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Abstract: In the context of productivity analysis, the most popular nonparamet-
ric estimators of a monotone boundary are defined as lowest monotone functions

covering all sample points and are very non-robust. Two alternatives have been
addressed recently: one by Cazals, Florens and Simar (2002) is based on a concept

of expected order-m frontiers; the other by Aragon, Daouia and Thomas-Agnan
(2005) is based on extreme quantiles of a nonstandard conditional probability den-

sity. Unlike usual methods, both alternatives are shown to be qualitatively robust
and bias-robust. Moreover, for the quantile approach, the influence function re-

mains bounded even when the quantile order tends to one under the conditions
that the conditional density function is not null, and is continuous on its support.

When these conditions do not hold, the robust behavior of the quantile approach

is shown on two numerical examples. A data set is provided to show the advantage
of the robust proposals and the use of gross-error sensitivity as a diagnostic tool to

detect anomalous data.
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1. Introduction

Let Ψ be the support of the joint distribution of a random vector (X,Y ) ∈
R2

+. Let X = {x ∈ R+| Y (x) 6= ∅} where Y (x) = {y ∈ R+| (x, y) ∈ Ψ}.
The graph of the function ϕ(x) = supY (x) for any x ∈ X describes the upper

topological boundary of Ψ. Consider the estimation of this upper boundary from

a random sample {(X1, Y1), . . . , (Xn, Yn)} of independent vectors with the same

distribution as (X,Y ). We assume that this boundary is monotone nondecreasing

in the sense that the frontier function ϕ is nondecreasing in x.

Denote by F , respectively FX , the joint distribution function (df) of (X,Y )

and the marginal df of X. The monotone boundary of Ψ can be characterized

by the function ϕ which associates to a given level x the upper boundary of the

support of Y conditioned by X ≤ x, i.e., ϕ(x) = inf{y ∈ R+|F (y|x) = 1}, where

F (y|x) = F (x, y)/FX (x). From now on we assume that x ∈ R+ is such that

FX(x) > 0. The graph of ϕ is the smallest monotone nondecreasing frontier

which is larger than or equal to the boundary of Ψ.
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The problem of estimating a monotone boundary appears naturally in the

context of productivity analysis. When analyzing the productivity of firms, one
may want to compare how the firms transform an input x (e.g., labor, energy or

capital) into an output y (e.g., a quantity of produced goods). In this context,

Ψ is the attainable production set and ϕ is the production frontier function, the

geometric locus of the optimal production. For a firm operating with input x,
ϕ(x) is the maximal level of attainable output. The economic efficiency of a firm

is then defined in terms of its ability to operate close to this optimal level ϕ(x);

if its production is y, then its efficiency score may be measured via its total value

of output relative to the production frontier, that is y/ϕ(x). With this measure,
one can detect the most efficient or inefficient firms depending on whether y/ϕ(x)

is close to 1 or 0.

It is often reasonable to assume that the monotone frontier ϕ is a con-

cave function. Then a famous estimator comes from data envelopment analysis
(DEA). Farrell (1957) introduced the DEA estimator Ψ̂DEA of Ψ, the set un-

der the “lowest” concave monotone increasing function covering all the sample

points (Xi, Yi). The DEA estimator of ϕ(x) is then defined by the maximum of
y such that (x, y) belongs to Ψ̂DEA. Its consistency was addressed by Banker

(1993), and its asymptotic distribution was derived by Gijbels, Mammen, Park

and Simar (1999).

The nonparametric estimator of ϕ with possible non-concavity was first stud-
ied by Deprins, Simar and Tulkens (1984) in the context of measuring the effi-

ciency of enterprises. They introduced the free disposal hull (FDH) estimator

ϕ̂n(x) = maxi|Xi≤x Yi, to represent the lowest monotone step function covering

all the data points (Xi, Yi). The asymptotic theory of this FDH is now mostly
available. See Korostelev, Simar and Tsybakov (1995) for the efficiency in the

asymptotic minimax sense, and Park, Simar and Weiner (2000) for the asymp-

totic distribution.

Besides productivity analysis, DEA and FDH methods have been used in
many related fields of application, including analysis of the performance of invest-

ment portfolios (Capital Assets Pricing Models, where X measures the volatility

or the variance of a portfolio and Y represents its averaged return, see, e.g.,

Markovitz (1959)), analysis of the performance of public services, judicial ac-
tivities, urban transit, pharmacies, hospitals, banks, and other institutions (see

Seiford (1996) for a survey, and more than 700 references). But in the presence

of outliers, these nonparametric envelopment estimators can behave erratically

since, by construction, they envelope all the observations. Recently, robust non-
parametric frontier estimators have been suggested by Cazals, Florens and Simar

(2002) and Aragon, Daouia and Thomas-Agnan (2005).

In place of estimating the full frontier, Cazals, Florens and Simar (2002)

propose to estimate a frontier of a discrete order m ∈ N∗, which increases with
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respect to m to achieve the efficient frontier ϕ when m → ∞. For a given level x,

this order-m frontier is defined as the expected value of the maximum of m inde-

pendent random variables Y 1, . . . , Y m, drawn from the conditional distribution

of Y given X ≤ x. Formally,

ϕm(x) = E[max(Y 1, . . . , Y m)] =

∫ ∞

0
(1 − [F (y|x)]m)dy,

where the integrand is identically zero for y ≥ ϕ(x). In the context of productivity

analysis, ϕm(x) represents the expected maximum achievable level of outputs

among m firms drawn from the population of production units using less than x

as inputs. A natural estimator is provided by a plug-in argument,

ϕ̂m,n(x) = Ê[max(Y 1, . . . , Y m)] =

∫ ∞

0
(1 − [F̂n(y|x)]m)dy, (1.1)

where F̂n(y|x) = F̂n(x, y)/F̂X,n(x) is the empirical version of F (y|x), with

F̂n(x, y) =
1

n

n∑

i=1

1(Xi ≤ x, Yi ≤ y), F̂X,n(x) =
1

n

n∑

i=1

1(Xi ≤ x),

where 1(A) stands for the indicator function of the set A. The integrand is

identically zero for y ≥ ϕ̂n(x). This estimator achieves
√

n consistency and is

asymptotically normal. A stronger functional convergence theorem of ϕ̂m,n to

ϕm is provided in the appendix B of Cazals, Florens and Simar (2002). Moreover

by choosing m, appropriately as a function of the sample size n, the estimator

ϕ̂m,n as an estimator of the frontier ϕ recovers the asymptotic properties of the

FDH ϕ̂n. Note also that, due to the expectation in (1.1), the estimator ϕ̂m,n

does not envelope all the data points, even for large m, and so is more robust to

extreme values than the FDH ϕ̂n.

