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Abstract: We investigate the fitting of response curves in the presence of a con-

tinuous covariate. A model is presented in which the expected random response

curves, viewed as functions of time and conditional on the covariate, are products

of a smooth mean function of time and a smooth function of the covariate. We

propose a simple and straightforward estimation scheme for the component func-

tions of the product, and provide basic consistency results for the estimates of the

model components. This functional multiplicative effects model for longitudinal

data is compared with an unrestricted nonparametric smooth surface model. In an

application to the egg-laying behavior of 936 female medflies, the shape of the egg-

laying curves is related to the total number of eggs laid by an individual fly. This

sheds light on how reproduction intensity is regulated at the individual level. The

proposed multiplicative effects model is compared with an unrestricted multivariate

smoothing approach.
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1. Introduction

Studies on aging, longevity and reproduction are often longitudinal with data
being recorded repeatedly for an individual over a period of time. If longitudinal
measurements are made on a suitably dense grid, such data can be regarded as a
sample of curves or as functional data. This is frequently the case in experimental
aging research, where fruit flies (Müller, Wang, Capra, Liedo and Carey (1997))
or nematodes (Wang, Müller, Capra and Carey (1994)) are commonly used as
experimental subjects due to their relatively short lifespans and the feasibility of
mass rearing.

The analysis of a sample of curves is often referred to as “Functional Data
Analysis (FDA)”. While in many instances, longitudinal data may be viewed as
curve data, the FDA approach differs from traditional longitudinal data analysis.
Standard methods for longitudinal data are typically parametric, as exemplified
by the popular GEE approach in Diggle, Heagerty, Liang and Zeger (2002) or
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the nonlinear modeling approach in Davidian and Giltinan (1995). The FDA
approach, in contrast, is intrinsically nonparametric and often involves smoothing
methods.

Such nonparametric approaches have recently emerged as promising and flex-
ible tools for the analysis of longitudinal data. For instance, Brumback and Rice
(1998) apply spline smoothing methods to a set of hormone data in a functional
analysis of variance setting, and Rice and Wu (2001) and Shi, Weiss and Taylor
(1994) use B-splines for sparsely sampled longitudinal AIDS data in a mixed
effects model. The attractiveness of the nonparametric approach has been well
documented in the analysis of the Zürich longitudinal growth study, where a
midgrowth spurt around age seven was detected in Gasser, Müller, Köhler, Moli-
nari and Prader (1984). An insightful introduction to the various nonparametric
approaches for longitudinal or functional data is provided in the monograph by
Ramsay and Silverman (1997).

We consider a parsimonious nonparametric model for fitting longitudinal
response curve data with multiplicative covariate effects. While product-type
models were also investigated by Breiman (1991) and especially by Staniswalis
and Lee (1998) in a very interesting analysis of variance type setting, we propose
a particularly simple implementation and the application to functional data.
Our approach is demonstrated and motivated by a sample of egg-laying curves
representing the entire reproductive history of 936 female Mediterranean fruit
flies (medflies for short).

The data for our analysis originated from experiments in biodemographic
research, where daily fecundity, quantified for individual flies by the number
of eggs laid per day, was recorded for a large sample of 1,000 female medflies.
Among these, 64 flies did not lay any eggs and were excluded from the analysis,
thus resulting in a sample of 936 curves. This seems to be the first extensive
experiment where the entire reproductive history of daily fecundity was examined
for a large sample. Details of the data and experimental background are described
in Carey, Liedo, Müller, Wang and Chiou (1998), where one can also find a
preliminary analysis of the daily egg-laying data and the relation between lifetime
and reproductive success as measured by the total number of eggs produced
during the lifetime of a medfly (also called lifetime reproduction).

Our paper is motivated by recent increased interest in the assessment of
reproductive patterns and their implications. Reproduction essentially serves
as a proxy for evolutionary fitness. It has been conjectured that an increase
in reproductive activity has a negative effect on longevity, due to a trade-off
of resources between maintenance and reproduction, and this has led to the
notion of a “cost of reproduction” (Partridge and Harvey (1985)). However
detailed longitudinal data on reproductive activity, as measured by daily egg
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laying, were hardly ever recorded. Previous biological studies that looked at much
rougher measures of egg-laying in different age groups include Aigaki and Ohba
(1984) and Partridge (1988). These and other studies showed that egg-laying
activity declines as insects grow older. This finding was also discussed in Carey
et al.(1998), where this phenomenon was termed “reproductive senescence”, and
its connections to the “cost of reproduction” hypothesis were explored.

