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Abstract: We have previously described a statistical framework for using gene ex-

pression data from cDNA microarrays to select meaningful subsets of genes and

to place genes into clusters (van der Laan and Bryan (2001)). In this paper we

extend the methodology to the setting in which expression data is collected on a

common set of p genes from either two observations within a subject (paired), or on

subjects from two subpopulations (unpaired). We present simulation results that il-

lustrate important issues encountered with cluster analysis in gene expression data.

In particular, we see that sampling variability of the covariance structure and the

presence of unrelated genes can have a strong impact on clustering algorithms and

measures of cluster strength. We discuss ways to address this issue, including the

application of a hybrid clustering method which incorporates both partitioning and

collapsing steps. The hybrid methodology is illustrated on a cancer cell line data

set with two types of cancer. We also present a method for selecting significantly

differently expressed genes using a null distribution. Finally, we present theoretical

results relating to sample size and consistency in this setting.
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1. Introduction

1.1. Context

Microarrays allow researchers to monitor the intensity of gene expression for
thousands of genes simultaneously. Since these experiments have been described
well elsewhere, we refer the interested reader to other sources of information
on the experiment itself. Good overviews can be obtained from http://www.cs.
washington.edu/homes/jbuhler/research/array/ and Marshall (1999); a more
technical description is provided by the articles in the “The Chipping Forecast”
(1999).

The growing use of microarrays in biological research has created the need
for new statistical methods that are tailored to the specific research questions
addressed and that accommodate typical features of the data structure. Ma-
jor areas of emphasis include clustering and classification, both of genes and of
subjects. The application of clustering techniques to gene expression data was
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first described in Eisen, Spellman, Brown and Botstein (1998). An alternative
to cluster analysis, called “gene-shaving”, is proposed by Hastie et al. (2000).
Golub et al. (1999) propose a method for classifying leukemia patients based on
microarray data. Various techniques for classifying experimental units are com-
pared in Dudoit, Fridlyand and Speed (2000). The methods described in this
paper are aimed at finding subsets and clusters of genes when the subjects are
either drawn from the same population and observed at two time points (paired
comparison), or drawn from two subpopulations (unpaired comparison).

1.2. Statistical framework

By definition, array-based technologies, such as cDNA microarrays, provide
gene expression data on a very large number of genes at once. An expression
vector X = (X1, . . . ,Xj , . . . Xp), consisting of p ratios, is the fundamental unit
of data. In this subsection, we first consider the one sample problem where we
observe n i.i.d. copies of X. Typically, the expression vector is transformed to
the log scale and truncated. Investigators often seek a subset of genes, much
smaller than the full set of p genes, that exhibit certain meaningful patterns
of expression. We call this subset the target subset S and the mapping which
produces it a subset rule. A typical subset rule will draw on “screens” and
“labellers”. A screen is used to eliminate certain genes from the subset. For
example, one might retain only differently expressed genes. In Section 3 we
discuss methods for designing such a screen using a null distribution. A labeller
will apply labels, such as the output of a clustering routine. Clustering routines
commonly applied to gene expression data include partitioning algorithms (k-
means, self-organizing maps) and agglomerative algorithms (hierarchical single
or average linkage methods). Meaningful analyses can be done with various
combinations of screens and labellers or even with a screen or labeller alone. The
target subset S can be encoded in a p-vector in which Sj = 0 implies that gene
j is not in the target subset and Sj = k implies that gene j is in the target
subset and belongs to cluster k, where j ∈ {1, . . . , p} and k ∈ {1, . . . ,K}. The
target subset S (with cluster labels) is the subset we would select if the true data
generating distribution were known, and it is estimated by the observed sample
subset Ŝn.

We now define a number of quality measures for the estimated subset Ŝn,
which measure the deviation of Ŝn from the target subset S. Imagine a subset
of genes that lie far from the target subset S and that should appear in the
estimated subset Ŝn rarely, if ever. When such a gene appears in Ŝn, we call
it an “extremely false positive”. We define PEFP as the proportion of genes in
the estimated subset Ŝn which are extremely false positives and PAFP as the
probability that the subset Ŝn contains any extremely false positives. If we think
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of Ŝn as a “screening test” for S, it is natural to adapt the notions of sensitivity
and positive predictive value as measures of the overall quality of the estimated
subset Ŝ. Specifically, sens = sensn = |S ∩ Ŝ|/|S|, ppv = ppvn = |S ∩ Ŝ|/|Ŝ|,
where | · | denotes cardinality of a set. We define cluster-specific sensitivity
and positive predictive value in a similar manner. The expected values of these
proportions represent quality measures of interest.

For a fixed subset rule, sample size n, and true data-generating distribution,
each gene j has some fixed probability pj,n ≡ P (Ŝj > 0) of appearing in the
estimated subset Ŝn and if the subset rule applied cluster labels, some fixed
probability pk

j,n ≡ P (Ŝj = k) of appearing in the estimated subset carrying label
k. As the sample size grows, these probabilities approach 1 if gene j is in S (with
appropriate label for pk

j,n) and 0 otherwise. Knowledge of these reappearance
probabilities provides a basis for ranking the genes based on the strength of
evidence that gene j is in S or carries a certain label.

