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Abstract: A counting process approach to multiple event times modeled by an

Andersen-Gill-type extension of the Cox proportional hazards regression model is

considered. Tests for checking the validity of such a model against a general frailty

model are proposed. These tests are derived from a class of statistics that are con-

nected to Robbins’ empirical Bayes estimation of Poisson means. We show that

these tests are consistent against any alternative as specified by a nondegenerate

frailty. A simple graphical method is introduced to visually check the appropriate-

ness of model assumptions. Simulation studies are reported and a real life example

is presented. A similar test for checking the gamma frailty assumption is also

introduced.
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1. Introduction

Multiple event-time data have been the focus of many recent investigations
in survival analysis. They represent a special kind of multivariate failure time
data with each subject experiencing a series of ordered events. Such data arise
naturally in biomedical research. Examples include studies of progression of
AIDS and other diseases, and of recurrences of chronic diseases. Other examples
arise in industrial life tests and software reliability studies.

In principle, one-sample multiple event-time data can be analyzed by non-
parametric methods developed for more general multivariate survival time data.
Nonparametric estimates of joint survival distribution can be found in Campbell
(1981), Tsai, Leurgans and Crowley (1986), Dabrowska (1988), Prentice and Cai
(1992) and van der Laan (1996), among others. These estimates are generally
complicated, often involving nonparametric density-type estimation. They are
also difficult to incorporate into analysis of regression problems.

By modeling inter-event gap times, Prentice, Williams and Peterson (1981)
proposed a regression method for multiple event-time data. Parallel and sub-
sequent developments for such data can be found in Gail, Santner and Brown
(1980) and Dabrowska, Sun and Horowitz (1992). Wei, Lin and Weissfeld (1989),
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on the other hand, proposed a marginal proportional hazards regression model,
in which each of the event times is modeled marginally through a Cox model.
While their method has the advantage of requiring only mild model assump-
tions, it also has the disadvantage of not utilizing a dependency structure that
can potentially increase efficiency.

A simple model that can handle multiple event-time data is provided by
an extension of Cox regression to counting processes through application of a
general approach due to Andersen and Gill (1982). This model can be handled
in the same way as the Cox model, both numerically and theoretically. Re-
sults based on such a model are also easy to interpret. However, as will be
elaborated in subsequent sections, the Andersen-Gill model does not take into
account the dependence of events experienced by the same subject. To alleviate
this shortcoming, one may introduce a random effect (frailty) into the Andersen-
Gill model. The resulting formulation is a more general model that allows for
suitable inference not only on regression effects but on associations within sub-
ject as well. Approaches in this direction can be found in Nielsen, Gill, Andersen
and Sorensen (1992) and Oakes (1992).

The main objective of this investigation is to develop statistical methods for
checking and testing the presence of a nondegenerate frailty. This is connected
to a classical paper on empirical Bayes methodology by Robbins (1955). By uti-
lizing an interesting identity due to Robbins for Poisson random variables with
mean parameter following a prior distribution, a class of statistics is derived. The
statistics are then used to construct tests for the Andersen-Gill model against
alternatives of nondegenerate frailty. It is shown that the tests are consistent
against any such alternative. They are also used to construct simple graphical
plots for model checking, as well as for visual inspection to check where de-
viations from the null model may occur. Simulation results indicate that the
method performs well in detecting the presence of frailty. A real-life example
of tumor occurrence in experimental mice (Gail, Santner and Brown (1980)) is
used to illustrate the method. A similar method for checking whether the frailty
distribution belongs to the family of gamma distributions is also introduced.

2. Notation and Basic Statistics

Let N(t), t ≥ 0 denote a counting process for events experienced by a study
subject. Thus T1 = inf{t : N(t) = 1} is the first event time associated with
the subject and, in general, Tk = inf{t : N(t) = k} is the kth event time of
the subject. We use Z to denote a p-dimensional covariate vector and C the
censoring time, which is assumed to be independent of N conditional on Z. Sup-
pose there are n study subjects and (Ci, Zi, Ni), i = 1, . . . , n, are independent
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and identically distributed copies of {C,Z,N}, representing censoring times, co-
variates and counting processes of event times. Hence, observations consist of
{Ci, Zi, Ni(t), t ≤ Ci}, i = 1, . . . , n. For simplicity, covariates Z will be assumed
to be time-independent.