Since the total number of eggs produced by a fly is a measure of reproductive
success, it is of biological interest to study the relationship between the dynamics
of egg-laying, in the form of a fecundity curve, and lifetime reproduction, in
terms of total number of eggs produced. Pertinent biological questions which
we address in this paper are the following. How is egg-laying distributed over
lifetime in dependence on lifetime reproduction? Can one find a relatively simple
and interpretable relationship between the shape of the egg-laying curve and the
total number of eggs laid?

The paper is organized as follows. The multiplicative effects model is de-
scribed in Section 2, and a more general class of smooth surface models is the
theme of Section 3. Issues regarding smoothing and estimation of the compo-
nents of the multiplicative effects model are discussed in Section 4, which also
contains basic consistency results for the proposed estimates. Section 5 is de-
voted to the application to the medfly egg-laying data, and concluding remarks
are in Section 6.

2. The Multiplicative Effects Model

We now describe a multiplicative model which provides a framework for
the study of these questions and, in particular, leads to a simple and easily
interpretable class of functional regression models. Assume that one has a sample
of n individuals and, for the ith individual, one observes (Zi, Yi(t)) where Zi is
a vector of covariates and Yi is a response curve observed on a time interval I,
i.e., is an infinite-dimensional dependent variable. The following Multiplicative
Effects Model implements the idea that in many situations the covariates may
have a multiplicative effect on the response curve,

(M1) Yi(t) = µ(t)φ(Zi) + ei(t), i = 1, . . . , n.

Here, the ei(t) are i.i.d. random error processes, independent of the covariate
Z, satisfying

Ee(t) = 0, Ee2(t) <∞, t ∈ I. (1)

Both µ and φ are smooth functions that are twice continuously differentiable; we
require 0 <

∫
µ(t) dt <∞ and

Eφ(Z) = 1, (2)
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to assure identifiability of the components of model (M1). The assumptions imply
EY (t) = µ(t), the population mean curve.

Since the shapes of functions µ and φ are arbitrary, and the distribution of the
random error e(t) is also unrestricted, model (M1) is nonparametric. In Section
5 we illustrate the use of this model for the egg-laying data. In this application,
Y (t) is the fecundity curve for a fly. The covariate is one-dimensional in this
case, Z stands for the lifetime reproduction of eggs, and µ(t) is the population
average number of eggs laid at age t, the baseline fecundity curve.

Under model (M1), the conditional fecundity curves E[Y (t)|Z] of female
medflies are proportional to the baseline fecundity curve µ(t), where the mul-
tiplying factor depends on Z. In our data analysis in Section 5, the covariate
effects function, φ(z), is seen to be an increasing function of z, as expected for
biological reasons. Our model then implies that flies with higher lifetime repro-
duction simply lay proportionally more eggs daily. The Multiplicative Effects
Model (M1), if applicable, then provides a simple and biologically appealing way
to summarize the variation of the complicated individual reproductive histories
of female medflies across the population.

We note that for model (M1),

E[Y (t)|Z] = µ(t)φ(Z) (3)

and, owing to (2),
µ(t) = E[Y (t)], (4)

φ(z) =
E[Y (t)|Z = z]

E[Y (t)]
. (5)

These relations prove useful for the construction of estimators for µ and φ in
Section 4.

3. The Smooth Functional Surface Model

Our main model is the Multiplicative Effects Model (M1), which incorporates
the covariate Z by allowing it to have a smooth multiplicative influence on the
mean response function µ(t). A smooth influence of a covariate effect on the
regression function can be modeled in various alternative ways. One approach
fits a mean surface which is smooth in both time and covariate. The resulting
Smooth Functional Surface Model is

(M2) Yi(t) = m(t, Zi) + ei(t), i = 1, . . . , n.