To estimate the cluster quality measures and reappearance probabilities de-
scribed above, we require knowledge of the sampling distribution of Ŝn. van
der Laan and Bryan (2001) employ a parametric bootstrap, using a multivariate
normal model and discuss the implications of this choice of model. Pollard and
van der Laan (2001) conduct simulations which illustrate that for smooth map-
pings such as continuous functions of sample means, the computationally easier
nonparametric bootstrap performs as well as the parametric bootstrap under a
normal model. Hence, use of the non-parametric bootstrap is a good way to
protect against misspecification of the parametric model.

1.3. Application to paired and unpaired comparisons

Now suppose we wish to compare two sets of relative gene expression mea-
surements (X,Y) on a common set of p genes. Such data can arise under two
different scenarios: paired and unpaired. In the paired scenario, we have two ob-
servations on each subject. For example, gene expression might be measured on a
cell line at two different time points in the cell cycle relative to a baseline. Or, we
might observe the same subject before and after treatment. Perou et al. (2000),
for example, analyzed gene expression in human breast cancer tumors before and
after chemotherapy using a common reference sample. In the unpaired scenario,
we have observations on subjects drawn from two subpopulations (possibly with
different numbers of observations in each subsample). Golub et al. (1999), for
example, used gene expression data to distinguish between acute lymphoblastic
leukemia (ALL) and acute myeloid leukemia (AML).

We might want to focus on genes that appear to be very differently expressed
in the two data sets. One approach is to simply analyze the two data sets
separately and compare the clustering patterns. Another approach is to combine



90 JENNY BRYAN, KATHERINE S. POLLARD AND MARK J. VAN DER LAAN

the two data sets into one data set. The way we do this depends on how the data
were generated. In the paired scenario, we can form a p-dimensional vector of log
ratios, log (Xi/Yi), by dividing the relative expression for a subject at one time
point by that at the other before taking the log. In the unpaired scenario, we
can form a p-dimensional vector of log ratios by dividing the relative expression
for a subject by the geometric mean relative expression for all subjects in the
other subpopulation before taking the log so that we get log (Xi/µ̂Y ). In both
cases, the empirical mean of the combined data set is the difference between the
two sample means of the log ratios in the separate data sets.

1.4. Organization of the paper

First, we present simulations designed to establish the behavior of Ŝn for
several subset rules S involving pre-screening, clustering, and post-screening of
genes. In addition, we use these simulations to establish the practical perfor-
mance of the bootstrap in estimating the variability of Ŝn. The clustering is
implemented with the algorithm called “partitioning around medoids” (PAM)
(Kaufman and Rousseeuw (1990), Chap. 2). Second, we present a data analy-
sis which uses new methods for (i) selecting differently expressed genes, and (ii)
identifying groups of correlated genes through clustering. These new methods
address issues identified in the simulation. Finally, we present consistency and
sample size results.

2. Simulation

The goal of this study is to explore the performance of Ŝn and the bootstrap
in the context of a known data-generating distribution. We are particularly
interested in assessing the difficulty of applying cluster labels in the presence
of genes that belong to no cluster, and of how that is affected by sample size.
The simulation shows that it is beneficial to screen unrelated genes prior to
applying a clustering algorithm. We also see that unrelated genes tend to depress
conventional measures of the clustering strength. Lastly, it is apparent that
post-screens affected by isolated extreme values, such as the smallest entries in
a column of a correlation matrix, will require large sample sizes to achieve good
performance of Ŝ, and alternative screens should be considered.

2.1. Data-generating distribution

We create a data-generating distribution by assuming a multivariate normal
model and selecting the parameters (µ,Σ). We take K = 3 clusters – cluster
A, cluster B, and cluster C – each containing 100 genes. Each cluster has a
core set of genes that are more highly correlated with one another, and a more
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weakly correlated set of peripheral genes. The genes in a given cluster have no
correlation to genes in the other clusters. The clustered genes are embedded in
a set of 300 other genes that have absolutely no correlation with other genes
at all. The correlation matrix of the full set of 600 genes, ρ, is block diagonal.
With this set-up we are trying to simulate what seems to be an important data
structure: a fraction of the genes being studied are involved in the phenomenon
of interest and even break down into several well-defined clusters, but there are
many “noisy” genes on the array, which are not involved and whose presence
makes it difficult to find the relevant clusters.

The mean expression levels are also set with the cluster structure in mind.
The noisy genes have means near zero, with some individual genes exhibiting a
mild amount of differential expression. Cluster A contains genes that are over-
expressed, many quite strongly. Most genes in Cluster B are differently expressed,
with slightly more being under-expressed than over-expressed. Cluster C contains
genes with a wide range of expressions. Gene-specific standard deviations have
different distributions for each cluster and for the noisy genes. Throughout this
section, we use yellow for cluster A, violet for cluster B, and blue for cluster C.

2.2. Subset rule

The subset rule is applied to the true mean and covariance (not simulated
data), so that we can examine properties of the target subset S. The rule we use is
typical of those applied in microarray data analyses: first, screen for differently
expressed genes and then apply cluster analysis. We exclude genes with an
absolute mean |µj| < log2 1.5 = 0.58, which corresponds to 1.5-fold differential
expression. Of the 600 genes, 318 are retained and 282 are excluded based on
this screen.

