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Abstract: A Bayesian approach is proposed for an accelerated failure time model

with interval-censored data. The model allows for structured correlated data by

inclusion of a random effect part that might depend on covariates, as in a linear

mixed model. The error distribution is modelled as a normal mixture with an un-

known number of components. Also, the means and variances of the components

are not prespecified so as to accommodate most continuous distributions. This re-

sults, among other things, in a nearly correct estimation of the shape of the hazard

and survivor curves. A Markov chain Monte Carlo algorithm is described that sam-

ples from the posterior distribution. The approach is evaluated using a simulation

study, and is illustrated by modeling the emergence times of eight permanent teeth

using data from the Signal Tandmobielr study.
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jump Markov chain Monte Carlo, survival data.

1. Introduction

Correlated survival data are encountered in many medical problems, for in-

stance when the observations are clustered. Moreover, in some problems, the

occurrence of the event can only be recorded at regular intervals leading to

interval-censored data.

Correlated interval-censored survival times were encountered in the Signal

Tandmobielr study. This was a longitudinal, prospective (1996–2001) oral health

screening project performed in Flanders, Belgium. The 4,468 school-children,

born in 1989, were examined on a yearly basis by one of 16 trained dental-

examiners. The details of the study design can be found in Vanobbergen et al.

(2000). For oral health researchers, two questions are of interest. First, what

is the effect of decayed primary predecessors (described by a binarised dmft

score) on the emergence times of the permanent premolars (teeth 14, 15, 24,

25, 34, 35, 44, 45 in European dental notation)? The emergences were observed

only at yearly intervals. Second, what is the correlation between the emergence

times of different teeth? Leroy et al. (2003) have shown that there is horizontal
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symmetry, i.e., information about the correlation structure is available as the

same emergence distribution can be assumed at horizontally symmetric positions

(e.g., for teeth 14 and 24). Further, it is known that factors, like gender, have

an impact on the emergence time and thus should be controlled for.

In multicenter clinical trials it is often necessary to control for center, and

to check the center by treatment interaction, when evaluating the treatment

effect. An important center effect or center by treatment interaction can be due

to center differences in socio-economic characteristics of the patients, different

training of the medical staff, differences in the administration of treatment, etc.

To obtain a valid statistical conclusion on treatment efficacy, one should control

for such effects. Furthermore, in situations where disease progression can only be

revealed by a laboratory assessment (AIDS, some types of cancer), the observed

event times are interval-censored as well.

The paper is organized as follows. In Section 2, we review models for cor-

related censored data. In Section 3 we propose a new approach – the Bayesian

mixture MEAFT model. In Section 4, a Markov chain Monte Carlo algorithm

that samples from the posterior distribution is discussed. The approach is eval-

uated using a simulation study in Section 5, and the Signal Tandmobielr data

in Section 6.

2. Models for Correlated Censored Data

Several approaches to analyze correlated right-censored survival times have

been proposed. One approach is to extend the Cox’s proportional hazards

(PH) model (Cox (1972)) by including a cluster-specific random effect, called

frailty in the expression of the hazard function (see, e.g., Hougaard (2000) and

Therneau and Grambsch (2000)). The frailty component is most often assumed

to have a parametric distribution such as gamma or log-normal. However, the

frailty PH model has some important drawbacks. First, the implied correlation

structure is too simple, e.g., in the analysis of the multicenter clinical trials only

the center effect and not the center by treatment interaction can be controlled for.

Second, the choice of the frailty distribution can have a crucial impact on the re-

sults for the regression parameters of interest (Hougaard (2000, Chap.7)). Third,

the PH model is generally not robust toward neglected covariates (Hougaard

(1999)).

A possible alternative to the PH model is the accelerated failure time (AFT)

model which assumes that the covariates speed up or slow down the expected

event time. We refer to Chapter 7 of Kalbfleisch and Prentice (2002) for an ex-

tensive review of classical approaches to the AFT model. In contrast to the PH

model, neglected covariates in the AFT model do not cause bias in estimating
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the regression parameters for the included covariates (Hougaard (1999)). An ex-

tension of the AFT model – the mixed effects accelerated failure time (MEAFT)

model – takes into account the within-cluster correlations explicitly by including

random effects in the regression expression, as in a classical linear mixed model

of Laird and Ware (1982). Thus

log(Ti,l) ≡ Yi,l = βTxi,l + bT
i zi,l + εi,l, i = 1, . . . , N, l = 1, . . . , ni, (1)

where Ti,l is the event time of the lth observation of the ith cluster, β =

(β1, . . . , βp)
T is the unknown regression coefficient vector, xi,l is the covariate

vector for fixed effects, bi = (bi,1, . . . , bi,q)
T , i = 1, . . . , N are i.i.d. random effects

vectors with a density g(b), zi,l is the covariate vector for random effects, and εi,l,

i = 1, . . . , N, l = 1, . . . , ni are i.i.d. error random variables with a density f(ε).