Aragon, Daouia and Thomas-Agnan (2005) introduced a new concept of an

order-α frontier, one that increases with respect to the continuous order α ∈
[0, 1], and converges to the efficient frontier ϕ(x) as α ↗ 1. The concept is the

conditional α-quantile of the distribution of Y given X ≤ x, i.e.,

qα(x) := F−1(α|x) = inf{y ∈ R+|F (y|x) ≥ α}.

From an economic point of view, this nonstandard conditional quantile has its

own interest: it gives the production threshold exceeded by 100(1 − α)% of all

production units using less than x as inputs. A nonparametric estimator of qα(x)

is easily derived by inverting the empirical version of the conditional df F (·|x),

i.e.,

q̂α,n(x) := F̂−1
n (α|x) = inf{y ∈ R+|F̂n(y|x) ≥ α}.
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As pointed out by Aragon, Daouia and Thomas-Agnan (2005), this estimator is

very fast to compute, very easy to interpret, and its order α can be useful in terms

of practical efficiency analysis. It has at least the same statistical properties as the

nonparametric estimator ϕ̂m,n(x). In particular, by choosing α as an appropriate

function of n, one estimates the true frontier function ϕ(x) and satisfies the

asymptotic properties of the FDH estimator, ϕ̂n = q̂1,n(x). Not all observations

are enveloped and the estimator is less sensitive to extreme values than the FDH.

Moreover, it is shown by numerical analysis with simulated and real data that

these order-α frontiers are more resistant to extreme values and to outliers than

the order-m frontiers.

In this paper we analyze and compare the reliability of the statistical pro-

cedures of Cazals, Florens and Simar (2002) and Aragon, Daouia and Thomas-

Agnan (2005) from a robustness theory point of view. Two central concepts are

investigated: the qualitative robustness and the influence function.

For statistics Tn = T (Gn) representable as a functional T of an empirical dis-

tribution Gn, qualitative robustness at the underlying distribution G is defined

as equicontinuity with respect to the Prohorov distance π(·, ·) (Prohorov (1956))

of the distributions of Tn as n changes (see Hampel (1971, p.1890) for the defi-

nition). The distributions G and Gn are probability measures on a measurable

space (Λ,A) such that Λ is a complete separable metric space and A denotes

the σ-algebra generated by the topology. It is proved in Hampel (1971, Theorem

1a, p.1892) that, if {Tn} is continuous at G (see Hampel (1971, p.1891) for the

definition) and for every n, Tn is continuous as a point function on Λn, except for

a set of Gn-measure 0 (where Gn denotes the product measure on Λn, determined

by G on Λ), then {Tn} is qualitatively robust. Qualitative robustness of both

nonparametric order-m and order-α frontiers is established in Section 2, but this

tells us little about the differences between the two nonparametric procedures.

The richest quantitative robustness information is provided by the influ-

ence function u 7→ IF (u;T,G) of T at G (Hampel (1974)). It is defined as

the first Gâteaux derivative of T at G, where the point u plays the role of the

coordinate in the infinite-dimensional space of probability distributions. The im-

portance of the influence function lies in its two main uses. First, it describes

the effect of an infinitesimal contamination at the point u on the estimate, stan-

dardized by the mass of the contamination. Second, it allows one to assess

the relative influence of individual observations on the value of the estimate. If

this is unbounded, an outlier can cause trouble. The maximum absolute value

γ∗(T,G) = supu |IF (u;T,G)| defines the gross-error sensitivity of T at G; the

supremum being taken over all u where IF (u;T,G) exists. There are other

robustness measures derived from the influence function, like the local-shift sen-

sitivity, but the central local robustness measure is γ∗. Thus, besides qualitative
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robustness, an important robustness requirement is B-robustness (Rousseeuw

(1981)), which corresponds to a finite gross-error sensitivity.

Section 3 shows that γ∗ is finite for both sequences of nonparametric est-

mators {q̂α,n(x)} and {ϕ̂m,n(x)}. The difference between the two nonparametric

partial frontiers lies in the fact that the influence function is no longer bounded

for order-m frontiers when m tends to infinity, while it remains bounded for

the conditional quantile frontiers when the quantile order tends to one. This

advantage occurs when the nonstandard conditional density function is strictly

positive at the upper monotone frontier. In the case where the conditional den-

sity function is null at the upper frontier, the robustness of the quantile frontier

estimators is illustrated in Section 4 through some simulated examples. A data

set is also provided to show the advantage of the robust proposals and the use of

the influence function as a diagnostic tool to detect anomalous data. In order to

save space, detailed proofs of the theorems are not given in this paper, but can

be found in Daouia and Ruiz-Gazen (2004).

2. Continuity and Qualitative Robustness

Let 0 < α < 1, m ∈ N∗, x ∈ R+, and consider the statistical functionals

Sm,x and T α,x which associate to a df G on R2 such that G(x,∞) > 0, the real

values

Sm,x(G)=

∫ ∞

0

(
1−

[
G(x, y)

G(x,∞)

]m)
dy and T α,x(G)=inf

{
y≥0

∣∣∣ G(x, y)

G(x,∞)
≥α

}
,

where the integrand is identically zero for y ≥ ϕG(x) := inf{y | G(x, y)/G(x,∞)

= 1}. For Sm,x(G) to be well defined, it suffices for instance that ϕG(x) be finite,

whereas T α,x(G) exists for any df G such that G(x,∞) > 0 since α < 1. It is

then clear that
{

ϕm(x) = Sm,x(F )

ϕ̂m,n(x) = Sm,x(F̂n)
,

{
qα(x) = T α,x(F )

q̂α,n(x) = T α,x(F̂n).