The remaining 318 genes are provided to a cluster analysis routine, with
the dissimilarity between two genes defined as 1 minus the absolute value of the
correlation. For a fixed number of clusters K, a partitioning method finds the
best grouping and, by exploring different values of K, we can assess the evidence
for different K values (see Kaufman and Rousseeuw (1990), Chap. 1, Sect. 3).
It is also valuable to assign meaning to a particular cluster label k as most
scientific papers that employ cluster analysis to analyze microarray data discuss
the unifying theme of the genes found in each cluster. In the context of one data
set, any clustering algorithm will likely yield at least one partition that can be
interpreted. However, when one views a data set and its clustering as just one
realization of a stochastic phenomenon, it is desirable to have a way to enforce
a coherent meaning for cluster label k. The cluster centers that are important
in most partitioning methods play this role very well. By fixing cluster centers,
one can ensure it is sensible to compare genes with label k from one realization
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of the experiment to the next. Lastly, we prefer “partitioning around medoids”
(PAM) to k-means because we like being able to use any distance metric, and we
prefer that cluster centers be one of the underlying objects (in this case, a gene)
instead of an average of objects, a quantity that is difficult to interpret and less
robust to outliers.

Given any partition, Kaufman and Rousseeuw (1990) define for each object
a quantity called the silhouette, which reflects how well-matched an object is in
its cluster versus the next closest cluster. Silhouettes take values in the interval
[−1, 1], with 1 corresponding to a perfect match. Silhouettes are a valuable tool
for assessing what is basically the goodness-of-fit for a clustering. For a given data
set and clustering method, silhouettes can be compared for different numbers of
clusters in order to choose the optimal number. There were 251 genes in clusters
A, B, and C that passed the differential expression screen (318 − 251 = 67 noise
genes pass the screen, but have silhouettes of zero). Silhouettes were examined
for K = 2, 3, and 4. When K = 2, we see that cluster B is fully recovered,
while clusters A and C are lumped together. When K = 3, which we know to
be the correct value of K, we see that PAM recovers the underlying clusters.
When K = 4, clusters A and C are fully recovered and Cluster B is split into
two. The lack of evidence for K = 4 is apparent in the erratic, even negative,
silhouettes for genes in cluster B. The core versus periphery structure of the
underlying clusters is also reflected in the silhouettes. Table 1 presents average
silhouettes for these clusterings, with and without the 67 noise genes that pass
the differential expression screen. We see that the overall average silhouette is
highest at the correct value of K, which is 3, regardless of the presence of the
noise genes. But the noise genes have a dampening effect on the silhouettes in
general. This points out the benefit of eliminating all unrelated genes prior to
attempting any type of cluster analysis.

Table 1. Average Silhouettes for K = 2, 3, 4 in simulation study.

Which K Overall Cluster 1 Cluster 2 Cluster 3 Cluster 4
genes? Avg. Silh.

318 2 0.09 0.06 0.17
genes 3 0.13 0.12 0.17 0.11
(67 noise) 4 0.09 0.12 0.02 0.04 0.11
251 2 0.07 0.03 0.17
genes 3 0.09 0.04 0.17 0.10
(no noise) 4 0.05 0.04 0.06 0.02 0.10

After clustering the genes, we chose to apply one last screen in another
attempt to eliminate uninteresting genes. The goal is to remove genes that are not
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particularly well-matched to their cluster. We used two different approaches, one
based on pairwise dissimilarities and one based on silhouettes. The dissimilarity
screen DYS works as follows: the cluster center (or “medoid”) is automatically
included; any gene with a dissimilarity of less than 0.655 with the cluster center
is included; any gene with a dissimilarity of less than 0.655 with any previously
included gene is also included; this last step is repeated until no changes occur.
The silhouette screen SILH includes all genes with a silhouette greater than 0.08.
Both screens result in target subsets S containing 150 genes. Table 2 presents
target subset S membership by true cluster membership for both screens.

Table 2. Target subset membership by true cluster membership.

Target Subset Sj =
True 0 1 2 3 > 0 All

DYS screen
Noise 300 0 300
Cluster A 50 50 50 100
Cluster B 27 73 73 100
Cluster C 73 27 27 100

450 50 73 27 150 600

SILH screen
Noise 300 0 300
Cluster A 71 29 29 100
Cluster B 12 88 88 100
Cluster C 67 33 33 100

450 29 88 33 150 600

To summarize the subset rule, the genes were first screened for differential
expression by requiring that |µj | > 0.58. The remaining 318 genes are clustered
by PAM, with the cluster number K = 3. The cluster centers are noted and
remain fixed in future analyses. In light of the clustering, genes are screened again
based either on dissimilarities or silhouettes to yield a final subset containing 150
genes and their cluster labels.

2.3. Sampling distribution of Ŝn

We generated 100 samples of size n = 25, 50, and 150 from the chosen data-
generating distribution N((µ,Σ)) and applied the two subset rules described
above. Based on these samples, we can estimate the reappearance probabilities pj

and pk
j . In Figure 1, we examine the effect of sample size in the DYS screen. The

results are somewhat counter-intuitive but illustrate an important phenomenon.
At the series of sample sizes considered here, overall pj tend to decrease for all
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genes. Average pj within different values of S are presented in the lower left
panel. It is important to examine the cluster-specific reappearance probabilities.
The top panel presents this information for 4 typical genes, one for each value of
S, and the lower right panel presents averages within values of S. We see that,
while overall pj may be declining, the correct cluster-specific pk

j are climbing
steadily. One expects that, had we added a larger sample size such as n = 300,
even the overall pj would begin to increase as n does.
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Figure 1. Reappearance probabilities, DYS screen in simulation study.