An application of Andersen and Gill’s extension of the Cox model to multiple
event times specifies that N has a nonrandom intensity function of form λ0(t)eβ′Z ,
where λ0(·) is an unspecified baseline intensity function and β is an unknown
regression parameter vector. Consequently, N(t)−∫ t

0 λ0(u)eβ′Zdu is a martingale
with respect to a suitable σ-filtration. By Watanabe’s characterization theorem
(Bremaud (1981, p.25)), N must be a nonhomogeneous Poisson process. Since
C is independent of N , it follows that the stopped process N(t ∧ C), where
t ∧ C = min{t, C}, has intensity I(C ≥ t)λ0(u)eβ′Z . Let Λ0(t) =

∫ t
0 λ0(u)du be

the baseline cumulative intensity. The fact that N is a nonhomogeneous Poisson
process entails that its time-transformed version, N{Λ−1

0 (t)}, is a homogeneous
Poisson process with intensity eβ′Z . Therefore, Xk = Λ0(Tk) − Λ0(Tk−1) are
independent exponential random variables with mean e−β′Z .

A commonly used frailty model builds on the Andersen-Gill model by in-
cluding an additional latent variable W into the intensity function in such a way
that, given W and Z, the conditional intensity of N is of form

Wλ0(t)eβ′Z . (2.1)

We refer to Nielsen, Gill, Andersen and Sorensen (1992) and Andersen, Borgan,
Gill and Keiding (1993, Chapter 9) for details. To ensure identifiability, we
require EW = 1 as λ0(·) is completely unspecified. The frailty W represents
proneness to event occurrence of a subject. It gives rise to dependency among
event times of the subject, with the strength of dependency corresponding to
the level of variability of W . In general, a larger variance entails a stronger
dependency.

It is not difficult to see that the mean of N(t) given Z has the same form
as that without the frailty, i.e., E[N(t)|Z] = Λ0(t)eβ′Z . Therefore, following
Pepe and Cai (1993) and Lawless and Nadeau (1995), the Cox-type estimating
equation still gives a valid estimator for β and Λ0, but their variances may be
handled by the robust approach of Wei, Lin and Weissfeld (1989). The resulting
estimator for β, however, does not take the dependency into consideration and
could be inefficient. On the other hand, one can specify the distribution of W in
(2.1) and integrate out the frailty to obtain a parametric or semiparametric like-
lihood function, depending on whether the baseline intensity is specified or not.
Likelihood function-based inference procedures can then be developed (Nielson,
Gill, Andersen and Sorensen (1992) and Parner (1998)).
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In his seminal paper on empirical Bayes methodology, Robbins (1955) derived
an interesting formula for Poisson random variables. Suppose that Y given θ

follows a Poisson distribution with mean θ and that θ has a prior distribution G.
Then the marginal distribution of Y is given by

PG(Y = k) =
∫

P (Y = k|θ)dG(θ) =
∫

θke−θ

k!
dG(θ). (2.2)

Let (θ1, Y1),(θ2, Y2),. . .,(θn, Yn) be a sequence of i.i.d. copies of (θ, Y ). As usual,
only Y1, Y2, . . .,Yn are observed, not θ1, θ2, . . . , θn. The problem considered
by Robbins is to estimate the posterior mean E(θ|Y = k) =

∫
θk+1e−θdG(θ)

/
∫

θke−θdG(θ). In view of (2.2), it is equal to (k + 1)PG(Y = k + 1)/PG(Y = k)
for all G. Therefore, a natural estimator of E(θ|Y = k) is

(k + 1)
number of Yi such that Yi = k + 1

number of Yi such that Yi = k
. (2.3)

Note that the estimator in (2.3) is formed without any knowledge about the
prior distribution G. Furthermore, it follows from the Law of Large Numbers
that the estimator converges to E(θ|Y = k) as n → ∞ and from the Central
Limit Theorem that the estimator is asymptotically normal.

