlinear trend over DDE level, while the maternal age

was fixed at its mean.

In using the GPPM for conditional density estimation and quantile regres-

sion estimation, the predictor-dependent partitioning is used as a tool for flexible

modeling of the conditional response distribution given the predictors through

Theorem 1. However, in some cases, there may be interest in using the method-

ology for identifying clusters of subjects. Because the meaning of the clus-

ters varies across the MCMC iterations, known as the label switching problem,

there have been some contributions on post-processing approaches for clustering

(Celeux, Hurn and Robert (2000), Stephens (2000), Dahl (2006), Lau and Green

(2007)). We followed the Lau and Green (2007) approach to estimate an optimal

partition.

Figure 5 contains a symmetric heatmap presenting the pairwise marginal

probabilities of being grouped with another subject in the given data. There

were 13 clusters as a result of the obtained optimal partition, and some summary

statistics within these clusters are arranged in Table 1. All preterm births except

one were grouped into four clusters. Most of the preterm births were assigned to
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Cluster 6, the mean DDE level of which was about the 80th percentile of observed

DDE values. Preterm births in Cluster 2 were characterized by both high DDE

dose and old maternal age, while those in Clusters 11 and 13 had extreme DDE

levels beyond the 98th and 99th percentiles, respectively. It is observed that most
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Figure 5. Pairwise marginal probabilities of being grouped with another
subject in the CPP data.

of normal births in these four clusters had GAD values close to 37 weeks. Hence,

the clustering result also strongly supports the contention that preterm births

were more likely to be observed with high DDE dose. Note that the order of

clusters is arbitrary and that some of clusters have similar mean values of GAD,

but they are separately grouped due to different predictor values.

Although the results of the analysis for conditional density estimation are

similar to Dunson and Park (2008), our proposed computational algorithm was

considerably simpler to implement. The kernel stick-breaking process (KSBP)

proposed by Dunson and Park (2008) relied on a retrospective MCMC algorithm

(Papaspiliopoulos and Roberts (2008)), that involved updating of random basis

locations, stick-breaking weights, atoms, and kernel parameters. In contrast,

by using the present GPPM, we bypass the need to perform computation for

the many unknowns characterizing the collection of predictor-dependent mixture

distributions. Instead, through marginalization, relying on the simple predictor-

dependent urn scheme shown in Theorem 1, we obtain a simple and efficient

Gibbs sampling algorithm. We found the mixing and convergence rates to be

similar to those for the MCMC algorithm of the KSBP, but the computational



1220 JU-HYUN PARK AND DAVID B. DUNSON

Table 1. Table 1. Summary statistics by clusters.

GAD1 DDE AGE
Cluster n2 mean (SD3) mean (SD3) mean (SD3)

1 985 (1) 39.7 (1.21) 26.8 (14.49) 24.0 (5.72)
2 185 (0) 40.2 (1.04) 26.6 (14.05) 23.5 (5.57)
3 306 (0) 39.2 (1.10) 28.1 (13.78) 25.7 (6.19)
4 156 (0) 41.1 (1.21) 25.5 (13.80) 24.1 (4.85)
5 212 (0) 43.3 (0.78) 26.8 (14.89) 22.9 (5.37)
6 339 (309) 34.8 (1.94) 32.4 (16.55) 22.3 (5.09)
7 16 (0) 40.1 (0.91) 30.8 (18.13) 42.3 (1.53)
8 38 (30) 35.3 (2.05) 33.2 (14.93) 38.8 (2.69)
9 4 (0) 43.4 (0.88) 39.7 (14.39) 40.8 (0.50)
10 31 (0) 40.7 (1.53) 93.1 (9.62) 23.7 (5.20)
11 33 (19) 36.2 (2.38) 101.4 (13.95) 24.2 (6.65)
12 6 (0) 39.4 (1.03) 148.0 (13.88) 23.5 (4.51)
13 2 (2) 32.5 (2.53) 161.5 (23.48) 25.0 (1.41)

1in weeks, 2preterm births in parenthesis, 3SD=standard deviation

time was substantially reduced as fewer computations were needed at each step

of the MCMC algorithm.

For predictive purposes, the KSBP may be more efficient in introducing only

those clusters that are needed to flexibly characterize changes with predictors in

the response distribution. However, in utilizing information in the predictor

distribution, the GPPM may be particularly useful in semi-supervised learning

settings when there are missing predictors, and when interest focuses on inverse

regression problems. Also, in many clustering applications, one would prefer

to have subjects with very different predictor values, but the same response,

allocated to different clusters.