As the roles of the regression parameters and dispersion parameters are clearly

separated in the MEAFT, the regression parameters are robust against misspec-

ification of the random effects distribution g(b) (Keiding, Andersen and Klein

(1997) and Lambert, Collett, Kimber and Johnson (2004)). Model (1), restricted

to the case of zi,l ≡ 1, has been studied by Pan and Louis (2000) and Pan and

Connett (2001) for right-censored data. They make a working assumption con-

cerning the normality of both εi,l and bi, and use frequentist techniques for uncen-

sored data, combined with a Monte Carlo EM algorithm and multiple imputation,

respectively, to overcome the problem of censoring.

Assume now that the (i, l)th true log-event time yi,l is only known to lie in

the interval (yL
i,l, y

U
i,l], −∞ ≤ yL

i,l ≤ yU
i,l ≤ ∞. For an uncensored observation

yL
i,l = yU

i,l, for a right-censored observation yU
i,l = ∞, and for a left-censored

observation yL
i,l = −∞. The likelihood contribution of the ith cluster is given by

Li =

∫

Rq

{

ni
∏

l=1

∫ yU
i,l

yL
i,l

f(y − βTxi,l − b
Tzi,l) dy

}

g(b) db, (2)

where the convention
∫ a

a
f(s) ds ≡ f(a) applies to also accommodate uncen-

sored observations. Due to multiple integration in the likelihood (2), it is rather

cumbersome to use maximum-likelihood based methods for the MEAFT model

with interval-censored observations, even with f(ε) and g(b) being parametri-

cally specified. While stochastic versions of standard estimation techniques can

be used, as was done by Pan and Louis (2000) or Pan and Connett (2001), we

believe that a Bayesian approach is more natural, and easier to use here.

Furthermore for small samples or in situations when prediction, and not

only regression parameters themselves, are of interest, it is desirable to avoid full

parametric assumptions (like normality) concerning the error density f(ε) that
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determines the shape and character of resulting survival and hazard curves that

are to be estimated from the data. For that reason, we sought a method with

enough flexibility in specifying the error density, while still being computationally

tractable for both interval-censored data and a general covariate vector zi,l.

3. A Bayesian Mixture MEAFT Model

To our best knowledge, the MEAFT model with a general q-variate ran-

dom effects covariate vector zi,l is required to solve the problems outlined in

the introduction, and a flexible error density has not yet been considered in the

literature. To model unknown distributional shapes, finite mixture distributions

have been advocated by, e.g., Titterington, Smith and Makov (1985), Section 2.2

as appealing semi-parametric structures. However, until the last decade the sta-

tistical analysis of mixtures has not been straightforward. The use of a reversible

jump MCMC algorithm (Green (1995)) to estimate unknown mixture parame-

ters, suggested by Richardson and Green (1997), is a breakthrough in this area.

We adopt their approach to model the error density in the MEAFT model, and

argue that this offers a rich family of distributions of various shapes suitable for

modeling practically any survival data. See Section 5 for some examples of den-

sities and corresponding hazard or survivor functions as approximated by normal

mixtures.

At the same time, the MCMC methodology easily overcomes a problem of

the difficult likelihood as (2). Indeed, there is no need to maximize this likeli-

hood since the sample from the posterior distribution obtained using the MCMC

method is used to draw inferences. Furthermore, MCMC replaces both integrals

in (2) with the sampling of exact event times and values of latent random effects

from appropriate, ease-to-sample distributions, as will be shown in Sections 4.1

and 4.4.

We assume a Bayesian mixture MEAFT model (1) with a hierarchical struc-

ture graphically represented by the directed acyclic graph (DAG) given in Fig-

ure 1, where the usual convention of graphical models is used: square boxes

represent fixed or observed quantities and circles the unknown parameters; solid

lines represent stochastic and dashed lines express deterministic dependencies, re-

spectively. The joint prior distribution is given by the product of the conditional

distributions of each node given its parents, as discussed in this section. As the

DAG indicates, the unknown parameters can be split into two parts connected

only through the node of true log-event times.
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Figure 1. DAG for the Bayesian AFT model.

3.1. Prior specification of the error part

The density of the error term εi,l in (1) is specified as

f(ε) =
k
∑

j=1

wj ϕ(ε | µj, σ
2
j ), (3)

with ϕ(· | µj , σ
2
j ) ≡ density of N (µj , σ

2
j ). Note that the number of mixture

components, k, is unknown, as well as the mixture weights w = (w1, . . . , wk)
T ,

means µ = (µ1, . . . , µk)
T , and variances σ2 = (σ2

1 , . . . , σ
2
k)

T . It is well-known

(McLachlan and Basford (1988, Chapt. 2)) that a heteroscedastic mixture (3)

leads to an unbounded likelihood if the parameter space for variances is uncon-

strained. In a Bayesian analysis, this difficulty is solved by using an appropriate

prior distribution for the variances.