When the prior distribution G is degenerate, i.e., θ = θ0 for some constant
θ0, (2.3) estimates the same quantity θ0 for every k. Therefore, for any m0 < m1,

θ̂(m0,m1) =
∑n

i=1 I{m0 + 1 ≤ Yi ≤ m1 + 1}∑n
i=1 I{m0 ≤ Yi ≤ m1}/(Yi + 1)

(2.4)

estimates θ0. It is worth pointing out that (2.3) could lead to estimators that are
variations of (2.4). For example, we can multiply each term of both summations
in (2.4) by Yi + 1 and the resultant estimator, which is obviously consistent by
the Law of Large Numbers, is

∑n
i=1(Yi + 1)I{m0 + 1 ≤ Yi ≤ m1 + 1}∑n

i=1 I{m0 ≤ Yi ≤ m1} .

Our experience with simulations indicates, however, that (2.4) generally has good
efficiency.

The model specified by (2.1) can now be dealt with using the above analysis.
Suppose there is no frailty, i.e., W ≡ 1, and that the censoring variable Ci ≥ t

for all i. Following (2.4), it is easy to see that if there is no covariate in (2.1),
i.e., β = 0, the baseline cumulative hazard function Λ0(t) can be estimated, with
m0 = 0 and m1 = m − 1, by

∑n
i=1 I{1 ≤ Ni(t) ≤ m}∑n

i=1 I{0 ≤ Ni(t) ≤ m − 1}/[Ni(t) + 1]
.
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With covariates in (2.1), the preceding estimator needs to be extended. Specifi-
cally, let β̂ be the estimator of β using the partial likelihood estimating equation
(Andersen and Gill (1982)). Then Λ0(t) can be estimated by Λ̂R(β̂, t), where

Λ̂R(β, t) =
∑n

i=1 I{1 ≤ Ni(t) ≤ m}∑n
i=1 eβ′ZiI{0 ≤ Ni(t) ≤ m − 1}/[Ni(t) + 1]

. (2.5)

One could add a small number, such as 1/4 or 1/2, to the denominator of the
above expression to make the estimator more stable when the sample size is
small. Such a modification clearly does not affect the large sample properties.
Here, note that we estimate β based on all available information, but estimate
Λ0(t) based only on the information up to time t.

3. Goodness-of-fit Tests

In the preceding section, we introduced Λ̂R(β̂, t) as an estimator of Λ0(t)
when there is no frailty. It will be shown in this section that the estimator
converges to a quantity that is always smaller than Λ0(t) when there is frailty.
On the other hand, Λ0(t) can be estimated consistently by the Nelson-Aalen
estimator Λ̂(β̂, t), where

Λ̂(β, t) =
∑n

i=1 Ni(t)∑n
i=1 exp(β′Zi)

;

cf. Andersen and Gill (1982) and Pepe and Cai (1993). Throughout this section,
we assume that Ci ≥ t for all i.

The next theorem shows that Λ̂R(β̂, t) is asymptotically biased downward
when the frailty W is nondegenerate. Because Λ̂(β̂, t) is always asymptotically
unbiased, a natural way to check for the presence or absence of the frailty is
to contrast the two estimators of Λ0(t). Since β̂ is consistent, note that the
empirical Bayes estimator Λ̂R(β̂, t) → Λ̄R(t) as n → ∞ by the Strong Law of
Large Numbers, where

Λ̄R(t) =
EI{1 ≤ N(t) ≤ m}

E(I{N(t) ≤ m − 1}eβ′Z/[N(t) + 1])
.

Theorem 3.1. Under the degenerate frailty assumption, W ≡ 1, we have
Λ̄R(t) = Λ0(t). Furthermore, if Var(W ) > 0, then Λ̄R(t) < Λ0(t).