The following conditions are needed to ensure qualitative robustness of the

sequence of estimators {q̂α,n(x)} at F .

H1. FX is continuous at x with FX(x) > 0;

H2. For any y ∈ R+, u 7→ F (y|u) is nonincreasing on {u ≥ 0 | FX(u) > 0};
H3. The generalized inverse function F −1(·|x) is continuous at α.

Note that, from an economic point of view, assumption H2 is quite reasonable

since the chance of producing less than a value y decreases if a firm uses more
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inputs. Note also that the assumption H3 holds if the usual assumption on

standard regression quantiles is satisfied, i.e., if

H3′. F (·|x) is differentiable at qα(x) with strictly positive derivative f(qα(x)|x).

Theorem 2.0.1. If conditions H1-H3 hold, then the sequence of estimators

{q̂α,n(x)} is continuous at F with respect to the Prohorov distance, and is quali-

tatively robust at F .

In order to prove this theorem, we first show that T α,x is continuous at F

with respect to the Prohorov distance π(·, ·), and then that T α,x is continuous as

a function of the observations on R2n except for a set of F n-measure 0. Finally,

we conclude by applying Hampel’s Theorem (1971, Theorem 1a).

As a matter of fact, we obtain a stronger result than the required continuity

of the sequence {T α,x(F̂n)} at F . We prove that the maximal bias

b1(ε, F ) = sup
π(F,G)<ε

|T α,x(G) − T α,x(F )|

converges to 0 as ε ↘ 0. Note also that, as an immediate consequence of conti-

nuity of T α,x at F with respect to π, we obtain from Hampel (1971, Lemma 2)

that the sequence of estimators {q̂α,n(x)} is consistent for qα(x).

The same technique of proof is used to establish the qualitative robustness

of {ϕ̂m,n(x)}. To prove the continuity of {Sm,x(F̂n)} at F with respect to π, we

need to assume that

K1. FX(x) > 0 and ϕ(x) < ν, where ν is a finite positive constant;

K2. FX is continuous on a neighborhood of x;

K3. F is continuous on {x} × R.

Condition K1 on the upper frontier ϕ of the support Ψ of (X,Y ) is quite

reasonable, for instance, in the economic theory underlying efficiency analysis,

since Ψ is always bounded in practice.

As it can be seen in the proof of Theorem 2.0.2 below, if F satisfies both K1

and K3, then any df G on R2 such that π(F,G) < ε satisfies K1 for all ε small

enough with the same constant ν as the model distribution F (i.e., G(x,∞) > 0

and ϕG(x) < ν), and so

Sm,x(G) =

∫ ν

0

(
1 −

[
G(x, y)

G(x,∞)

]m)
dy (2.1)

for all ε > 0 sufficiently small. We also show that, under K1, the functional

Sm,x(F̂n) = Sm,x((X1, Y1), . . . , (Xn, Yn)) can be defined as a point function on



ROBUST NONPARAMETRIC FRONTIER ESTIMATORS 1239

Ψn by

Sm,x((x1, y1), . . . , (xn, yn)) =

∫ ϕ(x)

0

(
1 −

[∑n
i=1 1(xi ≤ x, yi ≤ y)∑n

i=1 1(xi ≤ x)

]m)
dy (2.2)

if
∑n

i=1 1(xi ≤ x) > 0. We prove its continuity on Ψn instead of R2n, except for

a set of F n-measure 0, without making use of assumptions K2 and K3. It should
be clear that the support Ψ endowed with the σ-algebra of its Borel sets defines
a measurable space, which is also complete and separable since it is closed in R2.

Thus, Hampel’s Theorem can be applied to deduce the qualitative robustness of
{Sm,x(F̂n)} at F .

Note that for the quantile framework, we show the continuity of T α,x(F̂n)

as a point function on the complete and separable metric space R2n without
resorting to any assumptions, even those of Theorem 2.0.1.

Theorem 2.0.2. If assumptions K1−K3 hold, then the sequence of estimators

{ϕ̂m,n(x)} is continuous at F with respect to the Prohorov distance, and is qual-

itatively robust at F .

Here also, we show that the maximal bias

b2(ε, F ) = sup
π(F,G)<ε

|Sm,x(G) − Sm,x(F )|

converges to 0 as ε ↘ 0, which implies the continuity of Sm,x at F with respect
to π.

3. Quantitative Robustness: Influence Functions

Let the orders m ∈ N∗ and α ∈]0, 1[ be fixed, and let x ∈ R+ be such
that FX(x) > 0. For the conditional quantile framework, it is convenient to
consider only pairs (α, x) satisfying assumption H3′. Neither H1-H3 nor K2−K3

are needed in this section.
According to Hampel, Ronchetti, Rousseeuw and Stahel (1986, Definition 1,

p.84), the corresponding influence functions of Sm,x and T α,x at F can be defined

by

(x0, y0) ∈ R
2
+ 7→ IF ((x0, y0);S

m,x, F ) =
∂

∂λ
Sm,x(F + λ(∆(x0,y0) − F ))

∣∣∣
λ=0+

,

(x0, y0) ∈ R
2
+ 7→ IF ((x0, y0);T

α,x, F ) =
∂

∂λ
Tα,x(F + λ(∆(x0,y0) − F ))

∣∣∣
λ=0+

,

where ∆(x0,y0)(u, v) = 1(x0 ≤ u, y0 ≤ v) for any (u, v) ∈ R2. Under H3′, it follows

from Aragon, Daouia and Thomas-Agnan (2005, see their proof of Theorem 4.1)
that

IF ((x0, y0);T
α,x, F ) =

α1(x0 ≤ x) − 1(x0 ≤ x, y0 ≤ qα(x))

f(qα(x)|x)FX (x)
. (3.1)
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It is also established that

q̂α,n(x) − qα(x) =
1

n

n∑

i=1

IF ((Xi, Yi);T
α,x, F ) + Rα,x

n ,

where
√

nRα,x
n converges in probability to 0 as n → ∞. Thus IF ((Xi, Yi);T

α,x, F )

represents the approximate contribution, or influence, of the observation (Xi, Yi)

toward the estimation error q̂α,n(x) − qα(x).