To improve the computation of the posterior distribution, it is useful to as-

sume that εi,l, i = 1, . . . , N, l = 1, . . . , ni come from a heterogeneous population

consisting of groups j = 1, . . . , k, of sizes proportional to wj , and to introduce

latent allocation variables ri,l denoting the label of the group from which each
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random error variable εi,l is drawn. The corresponding DAG conditional distri-

butions are then given by

εi,l |µ, σ
2, ri,l ∼ N (µri,l

, σ2
ri,l

), i = 1, . . . , N, l = 1, . . . , ni, (4)

Pr(ri,l = j | k, w) = wj , j = 1, . . . , k. (5)

DAG conditional distributions of the remaining parameters of the error part

of the model are inspired by the work of Richardson and Green (1997) (with

some change in notation). We give a brief summary. For the number of mixture

components, k, we experimented with (1) a Poisson distribution with mean equal

to a hyper-parameter λ truncated at some prespecified (relatively large) value

kmax, and (2) a uniform distribution on {1, . . . , kmax} (the node λ in the DAG in

Figure 1 then becomes redundant). The prior for the mixture weights w is taken

to be a symmetric k-dimensional Dirichlet with prior ‘sample size’ equal to k δ,

i.e., w |k, δ ∼ D(δ, δ, . . . , δ), where δ is a fixed hyper-parameter. Further, the

mixture means µj and variances σ2
j are taken as independent with normal and

inverse-gamma priors µj |k, ξ, κ ∼ N (ξ, κ) and σ2
j |k, ζ, η ∼ IG(ζ, η), respectively.

As in Richardson and Green (1997) we let η have a gamma distribution G(g, h)

with fixed hyper-parameters g and h, see Section 3.4 for more details.

Since the error model is invariant to permutations of labels j = 1, . . . , k, the

joint prior distribution of a vector µ is restricted to the set {µ : µ1 < · · · < µk} for

identifiability reasons, see Stephens (2000) for other approaches to establishing

identifiability. The joint prior distribution of the mixture means and variances is

thus k! times the product of the individual normal and inverse-gamma densities,

restricted to above mentioned set of increasing means.

3.2. Prior specification of the regression part

The regression part of the model has the structure of a classical Bayesian

linear mixed model (see, e.g., Gelman, Carlin, Stern and Rubin (2004, Chap.5)).

Let X be an
∑N

i=1 ni × p matrix with vectors xT
1,1, . . . ,x

T
N,nN

as rows. Simi-

larly, let Z be an
∑N

i=1 ni×q matrix with vectors zT
1,1, . . . ,z

T
N,nN

as rows. Further,

we assume that the matrix (X,Z) is of full column rank (p+ q). In other words,

covariates included in xi,l are not included in zi,l, and vice versa. This gives

rise to hierarchical centering, which in general results in better behavior of the

MCMC algorithm (Gelfand, Sahu and Carlin (1995)). Finally, since f does not

have mean zero, we do not allow a column of ones in the matrix X and thus avoid

identifiability problems.

The prior distribution for each regression coefficient βj is assumed to be

N (νβ,j, ψβ,j), j = 1, . . . , p, and the βj are assumed to be a priori independent.

The vectors νβ = (νβ,1, . . . , νβ,p)
T and ψβ = (ψβ,1, . . . , ψβ,p)

T are fixed hyper-

parameters.
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The prior distribution for the random effect vector bi is

bi | γ,D ∼ Nq(γ,D), independently for i = 1, . . . , N, (6)

where γ = (γ1, . . . , γq)
T . The prior distribution for each γj , is N (νγ,j , ψγ,j),

independently for j = 1, . . . , q. The vectors νγ = (νγ,1, . . . , νγ,q)
T and ψγ =

(ψγ,1, . . . , ψγ,q)
T are fixed. Special care is needed when a random intercept is

included in the model (i.e., when Z contains a column of ones, let say its first

column). Hierarchical centering cannot be applied in this case since the overall

intercept is given by the mean of the mixture (3). For that reason, γ1 is fixed to

zero (equivalently, νγ,1 = 0, ψγ,1 = 0).

The prior distribution for the covariance matrix D of random effects is as-

sumed to be an inverse-Wishart IW(τ, S) (parametrized such that the mean is

(τ − q− 1)−1
S, where τ denotes ‘degrees of freedom’ (τ > q− 1), and S is a scale

matrix).