7. Discussion

Model-based clustering and mixture modeling have become routine tools in

a wide variety of application areas, including machine learning and biomedi-

cal research. With a few notable exceptions, the literature on these topics has

focused on finite mixture models that do not allow the weights on the mixture

components, and hence the probability of allocation to clusters, to depend on pre-

dictors. This leads to some notable problems. First, in clustering there are often

predictors available that inform the clustering process. For example, in cluster-

ing individuals based on their drinking behavior, information can be obtained on

predictors of alcohol dependence and behavioral factors (Caetano and Cunradi

(2002)). By including this information, one can obtain more interpretable clus-

ters, while also obtaining the insight into the role of predictors, that is often of
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primary interest. In the alcohol dependence application, information on predic-

tors of allocation to a heavy drinking cluster can be used in targeting interven-

tions. Although finite latent class mixture models can be used in such settings,

infinite mixture models, such as the model underlying our proposed GPPM, are

more realistic in allowing clusters to be slowly introduced without bound as the

sample size increases.

In addition, partitioning is used to generate flexible classes of models. Much

of the recent literature has relied on Dirichlet process-based clustering, an ap-

proach closely related to product partition models (PPMs). Our contribution

is to develop a simple modification to PPMs to allow predictor dependent clus-

tering, while bypassing the need for consideration of complex nonparametric

Bayes methods for collections of predictor-dependent random probability mea-

sures. The resulting class of generalized PPMs (GPPMs) should be widely useful

as a tool for generating new classes of models and for efficient computation in

existing models, such as hierarchical mixtures-of-experts models.

Perhaps the most interesting result is the proposed class of predictor-depend-

ent urn schemes, that generalize the Blackwell and MacQueen Pólya urn scheme

in a natural manner to include weights that depend on the distances between

subjects predictor values. The distance metric is induced through a flexible

nonparametric joint model for the predictors. Although this approach may be

viewed as unnatural when the predictors are not random variables but fixed by

design, (3.6) can be viewed as an auxiliary model that is only defined to induce

a coherent probability model on the conditional distribution of the response y

given the fixed x, and therefore the proposed class of predictor-dependent urn

schemes is still valid.
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Appendix A: Proof of Theorem 1

The Pólya urn scheme in (2.4) can be reexpressed with a vector of unique

values θ(i) and configuration S(i) as

(
φi |φ

(i)
)
∼

(
α

α+ n− 1

)
G0(φi) +

(
1

α+ n− 1

) k(i)∑

h=1

k
∗(i)
h δ

θ
(i)
h

(φi).
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Then, using (2.6), the joint distribution of φ is

π(φ) = π(φi|φ
(i))π(φ(i))

=

{(
α

α+ n− 1

)
G0(φi) +

(
1

α+ n− 1

) k(i)∑

h=1

k
∗(i)
h δ

θ
(i)
h

(φi)

}

×

{ ∑

S∗(i)

1
∏n−1

l=1 (α+ l − 1)

k(i)∏

m=1

α(k(i)
m − 1)!G0(φ

(i)
m,1)

k
(i)
m∏

j=2

δ
φ

(i)
m,1

(φ
(i)
m,j)

}
,

= αc0G0(φi)

{ ∑

S∗(i)∈P(i)

k(i)∏

m=1

c(S∗(i)
m )G0(φ

(i)
m,1)

k
(i)
m∏

j=2

δ
φ

(i)
m,1

(φ
(i)
m,j)

}

+c0

k(i)∑

h=1

k
∗(i)
h

{ ∑

S∗(i)

k(i)∏

m=1

c(S∗(i)
m )G0(φ

(i)
m,1){δφ(i)

m,1

(φi)}
1(m=h)

k
(i)
m∏

j=2

δ
φ

(i)
m,1

(φ
(i)
m,j)

}
,

where c0 =
∏n

i=1(α + l − 1)−1, c(S
∗(i)
h ) = α(k

∗(i)
h − 1)!, and 1(·) is an indicator

function. By setting φ = (γ, ϕ)′ and doing the same thing to obtain (3.3), we

can obtain the joint distribution of ϕ and X as

π(ϕ,X) = αc0G0ϕ(ϕi)

∫
f2(xi|γ)dG0γ (γ)

∑

S∗(i)

[ k(i)∏

m=1

c(S∗(i)
m )

×

{∫ ∏

i∈S
∗(i)
m

f2(xi|γ)dG0γ (γ)

}
G0ϕ(ϕm,1)

k
(i)
m∏

j=2

δ
ϕ

(i)
m,1

(ϕ
(i)
m,j)

]

+c0

k(i)∑

h=1

k
∗(i)
h δ

ϕ
∗(i)
h

(ϕi)
∑

S∗(i)

[ k(i)∏

m=1

c(S∗(i)
m )

×

{∫
f2(xi|γ)

1(m=h)
∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)

}
G0ϕ(ϕm,1)

k
(i)
m∏

j=2

δ
ϕ

(i)
m,1

(ϕ
(i)
m,j)

]
.