On the other hand, it can be easily seen that

IF ((x0, y0);S
m,x, F ) =

m

FX(x)
1(x0 ≤ x)

∫ ∞

0
Fm−1(y|x) [F (y|x) − 1(y0 ≤ y)] dy.

(3.2)

We also have

√
n(ϕ̂m,n(x) − ϕm(x)) =

1√
n

n∑

i=1

IF ((Xi, Yi);S
m,x, F ) + op(1) as n → ∞.

So here also, the influence function measures the asymptotic bias caused by

contamination in the observations (Xi, Yi), i = 1, . . . , n.

Let us start with the robustness properties of the nonparametric estimator

of the order-m expected frontier. This frontier is known to be more robust to

extreme values than the standard nonparametric envelopment estimators FDH

and DEA because it does not envelop all the observed data points. Moreover,

the fact that IF ((x0, y0);S
m,x, F ) is zero when x0 > x ensures that the estimator

ϕ̂m,n(x) is not influenced by outlying points (Xi, Yi) with Xi > x, for any sample

size n. But this estimator is not B-robust since its gross-error sensitivity satisfies

γ∗(Sm,x, F ) = sup
(x0,y0)∈R

2
+

|IF ((x0, y0);S
m,x, F )|

=
m

FX(x)
sup

y0∈R+

∣∣∣∣
∫ ∞

0
Fm−1(y|x) [F (y|x) − 1(y0 ≤ y)] dy

∣∣∣∣

≥ m

FX(x)
sup

y0>ϕ(x)

∣∣∣∣
∫ ∞

0
Fm−1(y|x) [F (y|x) − 1(y0 ≤ y)] dy

∣∣∣∣

=
m

FX(x)
sup

y0>ϕ(x)

∫ y0

0
Fm(y|x)dy

≥ m

FX(x)

[∫ ϕ(x)

0
Fm(y|x)dy + sup

y0>ϕ(x)

∫ y0

ϕ(x)
Fm(y|x)dy

]

=
m

FX(x)

[∫ ϕ(x)

0
Fm(y|x)dy + sup

y0>ϕ(x)
(y0 − ϕ(x))

]
= ∞.
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This reflects the fact that even a single outlier (Xi, Yi) with a level of input

Xi close to x on the left-hand side, if it is far enough from the cloud of data

points in the direction of Y , can attract ϕ̂m,n(x) nearly to its outlying output Yi.

Besides this deficiency, the local-shift sensitivity defined as the smallest Lipschitz

constant the influence function obeys, i.e.,

λ∗(Sm,x, F ) = sup
s6=t∈R2

|IF (s;Sm,x, F ) − IF (t;Sm,x, F )|/||s − t||,

is infinite too since the indicator function x0 7→ 1(x0 ≤ x) has a jump at x.

By || · ||, we denote the usual Euclidean norm on R2. This means that the

nonparametric estimator ϕ̂m,n(x) may also be sensitive to rounding errors.

However, we can show under assumption K1 that γ∗(Sm,x, F ) is finite as fol-

lows. Putting Gλ = F +λ(∆(x0,y0)−F ), the influence function IF ((x0, y0);S
m,x,

F ) is given by (∂/∂λ)Sm,x(Gλ)|λ=0+. Since Gλ(y|x) := Gλ(x, y)/Gλ(x,∞) →
F (y|x) as λ ↘ 0 for every y ∈ R, we obtain the weak convergence of the condi-

tional distribution functions Gλ(·|x)  F (·|x), which implies the weak conver-

gence of the quantile functions G−1
λ (·|x)  F−1(·|x) (i.e., G−1

λ (t|x) → F−1(t|x)

as λ ↘ 0 at every t ∈ [0, 1], where F−1(·|x) is continuous) in view of a van

der Vaart’s Lemma (1998, Lemma 21.2, p.305). Hence, since limt↗1 F−1(t|x) =

limt↗1 qt(x) = q1(x) = F−1(1|x), we have ϕGλ
(x) := G−1

λ (1|x) → F−1(1|x) =

ϕ(x) as λ ↘ 0. By using the fact that ϕ(x) < ν in view of K1, we therefore obtain

ϕGλ
(x) < ν for all λ sufficiently small. Thus Sm,x(Gλ)=

∫ ϕGλ
(x)

0 (1−[Gλ(y|x)]m)

dy is well defined for λ small enough, and can be expressed as

Sm,x(Gλ) =

∫ ν

0
(1 − [Gλ(y|x)]m) dy.

Finally, by deriving with respect to λ, we get

IF ((x0, y0);S
m,x, F ) =

m

FX(x)
1(x0 ≤ x)

∫ ν

0
Fm−1(y|x) [F (y|x) − 1(y0 ≤ y)] dy,

and so the gross-error sensitivity is finite and such that

γ∗(Sm,x, F ) =
m

FX(x)
sup
y0∈R

∣∣∣∣
∫ ν

0
Fm−1(y|x) [F (y|x) − 1(y0 ≤ y)] dy

∣∣∣∣

≤ νm

FX(x)
,

γ∗(Sm,x, F ) ≥ m

FX(x)

∫ ν

0
Fm(y|x)dy

≥ m

FX(x)

∫ ν

ϕ(x)
Fm(y|x)dy = (ν − ϕ(x))m/FX (x) > 0.
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The lower and upper bounds of γ∗(Sm,x, F ) indicate that the expected order-m

frontiers are all the more sensitive to extreme values when the order m is large.