Finally, the DAG conditional distributions of the (unknown) log-event times,

i.e., nodes that connect the regression and error parts of the DAG, are all deter-

ministic and given by the MEAFT model (1).

3.3. Censoring

To complete the specification of the DAG we need to specify p(yL
i,l, y

U
i,l | yi,l,

censoring). First, the censoring mechanism in this paper is assumed to be non-

informative about the failure distribution. A box called ‘censoring’ in the DAG

represents a realization of the random variable(s) causing the censoring. Note

that there is no need to specify a measurement model for the censoring mechanism

since the inference relies on the posterior distribution of parameters given the

data, and the data consist of the realized censoring variables as well.

After omitting subscripts i, l for clarity, the form of p(yL, yU | y, censoring)

is rather obvious for most censoring mechanisms. In the case of right censor-

ing driven by a censoring random variable C, p(yL, yU | y, c) is a discrete den-

sity with P
[

(yL, yU ) = (y, y)
∣

∣ y, c
]

= I[y ≤ c], P
[

(yL, yU ) = (c,∞)
∣

∣ y, c
]

=

I[y > c]. For interval censoring resulting from a realization of random vari-

ables C1, . . . , Cm representing the times when a failure status was checked, the

density p(yL, yU | y, c1, . . . , cm) is again a discrete density with P
[

(yL, yU ) =

(cj , cj+1)
∣

∣ y, c1, . . . , cm
]

= I[cj < y ≤ cj+1], j = 0, . . . ,m, with c0 = −∞, cm+1 =

∞.

3.4. Weak prior information

In this paper, we have opted for specifying weak prior information on the

parameters of interest. When a priori information is available, our prior assump-

tions could be appropriately modified.
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For the regression part of the model, we use non-informative proper distribu-

tions, that is, the prior variances of regression parameters β (ψβ) and γ (ψγ) are

chosen such that the posterior variance of the regression parameters is at least 100

times lower (which must be checked from the results). Prior hyper-parameters for

the covariance matrix D that give weak prior information correspond to choices

of τ = q − 1 + d and S = diag(d, . . . , d), with d being a small positive number.

In the error part of the model, it is not possible to be fully non-informative,

i.e., to use priors p(µ,σ2 | k) ∝ 1 ×
∏k

j=1 σ
−2
j and to obtain proper poste-

rior distributions (Diebolt and Robert (1994), Roeder and Wasserman (1997)).

Richardson and Green (1997) offer, in the context of i.i.d. observations, for say

e1, . . . , en, the following alternative: a rather flat prior N (ξ, κ) for µj is achieved

by letting ξ equal ē = n−1
∑n

j=1 ej , and setting κ equal to a multiple of R2,

where R = max(ei)−min(ei). They further point out that it might be restrictive

to suppose that knowledge of the range or variability of the data implies much

about the size of each σ2
j , and therefore introduced an additional hierarchical

level by allowing η to follow a gamma distribution with parameters g and h.

They further recommend taking ζ > 1 > g to express the belief that the σ2
j are

similar, which is necessary to avoid a problem of unbounded likelihood, without

being informative about their absolute size. Finally they suggest setting the pa-

rameter h to a small multiple of 1/R2. Here, the residuals yi,l − β
Txi,l − b

T
i zi,l

play the role of the observations ei. A rough estimate of their location and scale

can be obtained through a maximum-likelihood fit of the AFT model, even with-

out random effects (the scale of residuals can only increase), with an explicitly

included intercept and scale parameters. This can be done using such standard

software packages as R, Splus, SAS. The estimated intercept from this model

can then be used instead of ē, and a multiple of the estimated scale parameter

instead of R.

4. Markov Chain Monte Carlo Algorithm

Details of the implementation of the MCMC algorithm for the parameters

of the error part of the model are given in Richardson and Green (1997). Their

guidelines, now based on residuals εi,l = yi,l−β
Txi,l−b

T
i zi,l, can be immediately

applied with some obvious changes in notation. For the actual implementation

of the reversible jump MCMC algorithm, we additionally employed the auxiliary

variable (AV) method of Brooks et al. (2003, Sec. 9) for the dimension changing

steps (split-combine and birth-death moves).

For the regression part of the model, each iteration of the MCMC is con-

ducted using the Gibbs sampler (Geman and Geman (1984)). The full condi-

tional distributions needed to implement the Gibbs sampler are given below. The

notation | . . . indicates that conditioning is done on all remaining parameters.
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4.1. True log-event times yi,l

The full conditional distribution of each yi,l is

yi,l | · · · ∼ N (µri,l
+ βTxi,l + bT

i zi,l, σ
2
ri,l

) truncated on (yL
i,l, y

U
i,l]. (7)

4.2. Fixed effects β

Let β(S) be an arbitrary sub-vector of vector β, and xi,l(S) the corresponding

sub-vectors of covariate vectors xi,l, and further let xi,l(−S) be their complemen-

tary sub-vectors. Similarly, let νβ(S) and ψβ(S) be appropriate sub-vectors of

hyper-parameters νβ and ψβ, respectively. Finally, let Ψβ(S) = diag(ψβ(S)).