As above, the error process e(t) is required to satisfy (1) and m(·, ·) is a smooth
(say twice differentiable) function in both arguments. In this model, the regres-
sion function is

E[Y (t)|Z] = m(t, Z), (6)
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which allows for arbitrarily complex interactions between time and covariate.
Since the form of m(·, ·) is completely unspecified, model (M2) contains the

Multiplicative Effects Model (M1) as a special case. Model (M2) has the drawback
of a slower (higher-dimensional) rate of convergence and increased computational
effort as compared to model (M1). In addition, it is less readily interpretable.

We note that the covariance of the errors Cov (e(t), e(s)) needs to decline fast
enough as |t− s| → ∞ so as to enable consistent smoothing of e(t) if sampling
occurs at a regular grid; for details on sufficient conditions we refer to Hart and
Wehrly (1986). For simplicity of presentation, and because our data application
involves a one-dimensional covariate, we assume without loss of generality that
the covariate Z is in R.

For higher dimensional Z, various options exist: the product model can
be extended to allow for a one-dimensional factor in each covariate; a second
option is projection to one dimension, or a fully nonparametric smooth analysis,
with the associated well known computational and rate of convergence cost of
employing higher dimensional smoothers, owing to the “curse of dimensionality”.
Model (M1) and its higher dimensional versions implement dimension reduction
since these models contain only one-dimensional nonparametric components, as
compared to higher dimensional nonparametric components such as the two-
dimensional nonparametric component m(·, ·) that appears in model (M2). A
class of more general models is given by m(t, Z) = H(γ1(t), γ2(Z)), where H is a
known link function and γ1, γ2 are smooth univariate functions. In model (M1),
we chose m(t, Z) = γ1(t)γ2(Z), selecting H(x1, x2) = x1x2. Another possibility
would be an additive mean surface structure with H(x1, x2) = x1 + x2. The
latter was exploited in Zeger and Diggle (1994).

4. Estimation of the Smooth Components

4.1. Smoothing

Both (M1) and (M2) are nonparametric models, hence smoothing methods
are applied to estimate the various components of the mean surfaces. We first
describe the smoothing procedures involved. Let (Ui, Vi), i = 1, . . . , n, be generic
data in R

2 with underlying regression function g(u) = E (V |U = u). We define
the nonparametric regression function estimate by ĝ(u) = S(u, b, (Ui, Vi)i=1,...,n),
where n is the number of data in the scatterplot and b is the bandwidth or
smoothing parameter of the smoother S.

Generally a smoother will satisfy, for a sequence τn → 0, that

S(u, b, (Ui, Vi)i=1,...,n) = g(u) +Op(τn). (7)
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The rate of convergence τn depends on the particular choice of smoothing method
and bandwidth sequence. Common smoothing techniques include kernel estima-
tors, splines or local polynomial fitting.

For our application, we choose the locally linear smoother, denoted by SL,

which is obtained by fitting weighted least squares lines to the data in local win-
dows. This smoother has a number of nice features such as automatic adjustment
to estimation near endpoints, compare Fan (1992, 1993). A formal definition is
to denote the minimizers of the weighted sum of squares

arg min
a0

min
a1

n∑
i=1

K

(
u− Ui
b

)
[Vi − (a0 + a1(u− Ui))]

2

by â0 and â1, and to set

SL(u, b, (Ui, Vi)i=1,...,n) = â0. (8)

Here the kernel weights K((u− Ui)/b) are determined by a nonnegative ker-
nel function K and bandwidth b. We use the Bartlett-Parzen-Epanechnikov
kernel K(x) = (1 − x2)1{|x|≤1}, which is the optimal weight function for local
weighted least squares fitting (Müller (1987)). The value of the smoother SL,
fitting local lines at the argument u, is the estimated intercept of a line fitted
by weighted least squares locally to only those data which fall into the window
[u− b, u+ b].

The above smoother (8) is for one-dimensional covariates U only. If the
covariates are multi-dimensional, as is the case in model (M2), then multivariate
smoothing methods are needed. We consider a two-dimensional smoother as
required for fitting the fecundity data to model (M2), aiming at the regression
function h(x1, x2) = E(Y |X1 = x1, X2 = x2). In analogy to the one-dimensional
case, we choose as smoother the local weighted least squares fitting of planes,
noting as above that other smoothers such as two-dimensional kernel estimators
or thin plate smoothing splines could be used alternatively.