COMPARISON AND CLUSTERING WITH GENE MICROARRAY DATA 95

The results of this simulation demonstrate that the mean requires much
less data to estimate than the covariance structure. For all sample sizes, the
expected number of genes passing the differential expression screen is very close
to the true number of 318. It is approximately 325, 323, and 321 for n = 25, 50,
and 150, respectively. From other simulations not reported here, in which the
subset rule consists solely of the differential expression screen, we know that both
sensitivity and positive predictive value at this stage are extremely high (between
0.95 and 0.99) and, therefore, the correct genes are almost always passing this
initial screen at all sample sizes. The problem occurs in the clustering and DYS
screen – that is, the steps of the subset rule that depend on the covariance. At
n = 25, many genes are misclassified but frequently pass the dissimilarity screen
due to sampling variability in the covariance. Since a gene can pass this screen
by exhibiting even one extremely small pairwise distance, it is almost always
passed for small samples. Therefore, the probability of appearing in the Ŝn

has significant contributions from all three cluster-specific probabilities p1
j , p

2
j ,

and p3
j . This can be seen in the first stacked column for each of the 4 genes

highlighted in the top panel of Figure 1. As the sample size increases to 50 and
150, misclassification decreases and pj becomes dominated by the correct cluster-
specific probability. This can be seen in the second and third stacked columns.
These simulation results suggest a modification of the DYS screen in which a
gene must have a sufficiently small dissimilarity with the cluster center.

The behavior described above is also apparent in subset-wide measures of
quality, reported in Table 3. As expected, sensitivity decreases at these sample
sizes, but the positive predictive value increases. Once again, we conjecture that
the sensitivity would increase for n > 150. Extremely false positives were defined
as genes with absolute mean expression less than log2 1.1 ≈ 0.14. The expected
proportion of extremely false positives (E{PEFP}) is essentially zero for all n and
the probability of any extremely false positives (PAFP) decreases as n grows.

Table 3. Cluster-wide quality measures for the DYS rule in the simulation study.

n = 25 n = 50 n = 150
E{Sens} 0.98 0.97 0.77
E{PPV} 0.45 0.50 0.84
E{PEFP} 0.00 0.00 0.00
PAFP 0.48 0.09 0.00

The situation is quite different for the subset rule SILH that screens based
on the silhouettes. Summary information on pj and pk

j is depicted graphically
in Figure 2. It is immediately apparent that the reappearance probabilities are
much lower in general than those seen with the DYS rule. This is due to the fact
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Figure 2. Reappearance probabilities, SILH screen in simulation study.

that, compared to the silhouettes produced by the true block diagonal correlation
matrix, silhouettes in observed data are lower. The average silhouette in the
target subset S is 0.09. The expected average silhouette in the sample subset Ŝ is
0.02. The non-zero empirical correlation that arises between even unrelated genes
has the effect of making the clustering appear to be less strong. Therefore, when
applying the silhouette cutoff to a clustering based on a finite amount of data,
we are left with a smaller set of genes. The average size of Ŝn is approximately
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32, 27, and 43 for n = 25, 50, and 150, respectively. Both the expected subset
size and the pj and pk

j seem to grow very slowly as the sample size increases.
We have also noted here and in other analyses that the values of the silhouettes
are very dependent on the dimension of the data set (number of genes), so that
universal cutoff values as described in Kaufman and Rousseeuw (1990) are not
appropriate in the gene expression context. One screen that may be more useful
than absolute cutoffs based on silhouettes is to always retain a fixed number of
top-ranked genes based on silhouettes or estimated cluster-specific probabilities.
If one wishes to test the significance of a silhouette, we propose using a simulation
from an appropriate null distribution (i.e., one with no clustering).

Table 4 presents subset-wide measures of quality for the SILH rule. Both
sensitivity and positive predictive value increase with n and the probability of
any false positive is extremely small even at n = 25 and quickly falls to zero.

Table 4. Cluster-wide quality measures for the SILH rule in the simulation study.

n =25 n =50 n =150
E{Sens} 0.18 0.18 0.28
E{PPV} 0.86 0.98 0.99
E{PEFP} 0.00 0.00 0.00
PAFP 0.04 0.00 0.00

We are also interested in the actual gene-specific probabilities pj and pk
j . For

genes in S for the DYS rule, although the overall pj decrease, the correct cluster-
specific probabilities pk

j increase with n. In fact, at n = 150, essentially no genes
appear in Ŝ carrying the incorrect cluster label. This observation supports the
above discussion of the DYS rule. Consistent with the above findings regarding
the stringency of the silhouette-based screen, we see relatively low pj , which grow
very slowly with n, for the SILH rule. The misclassification of genes is practically
impossible with this rule.

2.4. Bootstrap results

For each of the 100 size samples generated from the data-generating distri-
bution N((µ,Σ)), we carried out the parametric bootstrap as described in van
der Laan and Bryan (2001). Since the simulated data is multivariate normal
distributed here, the use of this distribution in the bootstrap is appropriate. The
empirical distribution of the bootstrap subsets allows us to estimate interesting
features of the sampling distribution of Ŝ. The probability of gene j appearing
in Ŝn, i.e., pj, is estimated by the proportion of bootstrap subsets in which gene
j appears. An analogous approach leads to estimates of pk

j . Figures 3 and 4 plot
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true reappearance probabilities against average bootstrap probabilities for the
DYS and SILH rules, respectively.
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Figure 3. True reappearance probabilities vs. averages from bootstrap, DYS
screen in simulation study.