Indeed,

lim
m↗∞

γ∗(Sm,x, F ) = ∞. (3.3)

This means in particular that ϕ̂m,n(x), when considered as an estimator of the

true frontier function ϕ(x) = limm↗∞ ϕm(x), may be influenced by extreme

values or outliers.

Let us now turn to robustness characteristics of the empirical estimator of

the nonstandard conditional α-quantile. As with ϕ̂m,n, the frontier q̂α,n is more

robust to extremes than the FDH and DEA estimators in the sense that it does

not envelop all the observed data points. The estimator q̂α,n(x) also rejects

outlying observations using more inputs than x since IF ((x0, y0);T
α,x, F ) = 0

when x0 > x, for any y0 ∈ R+. But, unlike ϕ̂m,n(x), it possesses a finite gross-

error sensitivity without resorting to assumption K1:

γ∗(T α,x, F ) = sup
(x0,y0)∈R

2
+

|IF ((x0, y0);T
α,x, F )| =

max(α, 1 − α)

f(qα(x)|x)FX (x)
. (3.4)

Moreover, if F (·|x) is continuously differentiable on the support [0, ϕ(x)] with

strictly positive derivative f(·|x), then by using the fact that qα(x) ↗ ϕ(x) as

α ↗ 1, we obtain

lim
α↗1

γ∗(T α,x, F ) =
1

f(ϕ(x)|x)FX (x)
. (3.5)

This implies that, unlike {ϕ̂m,n(x)}, the estimators {q̂α,n(x)} can be resistant to

outliers even for large values of α. Nevertherless, this is not necessarily true when

the conditional density f(·|x) is zero at the frontier ϕ(x). We will see numerical

illustrations of this case in Section 4.

Because of the irregularity of the influence function at (x, qα(x)), the local-

shift sensitivity λ∗(T α,x, F ) is infinite, which means that q̂α,n(x) may be suscep-

tible to rounding errors. However, this is much less important than the fact that

γ∗(T α,x, F ) is finite. We summarize the above results in the following theorem.

Theorem 3.0.3. Let m ∈ N∗ and α ∈]0, 1[ be fixed orders, and let x ∈ R+ be

such that FX(x) > 0.

1. The sequence {ϕ̂m,n(x)}n has infinite gross-error sensitivity γ∗(Sm,x, F ) un-

less K1 holds. In any case, limm↗∞ γ∗(Sm,x, F ) = ∞.

2. Under assumption H3′, {q̂α,n(x)}n has the finite gross-error sensitivity γ∗

(T α,x, F ) given at (3.4). Furthermore, if F (·|x) is continuously differentiable

on the support [0, ϕ(x)] with strictly positive derivative f(·|x), then γ ∗(T α,x, F )

achieves the finite limit (3.5) as α ↗ 1.
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In both cases the local-shift sensitivity λ∗ is infinite.

Note that {Sm,x(F̂n)} and {T α,x(F̂n)} do not in general estimate the same

quantity, but in the limiting case where m tends to infinity and α to one, the

sequences coincide with {ϕ̂n(x)} and can be viewed as estimators of the true full

frontier ϕ(x). Results (3.3) and (3.5) indicate then that extreme order-α frontiers

are more robust than extreme order-m frontiers for estimating ϕ(x). It is also

important to note that, if we choose the order α as a function of n such that

limn→∞ n3/2(1 − α(n)) = 0, the functional T α(n),x(F̂n) = q̂α(n),n(x) estimates

the upper frontier ϕ(x) itself, as proved in Aragon, Daouia and Thomas-Agnan

(2005). Likewise, if m(n) = O(n log(n)) then Sm,x(F̂n) = ϕ̂m(n),n(x) estimates

ϕ(x) and converges to the same Weibull distribution as ϕ̂n(x) and T α(n),x(F̂n)

(see Cazals, Florens and Simar (2002)). The advantage of quantile-type fron-

tiers is seen by comparing limn→∞ γ∗(·, F ) of the estimators {Sm(n),x(F̂n)} and

{T α(n),x(F̂n)} of ϕ(x).

Theorem 3.0.4. Let x ∈ R+ be such that FX(x) > 0 and let {α(n), n ≥
1} and {m(n), n ≥ 1} be nondecreasing sequences such that 0 < α(n) < 1,

limn→∞ α(n) = 1, m(n) ≥ 1 and limn→∞ m(n) = ∞.

1. γ∗(Sm(n),x, F ) is infinite for any n unless K1 holds, and limn↗∞ γ∗(Sm(n),x,

F ) = limm↗∞ γ∗(Sm,x, F ) = ∞.

2. If F (·|x) is differentiable at qα(n)(x) with strictly positive derivative f(qα(n)(x)

|x), then γ∗(T α(n),x, F ) = max(α(n), 1 − α(n))/f(qα(n)(x)|x)FX (x). If F (·|x)

is continuously differentiable on [0, ϕ(x)] with derivative f(·|x) > 0, then

limn↗∞ γ∗(T α(n),x, F ) = limα↗1 γ∗(T α,x, F ) < ∞.

The explicit values of the orders m(n) and α(n) are not available. In practice,

we can choose ϕ̂m(n),n and q̂α(n),n to be simply the usual FDH frontier if there are

no influential observations in the data. In presence of such observations, we can

determine the values m(n) and α(n) by using the simple tool explained below,

which also allows one to identify potential outliers.

A methodology for outliers detection using gross-error sensitivity

This is achieved through a sensitivity analysis of extreme order-α frontiers.

We propose to choose several large values of α, say, α = 0.97, 0.98, 0.99, 0.995,

0.999. Then the basic tool is a plot of γ∗(T α,x, F ) as a function of x, for the

different values of α. By construction, if there are no outliers, the corresponding

curve to each value of α should have homogeneous fluctuations (small jumps

followed by smooth decreasing slopes). Any strong deviation of at least one of

these order-α curves indicates the potential existence of outliers. For instance,

if a curve shows a severe jump at a point xi followed by an immediate fall, the
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FDH observation (xi, yi = ϕ̂n(xi)) is a potential outlier. Indeed, if the suspicious

point (xi, ϕ̂n(xi)) is far enough from the cloud of data points in the direction of

Y , then the quantile frontiers of extreme orders may be attracted by the outlier

(xi, ϕ̂n(xi)), but they come back down immediately, which generates a “free fall”

of the empirical version of γ∗ after the jump. The next section illustrates the

idea with a data set.