Given scatterplot data with bivariate covariates (Xi1,Xi2, Yi), i = 1, . . . , n,
the locally fitted plane is then obtained by employing the smoother SL,

ĥ(x1, x2) = SL((x1, x2), (b1, b2), (Xi1,Xi2, Yi)i=1,...,n) = â0, (9)

where (â0, â1, â2) are the minimizers of the local weighted sum of squares

n∑
i=1

K

(
x1 −Xi1

b1
,
x2 −Xi2

b2

)
[Yi − (a0 + a1(Xi1 − x1) + a2(Xi2 − x2)]

2 .

Here, K(·, ·) ≥ 0 is a real-valued kernel function, for example a two-
dimensional analogue of the Epanechnikov weight function, K(u, v) = [1 −
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(u2 + v2)1/2]1{u2+v2≤1} , and (b1, b2) is a pair of bandwidths, aligned with the
coordinate axes. This corresponds to the local fitting of a weighted least squares
plane in the window and evaluating it at the midpoint of this window.

4.2. Estimation

In practice, functional data Yi(t) are typically available in discretized form,
i.e., the actual measurements are Yi(tij), j = 1, . . . , ni, i = 1, . . . , n, tij denoting
the time of the jth measurement on the ith-subject. For the fecundity data, the
measurements (which correspond to the number of eggs laid per day) were taken
daily and ni thus corresponds to the number of days during which the ith medfly
is alive. In this data application, the measurement times are equally spaced by
day and thus tij = tj.

When applying smoother (9) for the Smooth Functional Surface Model (M2),
it is natural to proceed with estimates

Ê[Y (t)|Z = z] = m̂(2)(t, z) = SL((t, z), (bµ1 , bµ2), (tij , Zi, Yi(tij))1≤i≤n,1≤j≤ni).
(10)

Then we obtain a fit for the process Yi(t) by means of the estimate of
E[Y (t)|Z = Zi] given by

Ŷ
(2)
i (t) = m̂(2)(t, Zi). (11)

Useful for model checking and diagnostics are the leave-one-curve-out predictors

Ŷ (−i)(t) = m̂(−i)(t, Zi), (12)

where m̂(−i) is the above estimate (10) of m, constructed from a reduced sample,
in which the data Zi and (Yi(tj), j = 1, . . . , ni) are omitted. The difference
‖Y (t) − Ŷ (−i)(t)‖, measured in a suitable function norm, then provides a more
reliable prediction error than ‖Y (t) − Ŷ (2)(t)‖.

Estimation in the Multiplicative Effects Model (M1) requires additional con-
siderations. From (3),

∫
E[Y (t)|Z]dt = φ(Z)

∫
µ(t)dt = φ(Z)c∗−1 for some con-

stant c∗, 0 < c∗ < ∞. It follows that φ(Z) = c∗
∫
E[Y (t)|Z]dt. Plugging this

into (3) and following (4), we obtain

E[Y (t)|Z] = c∗E[Y (t)]
∫
E[Y (t)|Z]dt. (13)

Accordingly, the problem of estimating m can be reduced to the problem of
estimating the two functions µ(t) = E[Y (t)], and ψ(z) =

∫
E[Y (t)|Z = z]dt =

E[
∫
Y (t)dt|Z = z].
Natural smoothed estimates are obtained by replacing the expectation in µ

with an averaged smoothed curve, and the conditional expectation in ψ with
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a nonparametric regression smoother, substituting the integral with a Riemann
sum. These ideas lead to the estimates

µ̂(t) =
1
n′

n∑
i=1

S(t, bµ, (tij , Yi(tij))j=1,...,ni)1{tini
≥t}, (14)

where n′ =
∑n
i=1 1{tini

≥t}, thus averaging over those smoothed curves which have
actual measurements in the neighborhood of t, and

ψ̂(z) = S(z, bψ , (Zi, qi)i=1,...,n), (15)

where qi is an estimate of the integral
∫
Yi(t)dt, e.g., qi =

∑ni
j=1 Yi(tij)[tij−ti(j−1)]

with ti0 = 0. Consistency will require that for irregular designs, we have an
asymptotic design density which is bounded away from 0 on the common range
of the individual curves.