Then

β(S) | · · · ∼ N
(

E[β(S) | · · · ],Var [β(S) | · · · ]
)

, (8)

with Var [β(S) | · · · ] =
(

Ψ−1
β(S) +

N
∑

i=1

ni
∑

l=1

σ−2
ri,l
xi,l(S)x

T
i,l(S)

)

−1
,

E[β(S) | · · · ] = Var [β(S) | · · · ]×
{

Ψ−1
β(S)νβ(S)+

N
∑

i=1

ni
∑

l=1

σ−2
ri,l
xi,l(S)e

(F )
i,l(S)

}

,

where e
(F )
i,l(S) = yi,l − µri,l

− βT
(−S)xi,l(−S) − b

T
i zi,l.

4.3. Means of random effects γ

There is no loss of generality in assuming that γ = (γT
(S),γ

T
(−S))

T , with bi(S),

bi(−S), νγ(S), ψγ(S) the corresponding sub-vectors or complementary sub-vectors

of indicated quantities and Ψγ(S) = diag(ψγ(S)). Furthermore, let

D
−1 =

(

V(S) V(S,−S)

V
T
(S,−S) V(−S)

)

. (9)

Then

γ(S) | · · · ∼ N
(

E[γ(S) | · · · ],Var [γ(S) | · · · ]
)

, (10)

with Var [γ(S) | · · · ] =
(

Ψ−1
γ(S)

+N V(S)

)

−1
,

E[γ(S) | · · · ] = Var [γ(S) | · · · ] ×
{

Ψ−1
γ(S)νγ(S) + V(S)

N
∑

i=1

bi(S)

+ V(S,−S)

N
∑

i=1

(

bi(−S) − γ(−S)

)

}

.
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4.4. Random effects bi

For the random effects vectors bi :

bi | · · · ∼ N
(

E[bi | · · · ],Var [bi | · · · ]
)

, i = 1, . . . , N, (11)

with Var [bi | · · · ] =
(

D
−1 +

ni
∑

l=1

σ−2
ri,l
zi,lz

T
i,l

)

−1
,

E[bi | · · · ] = Var [bi | · · · ] ×
{

D
−1γ +

ni
∑

l=1

σ−2
ri,l
zi,l(yi,l − µri,l

− βTxi,l)
}

.

4.5. Covariance matrix of random effects D

Finally, D | · · · is an inverse-Wishart distribution with degrees of freedom

equal to τ +N and a scale matrix of S +
∑N

i=1(bi − γ)(bi − γ)T .

4.6. Software

Programs in C++ have been written with an interface to the R language

(R Development Core Team (2006)) as a contributed package bayesSurv and

can be downloaded, together with a comprehensive description of how to perform

the analyzes presented in this paper, from the Comprehensive R Archive Network

(CRAN) on http://www.R-project.org.

5. Simulation Study

A simulation study was carried out to explore the performance of the pro-

posed method. The setting mimics a typical multicenter study with a possible

center by treatment interaction. ‘True’ uncensored data were generated accord-

ing to the MEAFT model

log(Ti,l) = 1.5 + β xi,l + bi,1 + bi,2 zi,l + εi,l, i = 1, . . . , N, l = 1, . . . , ni, (12)

where β = 0.4, (bi,1, bi,2)
′ ∼ N2

(

(0, γ)′,D
)

, γ = −0.8, var(bi,1) = 0.52, var(bi,2) =

0.12, and corr(bi,1, bi,2) = 0.4. The covariate xi,l was generated according to

the extreme-value distribution of a minimum, with location equal to 8.5 and

scale equal to 1, inspired more or less by the log2(1+CD4 count) covariate in the

AIDS dataset analyzed by Komárek, Lesaffre and Hilton (2005). The covariate

zi,l (treatment vs. placebo) was binary, taking a value of 1 with probability

0.4. The error term εi,l was generated from a standard normal distribution,

from a Cauchy distribution, from a Student t2 distribution, from a standardized

extreme value distribution, and from a normal mixture 0.4N (−2.000, 0.25) +

0.6N (1.333, 0.36). Two sample sizes were considered: (1) N = 50, ni = 5 for
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all i (small sample size), and (2) N = 100, ni = 10 for all i (large sample size).

Each simulation involved 100 replications.

All event times were interval-censored by simulating 120 consecutive ‘as-

sessment times’ for each ‘patient’ in the dataset (the first assessment time was

drawn from N (7, 1), times between consecutive assessments from N (6, 0.25)).