In finite samples, the expected bootstrap probabilities are biased estimators
of the true probabilities. For certain simple rules, this bias is relatively straight-
forward to quantify and is discussed in van der Laan and Bryan (2000). For



COMPARISON AND CLUSTERING WITH GENE MICROARRAY DATA 99

complicated rules such as DYS and SILH, the only relevant result is that, as
n → ∞, the expected bootstrap probabilities will approach 1 for genes in S and
0 for all other genes. Graphically, this means that, as n → ∞, we will eventually
see points only at (0,0) and (1,1). But for finite n, plots such as those in Figures
3 and 4 are the best way to understand the relationship between the expected
bootstrap and true reappearance probabilities.
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Figure 4. True reappearance probabilities vs. averages from bootstrap, SILH
screen in simulation study.
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2.5. Distribution of the sample mean

For a fixed n and δ, the formula given as equation 1 in Section 4 can be solved for
the ε such that the probability of even one component of the p-dimensional sample mean
µ̂n varying by more than ε from the corresponding component of the true mean µ is less
than δ, 0 < δ < 1. The sample size is quite conservative, since it does not exploit the
correlation among the genes. That is, when one computes values of ε > 0 as described
below, the actual probability of maxj |µ̂j −µj| > ε is much less then δ. Table 5 illustrates
this and also shows that one can use a value of σ that is much smaller than the actual
maximum of the gene-specific log ratio standard deviations and still see favorable results.
In all instances, n = 25 and M = 5.

Table 5. Demonstration that the sample size formula is conservative.

Nominal δ ε Actual δ σ

0.05 2.64 0.000 maxj σj = 2.06
0.50 2.27 0.000 maxj σj = 2.06
0.20 1.52 0.005 75-th quantile of σj = 0.89
0.40 1.14 0.030 25-th quantile of σj = 0.37
0.80 1.01 0.055 0.25

An alternative, less conservative approach to determining the sample size
needed for a certain precision is to perform simulations utilizing the correlation
structure in the data. By the Central Limit Theorem, we have that the sample
mean µ̂ is asymptotically distributed N(µ̂n, Σ̂n). By simulating from this distri-
bution, we can determine the sample sizes needed for different levels of precision.
Non-parametric simulations could also be employed.

2.6. Conclusions

These simulations illustrate some important issues encountered in cluster
analysis of gene expression data. In particular, we see that sampling variabil-
ity of the covariance structure and the presence of unrelated genes can have a
strong impact on partitioning algorithms and measures of cluster strength and
stability. We have found that pre- and post-screening of the genes helps to avoid
some of these problems. The simulations show that screens based on differential
expression are accurate even for small sample sizes, whereas screens based on
the covariance are harder to estimate accurately. One drawback of screening the
genes, however, is that important or interesting genes can be excluded along with
the “noisy” genes we wish to remove.

In response to this issue, we have developed an algorithm called Hierarchi-
cal Ordered Partitioning And Collapsing Hybrid (HOPACH), which incorporates
both partitioning and agglomerative steps in order to identify clustering patterns
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in the data even in the presence of many unrelated genes. We have conducted
simulations which illustrate that this methodology does better than simple parti-
tioning or agglomerative methods at identifying small clusters in the presence of
many noisy genes (van der Laan and Pollard (2001)). In Section 3 we outline the
HOPACH method and apply it to a cell line data set with two subpopulations.
We also demonstrate methods for selecting differently expressed genes using a
null distribution.

3. Data Analysis

We examine a data set which is an example of an unpaired comparison with
observations from two subpopulations. We extracted a publicly available data
set from the data base accompanying Ross et al. (2000). The authors performed
microarray experiments on 60 human cancer cell lines (the NCI60) derived from
tumors from a variety of tissues and organs by researchers from the National
Cancer Institute’s Developmental Therapeutics Program. The data set includes
gene expression measurements for 9,703 cDNAs representing approximately 8,000
unique transcripts. Each tumor sample was cohybridized with a reference sample
consisting of an equal mixture of twelve of the cell lines chosen to maximize
diversity. We used the normalized tumor: reference ratios, as in Ross et al. (2000).
These were transformed to a log10 scale and truncated above and below, so that
any ratio representing greater than 20-fold over- or under-expression was set to
log10(20).

For this comparative analysis, we selected two very different types of cancer
from those included in the NCI60: melanoma and breast. We created a data
set with all samples from these two types of cancer, which included seven breast
and eight melanoma cell lines. Next, we applied an initial subset rule in order to
reduce the size of the data set for computational reasons only. We retained those
genes where at least 30% of all cell lines had a ratio corresponding with greater
than 2-fold over- or under-expression. Using a 30% cut-off, a gene differentially
expressed in one type of cancer and not the other would still be included. There
were 3500 genes in the resulting data set. This data set was divided into two
smaller data sets consisting of the cell lines from each type of cancer. These
data sets were analyzed separately and also combined into one data set by divid-
ing the melanoma ratios by the geometric mean breast ratios before taking the
log. Unless otherwise noted, we are working with the single, combined data set
containing 3500 genes and eight observations.