As illustrated in Aragon, Daouia and Thomas-Agnan (2005, see Examples

1−3), the extreme order-m frontiers are more sensitive to outliers than the order-

α frontiers that seems more appropriate for identifying anomalous data. But

they continue to grow after each jump, and this might make the identification of

potential outliers more difficult than with extreme quantile frontiers.

Our semi-automatic procedure based on the analysis of order-α (respectively

order-m) curves offers also an appealing and useful way to determine α(n) (re-

spectively m(n)). The order α(n) (respectively m(n)) will correspond to the

largest value of α (respectively m) such that the order-α (respectively order-m)

curve shows no strong deviation when plotted. For instance, if the curve corre-

sponding to α = 0.99 shows no strong deviation whereas that corresponding to

α = 0.995 is dramatically influenced, then 0.99 ≤ α(n) < 0.995. We can improve

the bracket for α(n) with new plots using other values α ∈]0.99; 0.995[. We ob-

tain m(n) in the same way. Even more strongly we can pick a precise value of

m(n) since the order m is discrete.

4. Numerical Illustration

In this section, we present two simulated examples to illustrate the case where

there is no mass at the upper boundary, i.e., when f(ϕ(x)|x) = 0. These examples

are used in Florens and Simar (2005) where the authors show, in particular, that

the order-m frontier estimators are more robust to outliers than the OLS-shifted

frontier (Greene (1980)). We also show how the gross-error sensitivity can be

used as a diagnostic tool to detect anomalous data.

4.1. Example 1

We first consider a case where the monotone boundary of the support of

(X,Y ) is linear. We choose (X,Y ) uniformly distributed over the region D =

{(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x}. The upper boundary is given by the frontier func-

tion ϕ(x) = x. Here, the conditional df is F (y|x) = 2x−1y−x−2y2, for 0 < x ≤ 1

and 0 ≤ y ≤ x, and the conditional α-quantile is qα(x) = x(1 −
√

1 − α), for 0 <

x ≤ 1 and 0 ≤ α ≤ 1. The gross-error sensitivity for the sequence of α-quantile

frontier estimators is then given by γ∗(T α,x, F ) = max(α, 1 − α)/(2x
√

1 − α).

The order-m frontier can be computed as ϕm(x) = x(1 − Am), where Am =
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∑m
j=0 m!(−1)m−j2j/(j!(m − j)!(2m − j + 1)). For 0 < x < 1 and (x0, y0) ∈ R2,

the influence function is given by

IF ((x0, y0);S
m,x, F ) =

{
0, if x0 > x,

m
FX(x) I

m,x(y0), otherwise,

where

I
m,x(y0) =





Ix,m(0, 1), if y0 ≥ 1,

Ix,m(0, 1) − Ix,m−1(y0, 1), if 0 < y0 < 1,

Ix,m(0, 1) − Ix,m−1(0, 1), otherwise,

(4.1)

Ix,m(a, b) =

∫ b

a
Fm(y|x)dy =

m∑

j=0

m!(−1)m−j2jxj−2m [b2m−j+1 − a2m−j+1]

j!(m − j)!(2m − j + 1)
.

Therefore, the order-m gross-error sensitivity can be computed as

γ∗(Sm,x, F ) =
m

FX(x)
max {Ix,m(0, 1); Ix,m−1(0, 1) − Ix,m(0, 1)} . (4.2)

In this particular example, the order-α and order-m frontiers are both linear in

x and can have the same slope. They coincide if and only if α = 1−A2
m. In this

case, the sequences {q̂α,n}n and {ϕ̂m,n}n estimate the same frontier (ϕm = qα)
and their reliability can be analyzed by comparing their γ∗ values. In Table

1, we give γ∗(T α,x, F ) (respectively γ∗(Sm,x, F )) for the corresponding frontier

estimators {q̂α,n(x)} (respectively {ϕ̂m,n(x)}) when x = 1/4, 1/2 and 3/4.

As stated by Hampel, Ronchetti, Rousseeuw and Stahel (1986, p.43), the

most important robustness requirement, besides qualitative robustness, is a low

γ∗. From this basis, it is clear that {q̂α,n(x)} is more robust than {ϕ̂m,n(x)}
for estimating the linear partial frontier ϕm(x) ≡ qα(x), since γ∗(T α,x, F ) <

γ∗(Sm,x, F ), as can be seen from Table 1. Another remark of interest lies in

the limit case where γ∗(Sm,x, F ) explodes, whereas γ∗(T α,x, F ) remains small as

α → 1 and m → ∞. This indicates that {q̂α,n(x)} is more resistant to extreme

values than {ϕ̂m,n(x)} for estimating the full frontier ϕ(x) = limα↗1 qα(x) =

limm↗∞ ϕm(x).

Note that for a fixed value of α or m, the corresponding γ∗ decreases with

respect to x, which indicates that the estimators q̂α,n(x) and ϕ̂m,n(x) are more

resistant to extreme values as x increases. This is no surprise due to the condi-

tioning by X ≤ x, since these nonparametric estimators are not so good at the

border where the number of all points in the sample with input value smaller

than x is very small.

Note also that for a fixed value of x, γ∗ increases with respect to the orders

α and m. This is natural since both nonparametric partial frontiers converge to

the non-robust FDH frontier as α → 1 and m → ∞.
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Table 1. The gross-error sensitivities of the sequences {ϕ̂m,n(x)}n and

{q̂α,n(x)}n for estimating the linear frontier ϕm(x) ≡ qα(x).