At each assessment, between 0.2% and 0.6% of randomly selected patients were

withdrawn from the study, resulting in approximately 15% right-censored ob-

servations. For each dataset, the estimates were computed using the Bayesian

mixture MEAFT model, using the Bayesian MEAFT model with a normal error,

and using the maximum-likelihood AFT model with a normal error and ignoring

the random effects structure.

Table 1. Simulation study. Results for the regression parameters: average

estimate, mean squared error (×10−4) in brackets.

Bayesian mixture Bayesian normal ML, no random eff.

Setting
β = 0.4

Normal, small 0.3966 (26.3) 0.3973 (25.6) 0.3992 (34.7)

large 0.4016 ( 7.3) 0.4018 ( 7.3) 0.4022 ( 9.0)

Cauchy t1, small 0.4122 (52.5) 0.3832 (68.2) 0.3783 (124.6)

large 0.3921 (13.2) 0.3608 (41.8) 0.3571 (50.7)

Student t2, small 0.3933 (58.1) 0.3859 (49.6) 0.3823 (72.9)

large 0.3944 (11.5) 0.3794 (19.0) 0.3780 (21.6)

Extr. value, small 0.3928 (17.9) 0.3954 (20.9) 0.3952 (25.9)

large 0.4036 (4.3) 0.4035 (5.4) 0.4022 (6.8)

Mixture, small 0.3942 (17.6) 0.4324 (68.1) 0.4436 (127.3)

large 0.3997 (3.5) 0.4480 (45.6) 0.4505 (52.9)

γ = −0.8

Normal, small −0.8128 (240.4) −0.8105 (222.8) −0.8121 (235.7)

large −0.7981 (47.0) −0.7983 (48.2) −0.7982 (60.4)

Cauchy t1, small −0.7656 (512.7) −0.7192 (716.4) −0.7210 (704.0)

large −0.8097 (107.2) −0.7360 (234.5) −0.7383 (238.9)

Student t2, small −0.7777 (479.0) −0.7593 (401.3) −0.7614 (415.5)

large −0.7933 (99.9) −0.7610 (123.7) −0.7601 (132.1)

Extr. value, small −0.8150 (191.1) −0.8106 (192.4) −0.8094 (202.3)

large −0.7969 (47.4) −0.7999 (56.6) −0.8022 (66.9)

Mixture, small −0.7868 (95.7) −0.8693 (895.0) −0.8635 (840.5)
large −0.8040 (26.6) −0.9264 (366.8) −0.9227 (369.4)

Table 1 shows the average estimates of the regression parameters and their

mean squared errors. It is seen that, in most cases, the Bayesian mixture ap-

proach performs better than the incorrectly specified models. A large difference
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in favour of the Bayesian mixture model is seen in the case of a normal mixture or
a Cauchy as the error distribution. Additionally, when the Bayesian mixture ap-

proach is used the error distribution, and consequently also the hazard or survivor
functions, are reproduced closely. This is not always the case when the Bayesian
normal model is used. Figure 2 shows the behaviour of our estimated hazard

functions for two heavy-tailed distributions, small sample size, using either the
Bayesian mixture or the Bayesian normal model. A similar comparison for the
survivor functions of the extreme value or mixture error is shown in Figure 3.
Figure 4 shows the behaviour of the Bayesian mixture method when the sample

size increases, for the extreme value distribution and mixture distribution.
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Figure 2. Simulation study – hazard functions. Results for a small sample
size (N = 50, ni = 5) and Cauchy and Student t2 error distributions. Left
column: estimates based on the Bayesian mixture model; right column: es-
timates based on the Bayesian normal model. Solid line: estimate of the
hazard function for x = 8.13 – median value and z = 0; gray region: sim-
ulation based 95% point-wise confidence interval; dashed line: true hazard
function.
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Figure 3. Simulation study – survivor functions. Results for a small sample

size (N = 50, ni = 5) and extreme value and normal mixture error distribu-

tions. Left column: estimates based on the Bayesian mixture model; right

column: estimates based on the Bayesian normal model. Solid line: estimate

of the survivor function for x = 8.13 – median value and z = 0; gray re-

gion: simulation based 95% point-wise confidence interval; dashed line: true

survivor function.

6. Analysis of Signal Tandmobielr Data

The first research question outlined in the introduction was considered

by Lesaffre, Komárek and Declerck (2005) who analyzed each tooth separately

using the penalized AFT model of Komárek, Lesaffre and Hilton (2005). With

the Bayesian MEAFT model of this paper, we analyze all teeth jointly and answer

also the second research question. A random sample of 500 boys and 500 girls is

used for the inference.
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Figure 4. Simulation study – error densities. Results for both sample sizes

and extreme value and normal mixture error distributions, estimates based

on the Bayesian mixture model. Solid line: estimate of the standardized error

density; gray region: simulation based 95% point-wise confidence interval;

dashed line: true standardized error density.