We note that in the construction of these estimates,we apply one-dimensional
smoothers to either independent data as in (15) or, in the equidistant case at least,
to data with covariance of the order n−1 as in (14). In either case, nonparamet-
ric rates of convergence for estimating one-dimensional functions apply, so that
(conditional) mean squared errors are of the order n−4/5 for twice continuously
differentiable functions µ and ψ. To estimate the regression function m(t, z) =
E[Y (t)|Z = z] = c∗µ(t)ψ(z) we also require an estimate of the constant c∗ which
appears in (13). Note that c∗ = arg minc

∑n
i=1

∑ni
j=1 {Yi(tij) − cµ(tij)ψ(Zi)}2,

since m(t, Z) = E[Y (t)|Z] provides the best linear predictor for Y (t) given Z.
This motivates the estimator

ĉ∗ = arg min
c

n∑
i=1

ni∑
j=1

{
Yi(tij) − cµ̂(tij)ψ̂(Zi)

}2
, (16)

substituting µ̂ in (14) and ψ̂ in (15) for µ and ψ. Then (14)−(16) lead to our
proposed estimate for the product surface,

m̂(1)(t, z) = ĉ∗µ̂(t)ψ̂(z). (17)

In analogy to (11), the prediction for process Yi(·) is

Ŷ (1)(t) = ĉ∗µ̂(t)ψ̂(Zi), (18)

and the leave-one-curve-out predictors are found to be

Ŷ (−i)(t) = ĉ∗(−i)µ̂(−i)(t)ψ̂(−i)(Zi). (19)

We note that these estimates are conceptually simple and straightforward to
compute.
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4.3. Consistency

To establish basic consistency results for the estimates µ̂(·) (14) and ψ̂(·) (15),
the following assumptions are made.
(A1) The response curves Y (t) are Lipschitz continuous of order α, 0 ≤ α ≤ 1,

with bounded first derivatives on a compact support I.
(A2) For each subject i, the times of measurements {ti1, · · · , tini} form a se-

quence of designs generated by a design density fT which is Lipschitz con-
tinuous on a compact support I and is twice continuously differentiable,
satisfying

∫
fT (t)dt = 1, 0 < inf fT (·) < sup fT (·) < ∞ and

∫ tij
−∞ fT (t) =

(j − 1)/(ni − 1), for all ni.

Theorem 1. Assume (A1) holds and that the smoother satisfies the basic consis-
tency requirement in (7) with some sequence τn → 0. If the observed covariates
Z are sampled from distributions that have the same mean and variance, then
the proposed estimator µ̂(·) (14) of µ(·) satisfies |µ̂(t) − µ(t)| = Op(τn) + op(1).

Theorem 2. If (A1) and (A2) hold and the smoother satisfies the basic consis-
tency requirement in (7) with the sequence τn → 0 replaced by a (possibly different)
sequence γn → 0, the proposed estimator ψ̂(·) (15) of ψ(·) is consistent such that,
given Z = z, |ψ̂(z) − ψ(z)| = Op(γn) +Op(n−α0 ), where n0 = min1≤i≤n{ni}.

We note that if the observed covariates Z are independently and identically
distributed, then the op(1) in Theorem 1 may be strengthened to Op(1/

√
n′),

leading to a root-n′ rate of convergence, where n′ is defined after (14). The
above consistency results can easily be extended to uniform consistency over
the respective supports, if the underlying smoothers are uniformly consistent.
The consistency of the surface estimator (17) follows from Theorems 1 and 2,
observing the consistency of the least squares estimator ĉ∗ of c∗ under mild
regularity conditions.

Proof of Theorem 1. We can express the estimate of µ(t) in (14) via a linear
smoother with weight functions Gj(·) as µ̂(t) = 1

n′
∑n
i=1 µ̃i(t)1{tini

≥t}, where
µ̃i(t) =

∑ni
j=1Gj(t)Yi(tij) = φ(Zi)µ(t)+Op(τn). The result follows from the Law

of Large Numbers.