Results for Example 1

m γ∗(Sm,1/4, F ) γ∗(Sm,1/2, F ) γ∗(Sm,3/4, F )

1 9 1.3333 0.9877

2 68 2.1333 1.6856
3 673 2.7429 2.2675

4 4785 3.2508 2.7799

5 4.5227e+04 3.6941 3.2431

10 1.3557e+09 5.4052 5.1040
15 5.1269e+13 6.6993 6.5178

20 1.4955e+18 27.2388 7.6771

25 5.5683e+22 153290 9.0947

30 1.6209e+27 1.2986e+10 352.793

α = 1 − A2
m γ∗(T α,1/4, F ) γ∗(T α,1/2, F ) γ∗(T α,3/4, F )

0.5556 1.6667 0.8333 0.5556

0.7156 2.6833 1.3417 0.8944
0.7910 3.4607 1.7304 1.1536

0.8349 4.1092 2.0546 1.3697

0.8635 4.6752 2.3376 1.5584

0.9270 6.8598 3.4299 2.2866

0.9501 8.5102 4.2551 2.8367
0.9622 9.8913 4.9457 3.2971

0.9695 11.1027 5.5514 3.7009

0.9745 12.1947 6.0974 4.0649

4.2. Example 2

Let us now consider a more realistic example from an economic point of view.

We choose a non-linear monotone upper boundary given by the Cobb-Douglas

model Y = X1/2 exp (−U), where X is uniform on [0, 1] and U , independent of X,

is Exponential with parameter λ = 3. This is a standard example in the literature

(see, e.g., Gijbels, Mammen, Park and Simar (1999), Florens and Simar (2005)

and Simar (2003)).

Here, the upper boundary of the support of (X,Y ) is given by the frontier

function ϕ(x) = x1/2. For 0 < x ≤ 1 and 0 ≤ y ≤ ϕ(x), the conditional df is

F (y|x) = 3x−1y2 − 2x−3/2y3 and, for 0 ≤ α ≤ 1, the conditional α-quantile

is given by qα(x) = x1/2J(α), where J(α) = cos ((arccos(1 − 2α) + 4π)/3) +

1/2. The corresponding α-gross-error sensitivity is γ∗(T α,x, F ) = max(α, 1 −
α)/(6x1/2J(α)(1−J(α))). The order-m frontier here can be computed as ϕm(x) =
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x1/2(1 − Bm), where Bm =
∑m

j=0 m!(−2)m−j3j/(j!(m − j)!(3m − j + 1)). For

0 < x < 1 and (x0, y0) ∈ R2, its influence function IF ((x0, y0);S
m,x, F ) is 0 if

x0 > x and (m|x)Im,x(y0) otherwise, where Im,x(y0) is given by (4.1), with

Ix,m(a, b) =

m∑

j=0

m!(−2)m−j3jx
j−3m

2
[b3m−j+1 − a3m−j+1]

j!(m − j)!(3m − j + 1)
.

The corresponding m-gross-error sensitivity can be computed with (4.2) where

FX(x) = x.

In this particular case, the order-α and order-m frontiers are both log-linear

in x and coincide if and only if α = (1 − cos[3 arccos(1/2 − Bm) − 4π])/2. For

such a pair (α,m), the partial concave frontier qα ≡ ϕm can be estimated by

{q̂α,n} as well as {ϕ̂m,n}. The numerical results are displayed on Table 2. We

remark here also that γ∗(Sm,x, F ) is larger than γ∗(T α,x, F ) and that this latter

γ∗ remains small for extreme values of α, which is not the case for the order-m

gross-error sensitivity.

Table 2. γ∗ of the sequences of estimators {ϕ̂m,n(x)}n and {q̂α,n(x)}n for esti-

mating the concave frontier qα(x) ≡ ϕm(x), where α = (1−cos[3 arccos(1/2−
Bm) − 4π])/2.

Results for Example 2

m γ∗(Sm,1/4, F ) γ∗(Sm,1/2, F ) γ∗(Sm,3/4, F )

1 4 1.1716 0.7514

2 10.9714 1.8309 1.1971

3 49.3714 2.3261 1.5603

4 154.6741 2.7359 1.8797

5 807.1289 3.0928 2.1697
10 670000 4.4721 3.3592

15 877380000 5.928 4.293

25 1.7296e+19 8.3577e+09 9.3482e+03

α γ∗(T α,1/4, F ) γ∗(T α,1/2, F ) γ∗(T α,3/4, F )

0.5 0.6667 0.4714 0.3849
0.6886 0.9832 0.6952 0.5676

0.7749 1.2138 0.8583 0.7008

0.8240 1.4031 0.9921 0.8101

0.8557 1.567 1.108 0.9047
0.9242 2.1957 1.5526 1.2677

0.9486 2.6698 1.8878 1.5414

0.9997 36.6755 25.9335 21.1746
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We repeated the same exercise with many other values of x and (m,α) leading

to the same advantage of the quantile-type estimators when estimating either the

true partial frontier or the full frontier.

4.3. Example 3

We consider a data set concerning the delivery activity of the postal services

in France. The data comes from 4,000 post offices observed in 1994, and have been

previously analyzed in Cazals, Florens and Simar (2002) and Aragon, Daouia

and Thomas-Agnan (2005). For each post office i, the input xi is the labor cost

measured by the quantity of labor, and the output yi is the volume of delivered

mail in number of objects. As can be seen on Figure 1, the data set contains at

least the two outlying observations (965, 7207) and (1051, 11762).
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Figure 1. Plot of the volume of delivered mail against the quantity of labor

for the 4,000 post offices.

We first propose to make a plot of the influence function of an order-m fron-

tier estimate and of an order-α frontier estimate. Take x0 ∈ [mini xi;maxi xi] and

y0 ∈ [mini yi;maxi yi]. The influence of (x0, y0) on an order-m frontier estimate

ϕ̂m,n(x) (respectively on an order-α estimate q̂α,n(x)) can be measured by the

value of a sample version of the influence function given by (3.2) (respectively

(3.1)). The sample versions are obtained by replacing the unknown quantities
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FX(x), qα(x), F (·|x) and f(qα(x)|x) with estimated quantities. FX(x) and qα(x)

are simply estimated by F̂X,n(x) and q̂α,n(x), whereas the estimator of F (·|x)

is a triweight kernel estimator (with an empirical choice of the bandwith) from

which we also derive an estimator of the density f(qα(x)|x).
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Figure 2. Plot of the quantile frontier estimate for α = 0.99 (solid line) and

the order-m = 50 estimate (dashed line) for the 3998 post offices (2 outliers

removed).