For a better fit, we shifted the time origin of the MEAFT model to 5 years of

age, replacing Ti,l by Ti,l−5 at (1). The random effect vector bi = (bi,1, . . . , bi,4)
′,

with zi,l = (1,man4i,l,max5i,l,man5i,l)
′ where man4i,l, max5i,l, man5i,l are

dummies for the mandibular first premolars (teeth 34, 44), maxillary second pre-

molars (teeth 15, 25) and mandibular second premolars (teeth 35, 45), respec-

tively, is assumed at (1). With such model specification, apart of the random

variation given by the error term εi,l, the terms di,max4 = bi,1, di,man4 = bi,1+bi,2,

di,max5 = bi,1 + bi,3, di,man5 = bi,1 + bi,4 determine how the log-emergence time

of a pair of horizontally symmetric teeth of a single child differ from the popu-

lation average. As fixed effects we used gender ≡ girl, dmft, and all two-way
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interaction terms between girl, dmft and dummies for the pairs of horizontally

symmetric teeth.

The initial maximum-likelihood AFT model, for each tooth separately, with

a normal error distribution and without random effects, estimated the intercept

as 1.8 and the scale as 0.25. According to the suggestions of Section 3.4 we used

the following values of hyper-parameters: ξ = 1.8, κ = (3 · 0.25)2, ζ = 2, g = 0.2,

h = 0.1, δ = 1. For the number of mixture components, k, a truncated Poisson

prior with λ = 5 reflected our prior belief that the error distribution is skewed,

and kmax = 30 was used. All β and γ parameters were assigned a N (0, 100)

prior. For the covariance matrix D of random effects we used an inverse Wishart

prior with τ = 4, which is a minimal possible value for prior degrees of freedom.

Though, due to the fact that 1, 000 clusters are involved in the data set, even

a higher value could be used with a negligible impact on results. The prior

scale matrix S was diag(0.002) (corresponding to inverse-gamma(τ, 0.001) in the

univariate case).

We sampled two chains, each of length 20,000 with 1:3 thinning. This took

about 27 hours on a Pentium IV 2 GHz PC. The first 1,500 iterations of each chain

were discarded. The convergence was evaluated by a critical examination of the

trace and autocorrelation plots, and by using the method of Gelman and Rubin

(1992).

6.1. Regression parameters

In this analysis, the main interest lies in the effect of dmft on emergence.

This can be evaluated from Table 2 where posterior summary statistics for the

effect of dmft > 0 (appropriate linear combinations of β parameters) for the

two genders and the four pairs of horizontally symmetric teeth are given. As

a point estimate we report the posterior median, which can easily be obtained

from an MCMC sample and still corresponds roughly to the maximum-likelihood

estimate. Indeed, if the (log-)posterior distribution is unimodal and symmetric

(which happened for practically all regression parameters) the posterior median

is the same as the posterior mode. For skewed posterior distributions (variance

components), the log-posterior median is practically the same as the log-posterior

mode.

It is seen that bad status of the primary predecessor (dmft= 1) accelerates

the emergence of the permanent successor in the case of maxillary teeth, and

significantly. For the mandibular teeth, a slight effect is observed only for the

first premolar on boys. Additionally, besides the effect of dmft, the emergence

process for girls precedes that of boys.
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Table 2. Signal Tandmobielr data. Posterior medians, 95% equal-tail cred-

ibility intervals, and Bayesian two-sided p-values for the effect of dmft > 0

for the two genders and different teeth.

maxilla 4 maxilla 5

girl boy girl boy

−0.0352 −0.0457 −0.0212 −0.0317

(−0.0522, −0.0185) (−0.0631, −0.0284) (−0.0390, −0.0035) (−0.0500, −0.0135)

p < 0.001 p < 0.001 p = 0.019 p = 0.001

mandible 4 mandible 5
girl boy girl boy

−0.0098 −0.0201 0.0015 −0.0090

(−0.0267, 0.0070) (−0.0378, −0.0032) (−0.0162, 0.0193) (−0.0283, 0.0098)

p = 0.255 p = 0.021 p = 0.870 p = 0.353

6.2. Predictive emergence curves

In dentistry, predictive cumulative distribution functions (cdf) are preferred

over the survivor functions in the case of emergence, and are known as emergence

curves. Let θ denote all unknown quantities of the model. For a specific value

of covariates, say xnew and znew, the predictive cdf is given by

F (t | data) =

∫

F (t | θ,data) p(θ | data) dθ

for any t > 0. Further

F (t | θ,data) = F (t | θ) =
k
∑

j=1

wjΦ
{

log(t) − βTxnew − bTznew

∣

∣ µj , σ
2
j

}

,

where Φ(· | µj, σ
2
j ) is a cumulative distribution function of N (µj , σ

2
j ). The

MCMC estimate of the predictive cdf is then given by F̂ (t | data) = M−1
∑M

m=1

F (t | θ(m)), where θ(m),m = 1, . . . ,M , is the MCMC sample from the posterior

(predictive) distribution. All components of θ(m) are directly available except

b(m). These last must be additionally sampled from Nq(γ
(m),D(m)). Predictive

survivor or hazard curves can be obtained in an analogous manner.