One goal of the analysis is to identify genes differently expressed in melanoma
relative to breast cancer; such genes help us to understand the biological char-
acterization of different cancers and may lead to new cancer-specific treatments.
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Another goal is to study clustering patterns in the data set in order to discover
information about how the genes involved in tumors work together.

3.1. Selecting differently expressed genes

A common approach to selecting differently expressed genes is to retain those
genes whose absolute mean log ratios are greater than some cut-off value. In
order to account for variance as well as mean expression, one can standardize the
log ratios by dividing them by their gene-specific standard errors before taking
the mean. These standardized means can be compared to the quantiles of a
standard normal distribution on an individual basis. For the combined data set,
p∗ = 1731 genes were significantly differently expressed at the α = 0.05 level (cut-
off value= 0.69). Since we are in a multiple comparisons setting, it is advisable
to adjust the cut-off value. The Bonferoni adjusted cut-off value was 1.53 and
produced a much smaller subset of p∗ = 605 differently expressed genes.

An alternative, more exact approach is to derive a cut-off value from an ap-
propriate null distribution with zero means and the true covariance structure. A
parametric method is to generate a large number of samples from a multivariate
normal distribution N(0, ρ), where ρ is the correlation matrix, and select a cut-
off value such that no more than 1− α

2 of samples have any differently expressed
genes. The correlation matrix ρ can be estimated by the empirical correlation
matrix. A non-parametric method is to standardize the observed data so that
each gene has mean zero and variance one, then generate a large number of boot-
strap samples from this data (resampling cell lines with replacement), and use
these to compute the cut-off value such that no more than 1− α

2 of samples have
any differently expressed genes. For both the parametric and non-parametric
methods, a less stringent approach is to choose the cut-off value such that on
average any sample is expected to have no more than 1 − α

2 of genes differently
expressed. We used the nonparametric bootstrap with the more stringent crite-
ria and obtained a subset of p∗ = 889 genes. The cut-off value was 1.17, which
lies between the value which ignores the multiple comparisons and the too strict
Bonferoni adjusted value.

3.2. Clustering genes

HOPACH
We now turn to a discussion of our clustering method. The HOPACH method

produces a hierarchical tree of clusters by applying a partitioning algorithm it-
eratively. A collapsing step which unites the two closest clusters into one cluster
can be used at any level of the tree to correct for errors in the number of clusters.
For example, we might collapse whenever doing so improves the overall average
silhouette for that level of the tree. At each node, a cluster is split into two or
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more smaller clusters with an enforced ordering of the clusters and of the elements
within clusters. The final level of the tree is an ordered list of the elements. The
ordering of elements at any level of the tree can be used to visualize the cluster-
ing structure in a colored plot of the reordered data or distance matrix. Visual
comparison of the distance matrix for different levels of the tree with the final
distance matrix typically identifies the main clustering structure and provides in-
formation about the clusters, such as their strength and their similarity to each
other. After identifying the clusters, the bootstrap can be used to establish the
reliability of these clusters and the overall variability of the followed procedure.

The HOPACH methodology is a general approach which could be applied
with any choice of partitioning algorithm. We refer to our particular implemen-
tation using PAM for the partitioning algorithm as HOPACH-PAM. HOPACH-
PAM can be run with any user-supplied distance metric (euclidean, correlation,
absolute correlation). The cosine-angle distance was used in Eisen, Spellman,
Brown and Botstein (1998), and it has been our experience that it is a sensible
choice in many applications. The ordering of clusters at each level is based on
distances (with respect to the chosen metric) between the medoids of the clus-
ters. Within clusters, the elements can be ordered based on distance to their own
medoid or to the neighboring medoid.

By combining the strengths of two celebrated approaches to clustering, par-
titioning and agglomerative methods, HOPACH is a flexible, accurate algorithm
for finding patterns in data. van der Laan and Pollard discuss discuss simulations
and data analyses which show that HOPACH-PAM is better able to identify pat-
terns in data than either a single partitioning or agglomerative clustering. For
example, in one simulation with seven gene clusters plus unrelated noisy genes,
HOPACH-PAM produces a clustering result with seven clusters and an average
silhouette of 0.30, whereas simply applying PAM to the data and maximizing
silhouette to choose the number of clusters produces a clustering with only six
clusters and an average silhouette of 0.09.

HOPACH can be applied along with pre- and post-screens if, for example,
we wish to only consider significantly differently expressed genes or only genes
which are strongly correlated with other genes in their cluster. By working with
all genes, however, we are able to avoid the problem of accidentally removing
genes of interest.

Clustering all genes
We applied HOPACH-PAM with the cosine-angle distance metric to the com-

bined data set containing all 3500 genes. The clustering of this data set is of in-
terest since it will contain groups of genes significantly over- and under-expressed
in melanoma relative to breast cancer in addition to genes with similar mean ex-
pression in both cancers. We identified seven clusters, five under-expressed and
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two over-expressed. Two of the clusters within the under-expressed group had
medoids which were not two-fold under-expressed (average across cell lines), and
these clusters contained many genes not significantly differently expressed. The
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third under-expressed cluster contains a core group of genes which are very highly
correlated with each other. Panel A of Figure 5 contains the distance matrix with
genes ordered relative to distance from their own medoid within each cluster.
We picture only a random subset of 1000 of the 3500 genes, because the image
containing fewer genes has identical structure and is easier to work with.