Proof of Theorem 2. Condition (A2) implies max1≤j≤ni |tij − ti(j−1)| =

O(1/ni). In addition, with (A1), Y (t) is Riemann integrable and
∫ tini
ti0 Yi(t)dt =

qi + Op(n−αi ). Using a linear smoother with weight functions Gi(·) for the esti-
mator ψ of ψ , we find

ψ̂(z) =
n∑
i=1

Gi(z)qi =
n∑
i=1

Gi(z)
{∫ tini

ti0

Yi(t)dt +Op(n−α0 )
}

= ψ(z) +Op(γn) +Op(n−α0 ).



1128 JENG-MIN CHIOU, HANS-GEORG MÜLLER, JANE-LING WANG AND JAMES R. CAREY

5. Modeling A Sample Of Egg-Laying Curves

In this section, we discuss an application of the proposed methods to data
from an experiment on medfly fecundity which was briefly described in the in-
troduction. This experiment was carried out in 1992−1995 at the medfly mass
rearing and sterilization facility (Moscamed) at Metapa, Chiapas, Mexico, and
consisted of 1,000 female medflies for which daily egg production was recorded.
The daily egg laying data form the basis of the curve data analysis to be de-
scribed in the following. The goal of our analysis is a biologically meaningful
model that provides a parsimonious and interpretable description of the associ-
ation between changes in total number of eggs produced and the shape changes
in the egg-laying curve for individual flies.

It was reported in Carey et al. (1998) that lifetime reproduction increases
linearly with lifetime, but only up to day 51. There was no reproductive gain
due to added longevity past day 50. Thus, there is a marked change-point at
day 51 for the total number of eggs as a function of lifetime. Because of this
and the fact that random variation of fecundity curves is quite large after day
51, we restrict the fecundity curves to a support up to day 50. For flies that live
less than or equal to 50 days, their entire reproductive history was retained and
recorded as Yi(tj), tj = 1, . . . , Ti, where Ti is the lifetime of the ith fly. Note that
here tij = tj as we have a regular design. For the 150 flies that live longer than
day 50, the truncated trajectories Yi(tj), tj = 1, . . . , 50, were used as curve data,
but lifetime reproduction still refers to the total number of eggs laid by a fly in
the entire lifetime. We also deleted the 64 flies that never laid any eggs from the
analysis. Therefore, the sample consists of 936 egg-laying curves.

As a first analysis, serving as a reference, the fitted surface for the general
Smooth Functional Surface Model (M2) was obtained as in Figure 1, with total
number of eggs as covariate. Here the surface estimate m̂(2)(t, z) results from an
application of the two-dimensional smoother as described in (10). Cross-sections
through the estimated surface at several fixed values of the covariate are presented
in Figure 3 (thinner lines). We observe a “ridge” in the smooth functional surface
estimated for (M2), with a steep initial slope, followed by a less steep decline
towards the right. Consideration of the smooth functional Multiplicative Effects
Model (M1) is particularly motivated by the cross-sections through the fitted
surface of the model (M2) in Figure 3 (thinner lines). The shape of the egg-
laying curve remains remarkably stable throughout the various cross sections.
These shapes appear to differ mainly in terms of a factor which depends on the
level of total number of eggs and by which the entire curves are multiplied.

This feature indicates that these data may be well fitted by the dimension-
reduced model (M1) with its product surface, m(t, z) = c∗µ(t)ψ(z). Here the
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function µ describes the basic shape function of age-dependency on the number
of eggs laid, and the function ψ provides the necessary factor by which this basic
shape function has to be multiplied to obtain the profile for a given value for
total number of eggs. The basic unimodal egg-laying shape function µ̂ (14) and
the monotone increasing and concave function ψ̂ (15), constructed with leave-
one-point-out bandwidths, can be viewed in Figure 2. The fitted product surface
m̂(1)(t, z) (18), resulting from the minimization step (16), is qualitatively quite
similar to the surface in Figure 1, but is constructed from the simpler and more
restricted product structure corresponding to the Multiplicative Effects Model
(M1). The surface is not displayed here as it is similar to Figure 1.

Figure 1. Fitted mean surface m̂(2)(t, z) (11) with total number of eggs
as covariate, for the Smooth Functional Surface Model (M2), in different
perspectives. Bandwidths in the direction of age and total number of eggs
are chosen as 6 days and 180, respectively.