By Bayes rule the curly bracket in the second term of the last equation can be

reexpressed as
∫
f2(xi|γ)

1(m=h)
∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)

=

∫ ∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)

∫
f2(xi|γ)

1(m=h)

∏
l∈S

∗(i)
m

f2(xl|γ)∫ ∏
l∈S

∗(i)
m

f2(xl|γ)dG0γ(γ)
dG0γ(γ)
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=

∫ ∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)

∫
f2(xi|γ)

1(m=h)dG∗
0γ(γ|X(i)

m ),

where X
(i)
m = {xi|i ∈ S

∗(i)
m }, and G∗

0γ(γ|X
(i)
m ) is the posterior distribution of γ

updated with the likelihood of X
(i)
m . Therefore, the joint distribution of ϕ and

X is simplified as

π(ϕ,X) =

{
α

∫
f2(xi|γ)dG0γ(γ)G0ϕ(ϕi)

+

k(i)∑

h=1

k
∗(i)
h

∫
f2(xi|γ)dG

∗
0γ(γ|X(i)

m )δ
ϕ
∗(i)
h

(ϕi)

}

×c0
∑

S∗(i)

k(i)∏

m=1

c(S∗(i)
m )

{∫ ∏

i∈S
∗(i)
m

f2(xi|γ)dG0γ(γ)

}

×G0ϕ(ϕm,1)

k
(i)
m∏

j=2

δ
ϕ

(i)
m,1

(ϕ
(i)
m,j).

Marginalizing the above equation over ϕi and dividing it by π(ϕ(i),X) completes

the proof.

Appendix B: Gibbs Sampling Steps for Mixture of Normals

Here we provide the full conditional posterior distributions used in imple-

menting the Gibbs sampler for the predictor-dependent mixture of normals model

used in Sections 5.2 and 6. The Gibbs sampler alternates between the following

sampling steps.

1. Sample Si, i = 1, . . . , n, from a multinomial distribution with weights

qi,h =

{
c̃tp(xi;mx,0, Ex,0, Vx,0)t1(yi;my,0, Ey,0, Vy,0) for h = 0

c̃tp(xi;mx,h, Ex,h, Vx,h)N(yi;µh, σ
2
y,h) for h = 1, . . . , k(i),

where mx,0 = νx − p + 1, Ex,0 = µ0x, Vx,0 = (cx + cµ)/(νcxcµ)Σ0x, my,0 =

2ay, Ey,0 = µ, Vy,0 = by(κ + 1)/(ayκ), mx,h = ν∗x − p + 1, Ex,h = µ∗
0x,

Vx,h = (cx + c∗µ)/{(ν∗x − p + 1)cxc
∗
µ}Σ

∗
0x, with ν∗x, µ∗

0x, c∗µ, and Σ∗
0x being

defined in (3.7), and c̃ a normalizing constant. On the completion of sampling

S, {ϕi}i:Si=0 with ϕi = (µi, σ
2
y,i) are assigned to an i.i.d. sample from

G0ϕ,i(µi, σ
−2
y,i ) = N

(
µi;

(yi + κµ0)

κ+ 1
,
σ2

y,h

κ+ 1

)
×G

(
σ−2

y,i ; ay+
1

2
, by+

κ(yi − µ0)
2

2(κ+ 1)

)
.
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2. Sample σ−2
y,h and µh given σ2

y,h, respectively, from

σ−2
y,h ∼ G

(
ay +

k∗h
2
, by +

1

2

∑

i:Si=h

(yi − ȳh)2 +
k∗hκ

2(k∗h + κ)
(ȳh − µ)2

)
,

µh ∼N

(
k∗hȳh + κµ

k∗h + κ
,
σ2

y,h

k∗h + κ

)
,

where ȳh =
∑

i:Si=h yi/k
∗
h.

3. Sample ψ = (µ, κ) from

µ∼ N

({
σ−2

µ + κ

k∑

h=1

σ−2
y,h

}−1{
σ−2

µ µ0 + κ

k∑

h=1

σ−2
y,hµh

}
, σ−2

µ + κ

k∑

h=1

σ−2
y,h

)
,

κ ∼ G

(
aκ +

k

2
, bκ +

1

2

k∑

h=1

σ−2
y,h(µh − µ)2

)
.

Note that all the distributions above are conditional on the rest of parameters.

The conditional part is omitted due to limited space. A Matlab program is

available upon request by sending an email to parkj3@mail.nih.gov.
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