A) Observed Data B) Bootstrap Sample

Figure 5. Ordered distance matrices from clustering all genes in NCI com-
bined data set (random subset pictured). Panel A contains the observed
data distance matrix. Panel B contains a non-parametric bootstrap sam-
ple distance matrix. Red corresponds with smallest and green with largest
distance. Lines indicate cluster boundaries.

We ran the non-parametric bootstrap with fixed medoids in order to esti-
mate the variability of gene cluster membership. The cluster probability plot
corresponding with the ordered distance matrix is pictured in Figure 6. We can
see that some clusters are more stable than others (e.g., Cluster 3, the strong
under-expressed cluster) and that there are pairs of clusters (e.g., Clusters 6 and
7, the over-expressed clusters) which are similar in the sense that they often ex-
change genes between bootstrap samples. In order to estimate the variability of
the overall clustering pattern (including the selection of medoids), we also ran
the non-parametric bootstrap without fixing the medoids. For each bootstrap
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sample, we applied HOPACH-PAM. For this data set, the number and size of
clusters was very stable despite the fact that the exact choice of medoid did vary
considerably from sample to sample. When it is possible to infer a correspon-
dence between original and bootstrap medoids (i.e., when cluster sizes or profiles
vary greatly), then summary measures relating to specific clusters can still be
calculated. In general, we can still visualize the overall clustering patterns. The
reordered distance matrix for one random bootstrap sample is pictured in Panel
B of Figure 5. We see that the overall clustering pattern is very similar to that
found in the original data (Panel A). One could visualize many such distance
matrices or calculate summary measures of these in order to quantify the overall
variability of the clustering procedure.

0.0 0.25 0.50 0.75 1.00

Medoid = gene 504, S hat = 1, 81 genes

Medoid = gene 248, S hat = 2, 110 genes

Medoid = gene 221, S hat = 3, 217 genes

Medoid = gene 22, S hat = 4, 148 genes

Medoid = gene 348, S hat = 5, 100 genes

Medoid = gene 213, S hat = 6, 167 genes

Medoid = gene 847, S hat = 7, 177 genes

Reappearance proportions and cluster reproducibility
Subset contains 1000 genes.

Reappearance proportion

Figure 6. Reappearance probabilities from clustering all genes in NCI com-
bined data set (random subset pictured).

Clustering differently expressed genes
It is also of interest to cluster only the differently expressed genes. HOPACH-

PAM with cosine-angle distance identified four clusters, one large cluster con-
taining genes under-expressed and three smaller clusters containing genes over-
expressed in melanoma relative to breast cancer. We found that when the
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non-differently expressed genes had been removed from the data set, the under-
expressed genes were all strongly correlated with each other and negatively cor-
related with the over-expressed genes so that the reordered distance matrix had
a clear block structure. Whereas the cluster of under-expressed genes is very
homogeneous, the group of over-expressed genes consists of several distinct clus-
ters. The bootstrap methodology was applied to this clustering result in a similar
manner as for all genes.

Clustering the two cancers separately
As an alternative way to compare the breast and melanoma subpopulations,

we applied HOPACH-PAM with cosine-angle distance to the data sets for each
type of cancer separately. In both data sets, the genes were separated into over-
and under-expressed in the initial level of the tree, with about two thirds of the
genes being under-expressed in tumor relative to the pooled reference sample.
In the next level of the tree, the over-expressed genes were split again into two
smaller clusters. For breast cancer these two clusters contained about 600 and
300 genes each, whereas for melanoma most over-expressed genes were in a cluster
together with the remainder in a small cluster of size 25. Comparing the reordered
distance matrices for each of the two types of cancer, we can see these similarities
and differences. In addition, for any gene of interest, we can compare where it
appears in the ordering for each type of cancer and what other genes it appears
near in a cluster. Differences in the biological mechanisms involved in the two
types of tumors might be explained by differences in their clustering structures.
For example, melanoma has stronger negative correlation between many of the
over- and under-expressed genes, indicating that these groups of genes might
be working together. The bootstrap methodology was applied to this clustering
result in a similar manner as for all genes.

The method for identifying differently expressed genes could also be applied
to the melanoma and breast cancer cell line data sets separately to find which
genes were differently expressed relative to the reference sample in each data set.
These lists could be compared or clustered separately.

4. Asymptotic Performance of the Methods and a Non-asymptotic
Sample Sample Size Formula

The rules for subsetting and clustering genes used in this paper are func-
tions of the empirical mean vectors and empirical covariance matrices of the two
samples of size n1 and n2, respectively. For example, the clustering of genes is a
function of a user-supplied distance matrix, while the euclidean distance ‖�x−�y‖,
correlation-distance 1−〈�x, �y〉/‖�x‖ ‖�y‖ before and after centering at zero, and the
absolute correlation distance are all functions of the empirical covariance matrix.
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Therefore we can view subsetting and clustering methods as estimates Ŝ of an
unknown parameter S(µ1,Σ1, µ2,Σ2).