In order to compare the estimation methods, we drop the two outliers and

consider a quantile frontier estimate with α = 0.99 and an order-m estimate with

m = 50. Figure 2 shows that for this parameters choice, the order-α frontier

estimate is very close to the order-m estimate. Considering again the 4,000

observations (the two outliers included), Figure 3 gives the plots of the empirical

influence function for the quantile estimate of order α = 0.99 and for the order-m

(m = 50) estimate at the value x = 1, 338, the median of the xi’s. It is clear that

the influence function of the order-50 estimate is much larger than the influence

function of the quantile estimate. This indicates that q̂0.99,n(x) is more resistant

to the outlying post offices than ϕ̂50,n(x). Note also that for given α and x,

the influence function of the quantile frontier estimator, as well as its empirical

counterpart, takes only three different values according to the values (x0, y0).
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Recall that we have

IF ((x0, y0);T
α,x, F ) =





α cα(x) > 0, if x0 ≤ x, y0 > qα(x),

(α − 1) cα(x) < 0, if x0 ≤ x y0 ≤ qα(x),

0, if x0 > x,

with cα(x) = 1/f(qα(x)|x)FX (x).
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Figure 3. Plots of the empirical influence function for the 0.99 quantile

estimate (left plot) and for the 50-order estimate (right plot) at the median

of the xi’s for the 4,000 post offices.

Now, we focus on the quantile frontier estimates and illustrate the use of the

influence function as a tool for detecting influential observations. In practice,

we are interested in quantile frontier estimates for large values of α (at least

α ≥ 1/2), so we have α cα(x) ≥ |α− 1| cα(x) and the maximum influence (which

corresponds to the gross-error sensitivity) is achieved for x0 < x and y0 > qα(x).

Figure 4 shows the function x 7→ αĉα(x), which is a sample version of the gross-

error sensitivity, for α = 0.99 (left plot) and α = 0.999 (right plot). On both

plots, we can see that for small x, the influence function is quite large due to

a border problem. Indeed, there are too few observations for estimating the

conditional df F (·|x). For α = 0.99, apart from the smallest values of x, no

observation is particularly influential. That’s no more true when considering

α = 0.999. In this case, we detect that the two outlying observations previously

mentioned heavily influence the estimate. This can be explained as follows: the

quantile frontier of order 0.99 does not allow one to identify the two outlying post

offices because it is very resistant to these outliers, as shown in Figure 4 (left plot),

whereas the frontier of order 0.999 coincides with the non-robust FDH frontier

on [mini xi; 1051], as seen from Figure 7 of Aragon, Daouia and Thomas-Agnan
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(2005). Therefore, the use of very extreme-order α frontiers is necessary to

detect anomalous data. Now, for the choice of the order α(n) of the robust

quantile estimator of ϕ, Figure 4 indicates to us the choice of α(n) in the interval

[0.99; 0.999[.
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Figure 4. Plots of the empirical gross-error sensitivity of quantile estimates

for α = 0.99 (left plot) and α = 0.999 (right plot) against the value of x for
the 4,000 post offices.

5. Concluding remarks

The most popular nonparametric methods of estimating a monotone bound-

ary, such as the DEA or the FDH methods, are highly non-robust. Cazals,

Florens and Simar (2002) and Aragon, Daouia and Thomas-Agnan (2005) have

proposed alternatives which are shown here to satisfy some interesting robust-

ness properties. Both methods are qualitatively and B-robust, but the gross-error

sensitivity of the order-m frontier tends to infinity with m. On the contrary, as

soon as we assume that the conditional density function is not null and is contin-

uous on its support, the gross-error sensitivity of the α-quantile estimators tends

to a finite limit when α tends to one. In the case where this last assumption

is not fulfilled, we consider two simulated examples and propose an empirical

comparison of the gross-error sensitivities for different values of α and m. The

results clearly favor the quantile approach. We would like to point out that

we are concerned with nonparametric estimators and a nonparametric model.

The use of robustness concepts such as the qualitative robustness and indica-

tors derived from the influence function is usually devoted to parametric statis-

tics in parametric models (Hampel, Ronchetti, Rousseeuw and Stahel (1986) and

Huber (1981)). But, since the estimators we consider depend in a quite simple

way on the joint cumulative distribution function of the data, we can consider



1252 ABDELAATI DAOUIA AND ANNE RUIZ-GAZEN

robustness properties in a nonparametric context. Note that this is no more

possible in a standard quantile regression context because the estimators are not

simply defined as functionals of the joint cumulative distribution function. There

is another difference between the usual quantile approach and the non-standard

one proposed in Aragon, Daouia and Thomas-Agnan (2005). While in the latter

case, the influence function is bounded in both coordinates (input and output),

in the former case the quantiles (considered in a parametric context) have only

a bounded influence function in the output argument.

Acknowledgement

We are grateful to the referees and an associate editor for their helpful com-

ments and suggestions.

References

Aragon, Y., Daouia, A. and Thomas-Agnan, C. (2005). Nonparametric frontier estimation: a

conditional quantile-based approach. Econom. Theory 21, 358-389.

Banker, R. D. (1993). Maximum likelihood, consistency and data envelopment analysis: a

statistical foundation. Management Sci. 39, 1265-1273.

Cazals, C., Florens, J-P. and Simar, L. (2002). Nonparametric frontier estimation: a robust

approach. J. Econometrics 106, 1-25.

Daouia, A. and Ruiz-Gazen, A. (2004), Robust nonparametric frontier estimators: qualita-

tive robustness and influence function. Technical report, GREMAQ et LSP, Université de
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