Predictive emergence curves for the maxillary first premolar are shown in Fig-

ure 5. As a model check, Figure 5 also shows non-parametric estimates of the

emergence curves computed separately in each group using the classical method

of Turnbull (1976).
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Figure 5. Signal Tandmobielr data. Predictive emergence curves (solid

lines) compared to the non-parametric estimate of Turnbull (dashed lines)

for maxillary first premolars.

6.3. Inter-teeth relationship

Finally, Table 3 shows posterior summary statistics for variances and corre-

lations of the above defined tooth-specific linear combinations di,max4, di,man4,

di,max5, di,man5 of random effects bi,1, . . . , bi,4. It shows that the child effect is

important, and that the different teeth in one mouth are strongly correlated. The

posterior medians of variance parameters in Table 3 are all about 0.04, which is

approximately four times higher than the posterior median of the variance of

the error distribution, 0.01. Posterior medians of all correlation parameters lie

between 0.79 and 0.91.
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Table 3. Signal Tandmobielr data. Posterior medians, 95% equal-tail cred-

ibility intervals for variances, and correlations between tooth-specific linear

combinations of random effects.

Var (dmax4) Var (dman4) Var (dmax5) Var (dman5)

0.042 0.039 0.042 0.041

(0.037, 0.047) (0.035, 0.045) (0.036, 0.049) (0.035, 0.048)

Corr(dmax4, dman4) Corr(dmax4, dmax5) Corr(dmax4, dman5) Corr(dman4, dmax5)

0.887 0.914 0.842 0.793
(0.856, 0.914) (0.887, 0.938) (0.804, 0.874) (0.749, 0.832)

Corr(dman4, dman5) Corr(dmax5, dman5)

0.895 0.847

(0.864, 0.923) (0.810, 0.880)

7. Discussion

We have proposed a Bayesian accelerated failure time model whose error

distribution is modelled in a flexible way as a finite normal mixture. An advan-

tage of the full Bayesian approach is the fact that a general random effect vector

can be easily included in the model. Subsequently, the effect of covariates can

be evaluated jointly with the association among clustered responses. Further,

interval-, right-, or left-censored data are easy to handle and, finally, the MCMC

sampling-based implementation of the model offers a straightforward way to ob-

tain credibility intervals of model parameters as well as predictive survivor or

hazard curves.

Observe that the Bayesian approach is used here mainly for technical con-

venience. Indeed, in practice the likelihood at (2) is hardly tractable using the

maximum-likelihood method. On the other hand, Bayesian estimation using the

MCMC does not pose any real difficulties. Further, since all our prior distribu-

tions are non-informative (at least approximately) and we use (on a proper scale)

more or less posterior modes as point estimates, the classical maximum-likelihood

estimation would lead to almost the same results.

The proposed methodology contributes to the area of semi-parametric mod-

eling of correlated, and at the same time, interval-censored data. Furthermore,

our approach allows one to bring in a structure into the dependencies between

observations in one cluster. For example, in multicenter studies, the vector

zi,l = (1, treatmenti,l)
′ at (1) allows consideration of not only the random center

effect, but also a random center-by-treatment interaction that can sometimes be

substantial.

According to our best knowledge, no approach is available which tackles this

complex data structure. With varying amounts of effort, some of the existing
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semi-parametric approaches mentioned in Section 2 could be, of course, extended

to handle regression with correlated interval-censored data.

Unfortunately, our approach cannot handle time-dependent covariates.

However, the same is true for any model in which the distribution of the re-

sponse is specified by the density and not by the hazard function. To in-

clude time-dependent covariates, Cox’s proportional hazards model is commonly

used. For example, Kooperberg and Clarkson (1997), Betensky et al. (1999),

and Goetghebeur and Ryan (2000) consider independent interval-censored data.

Vaida and Xu (2000) offer an approach based on the proportional hazards linear

mixed model with right-censored data.

Finally, our approach can be quite easily extended, along the lines presented

in Komárek and Lesaffre (2007), to also handle data where the response is given

as the difference of two interval-censored observations.
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