The most important quality of the estimated subset rule to establish is its
consistency in the relevant context of n/ log(p) → ∞. Since the estimated subset
is a function solely of the subpopulation sample moments, consistency of the sam-
ple moments, together with continuity of the subset rule, will imply consistency
of Ŝ. For a fixed number of genes p, the Law of Large Numbers guarantees that
the subpopulation sample moments are consistent for the true moments, uni-
formly across all genes. However, in practice, the number of genes being studied
continues to grow and to grow much more rapidly than sample size. We find it
valuable to state conditions under which the estimated subset is consistent, even
in the realistic setting where the arrays keep getting larger and larger.

By restricting the log ratio data to a compact interval, we can avoid making
any other assumptions about the data-generating distribution. For this reason,
we replace any log ratio log Xd,j (d = 1, 2) that is farther than some fixed M ,
0 < M < ∞, from its mean µd,j with the value µd,j ± M , where the sample
mean µ̂d is used in place of µd in a data analysis. We include truncation by
the constant M as part of the transformation of the raw relative expression
data. In van der Laan and Bryan (2001) it is shown that if the number of genes
p = p(nd) in sample d is such that nd/ log(p(nd)) → ∞ as nd → ∞, then,
maxj |µ̂d,j − µd,j| → 0 in probability and maxij |Σ̂d,ij −Σd,ij| → 0 in probability.
Therefore, for a continuous subset rule S, P (S = Ŝn) → 1 in probability. The
proof of this theorem is a direct consequence of Bernstein’s Inequality (see van
der Vaart and Wellner (1996), page 102) and is given in van der Laan and Bryan
(2001), along with a precise definition of the required continuity.

The same Bernstein Inequality argument used above also leads to a sample
size formula in the more concrete setting of a fixed value of the number of genes
p. For the d-th sample (d = 1, 2), we define n∗

d with the following formula:

n∗
d(p, εd, δd,M, σ2

d) =
1
c
(log p + log

2
δd

),

where c = c(εd, σ
2
d,M) =

ε2
d

2σ2
d + 2Mεd/3

. (1)

In the above, σ2
d is an upper bound of maxj σ2

d,j and δd is a user-specified value
between 0 and 1 that can be thought of as 1 minus the “power”. If nd > n∗

d, then
P (maxj |µ̂d,j − µd,j| > εd) < δd. Similarly, if nd > n∗

d(p
2, εd, δd,M

2, σ2
d,Σ), where

σ2
d,Σ is an upper bound of the variance of Yd,jYd,k, then P (maxij |Σ̂d,ij −Σd,ij| >

εd) < δd. The constant εd is the maximum tolerable distance between sample
means and true means and the sample size formula guarantees subpopulation
sample means within this distance from the truth with probability 1 − δd.
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To see how one might use this formula in practice, consider the “extemeley
false positive” genes. We are concerned when such a gene appears in Ŝ and
want to know how often this might happen. For example, in the case with
one set of observations, suppose the target subset contains genes with absolute
mean expression greater than 1 (that is, more than 21 = 2−fold differential
expression) and we want to choose a sample size that guarantees genes with
absolute mean expression less than 0.14 (that is, less than 20.14 ≈ 1.1−fold
differential expression) rarely appear in Ŝn. In this case, the maximum tolerable
distance is ε = 1−0.14 = 0.86. If all sample means are within ε of their respective
true means with probability 1 − δ, then the probability of an extremely false
positive is bounded above by δ.
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Figure 7. Sample size requirements for different situations.

Figure 7 illustrates the implications of this sample size formula for several
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realistic scenarios. In the top panel we have set ε = 1 and in the bottom ε = 0.58.
Decreasing the tolerable distance ε, holding all other constants fixed, increases
the required sample size. The noise levels implied by the values of σ in the
range [0.5, 1.0] are typical for the data sets we have seen. We note that the
sample size formula is actually quite conservative. It makes no assumptions about
the correlation between the p genes and, when there is a significant amount of
correlation, the true dimension of the problem can be much smaller than p. In
practice, given the highly correlated microarray data, we see that the sample size
formula produces extremely false positive rates much lower than the nominal rate
of δ.

It is of interest to see that the effect of the number of genes on this sample
size formula (and the truly needed sample size) is minimal. In other words, if one
needs a certain sample size for 10 genes, then adding 50 subjects to your sample
will guarantee the same uniform precision based on 100000 genes. It teaches us
that achievable sample sizes will allow complete trust in each of the elements of
the observed mean vectors and distance matrices, which will become essential if
one is interested in selecting association pathways between genes. For detecting
global clustering structures as carried out in this paper a uniform precision on
the distance matrix is not needed. van der Laan and Bryan (2001) also provide
a corresponding simultaneous finite sample confidence band for µj , j = 1, . . . , p.
The authors prove asymptotic validity of the parametric bootstrap when treating
the standardized empirical mean and covariance as random elements of an infinite
dimensional weighted-euclidean Hilbert space. We remark that their proofs can
be immediately applied to establish these asymptotic validity results for the
nonparametric bootstrap.

Finally, if subset rules are based on non-linear statistics such as quantiles
(e.g., medians), then one can base the consistency theorem and sample size for-
mula on the first order linear expansion of these statistics. That is, for the jth
statistic θ̂j (j indexes a gene-specific quantile or a gene-pair specific distance)
we will have under appropriate assumptions that θ̂j − θj ≈ 1/n

∑n
i= IC(Xi),

where IC is the influence curve. In addition, one needs to control the second
order terms uniformly in j, which means that one needs to make an assumption
uniformly bounding away j-specific singularities.
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