The comparison between the surface with only the smoothness constraint in
Figure 1 and the one with the product structure constraint is seen in the corre-
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sponding cross-sections in Figure 3 (thinner vs. thicker lines). This comparison
shows how the product model forces the location of all peaks to be the same,
i.e., the ridge in the Multiplicative Effects Model (M1) runs parallel to the to-
tal number of eggs-axis, while the ridge in the nonparametric surface of Figure
3 is slightly tilted as compared to this axis. Indeed, model (M1) requires that
the cross-sections be parallel as can be seen in Figure 3 (thick lines), while the
cross-sections from the unrestricted model fit in Figure 3 (thin lines) are not
necessarily parallel.

Figure 2. Scatterplots and function estimates µ̂ (14) (above) for function µ

and ψ̂ (15) (below) for function ψ, for the components of the Multiplicative
Effects Model (M1), with total number of eggs as covariate. Cross-validated
bandwidths are 2.5 days for µ̂ and 502 for ψ̂.
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Figure 3. Cross-sections through the fitted surface m̂(2)(t, z) of Figure 1
(thinner lines) and the fitted multiplicative model m̂(1)(t, z) (thicker lines),
for total number of eggs fixed at 400, 800, 1200 and 1600.

We find that the Multiplicative Effects Model (M1) is a serious contender in
situations like this. Apart from visual comparisons of model fits, the leave-one-
curve-out prediction error is a useful quantification of the quality of a model.
These predictors are Ŷ (−i)

i (t) = m̂(2)(−i)(t, Zi) for the Smooth Functional Surface
Model (M2) and Ŷ (−i)

i (t) = ĉ∗(−i)µ̂(−i)(t)(t)ψ̂(−i)(Zi) for the Multiplicative Effects
Model (M1). Here, ĉ∗(−i), µ̂(−i) and ψ̂(−i) are estimates (14)−(16), obtained by
excluding the ith sample process.

Prediction errors

PE =
n∑
i=1

{ ni∑
j=1

(Ŷ (−i)
i (tj) − Yi(tj))2

/
ni

}/
n

can be compared for the various models. We find PE = 320.53 for the Smooth
Functional Surface Model (M2) and PE = 319.68 for the Multiplicative Effects
Model (M1). Since the latter only contains one-dimensional nonparametric func-
tions, it is of lower dimension and, since it also achieves a lower prediction error,
it is the preferred model for this application. We note that prediction errors are
also useful for bandwidth choice. The optimal prediction-based bandwidth choice
is b̂µ = arg min

b
PE(b), and this criterion produced b̂µ = 2.5 days for model (M1).

6. Concluding Remarks

We have studied a multiplicative effects model for longitudinal studies that
easily lends itself to both exploratory data analysis as well as interpretation.
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The model is conceptually straightforward and easy to implement. The proposed
algorithm is fast and effective. Extensions of the method to higher dimensional
covariates, for example in combination with single index models, would be a
natural extension.

Alternative approaches that are somewhat similar in scope but do not provide
the simplicity and interpretability in modeling and estimation that the proposed
functional multiplicative effects model does would be log-additive modeling and
generalized additive modeling. In log-additive modeling, we would fit an additive
model to log(Y (t)). This transformation model assumes that the errors are also
multiplicative and when we implemented this model it did not work well for the
egg-laying data, yielding prediction errors between 486 for a smoothing spline and
511 for a loess implementation, in contrast to a prediction error of around 320
for the functional multiplicative model. Similarly, the generalized additive model
(Hastie and Tibshirani (1990)) with log link could be used, yielding prediction
errors between 339 and 357 under different implementations.

We demonstrated the usefulness of the multiplicative effects model for the
analysis of how the reproductive trajectory of medflies is regulated in relation to
the total number of eggs produced. Our analysis suggests a fairly simple interplay
between the dynamics of egg-laying and total number of eggs laid, that serves
as a proxy for reproductive success. The regulation of total output is seen to
occur by simply up- or down-regulating the entire egg-laying trajectory. This
observation characterizes reproduction as a dynamic process whose intensity is a
random characteristic of an individual fly, while its shape is relatively invariant
and is a population characteristic. The population reproductive trajectory is
characterized by an early rise to a peak, followed by a protracted decline.

We conclude that the functional multiplicative effects model provides a useful
tool for analyzing and interpreting a sample of curves.
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