The theorem will be proved in the Appendix. Because the Nelson-Aalen
estimator Λ̂(β̂, t) is asymptotically unbiased, Λ̂R(β̂, t)−Λ̂(β̂, t) (or more precisely,
its standardized version) may be used to test for frailty. It is clear from Theorem
3.1 that such a test will be consistent against any frailty alternative. The critical
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region can be specified by the following theorem on asymptotic normality of the
test statistic.

Theorem 3.2. Under the degenerate frailty assumption, W ≡ 1,
√

n[Λ̂R(β̂, t)−
Λ̂(β̂, t)] converges to a normal distribution with mean 0 and variance V (β, t).

A consistent estimator of V (β, t) is V̂ (β̂, t), where

V̂ (β, t) =
1
n

n∑
i=1

{(∂Λ̂R(β, t)
∂β

− ∂Λ̂(β, t)
∂β

)′
I−1(β)

(
Zi −

∑n
j=1 Zje

β′Zj

∑n
j=1 eβ′Zj

)
Ni(t)

−Ni(t)−ÊNi(t)∑n
j=1 eβ′Zj

+
I{1≤Ni(t)≤m}−Λ̂(β, t)I{1≤Ni(t)≤m}eβ′Zi/[Ni(t) + 1]eβ′Zi∑n

j=1 eβ′ZjI{Nj(t) ≤ m−1}/[Nj(t) + 1]

}2
,

with ÊNi(t) = Λ̂(β, t)eβ′Zi , and I(β) is the limit of

1
n

n∑
i=1

∫ ∞

0

(∑n
j=1 Z⊗2

j I(Cj ≥ u)eβ′Zj

∑n
j=1 I(Cj ≥ u)eβ′Zj

−
(∑n

j=1 ZjI(Cj ≥ u)eβ′Zj

∑n
j=1 I(Cj ≥ u)eβ′Zj

)⊗2)
dNi(u),

as n → ∞ (here a⊗2 = aa′).

Theorem 3.2 shows that we can use S(t) = n
1
2 [Λ̂R(β̂, t) − Λ̂(β̂, t)]/

(
V̂ (β̂, t)

) 1
2

to test the hypothesis of no frailty. Such a test is consistent against any alterna-
tive with a nondegenerate frailty. Because both Λ̂R and Λ̂ are positive, we can
take log-transformations to reduce skewness. Thus, alternatively we can use the
test statistic

S1(t) =
n

1
2 Λ̂(β̂, t)

[
log(Λ̂R(β̂, t)) − log(Λ̂(β̂, t))

]
(
V̂ (β̂, t)

) 1
2

.

Note that the test based on S or S1 is one-sided since Λ̂R(β̂, t) has a negative
bias when W is nondegenerate.

In principle, for any t, the constructed tests are valid and consistent. In
practice, we may need to choose a suitable t. One approach is to choose t to
be large, but with limited censoring up to that time point. In the case of type
I simple censorship, i.e., Ci ≡ c0, as in the example given in the next section,
our empirical findings suggest that the choice of t at which approximately 1/2 to
2/3 of events have occurred usually gives satisfactory results in terms of accurate
approximation of the type I error and reasonably good power.

Another natural way is to summarize them by integration. For example, we
can use

∫ t0
0 {Λ̂R(β̂, t)− Λ̂(β̂, t)}dµ(t) or

∫ t0
0 {log(Λ̂R(β̂, t))− log(Λ̂(β̂, t))}dµ(t) for
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some suitably chosen measure µ. These statistics will have to be standardized,
which will involve the covariance function for the limiting process

√
n{Λ̂R(β̂, t)−

Λ̂(β̂, t)}. The covariance function may be quite complicated to estimate. To
avoid this, resampling methods may be used.

4. Simulation Results and a Real Example

In the preceding section we derived theoretical properties for an estimator of
the baseline cumulative intensity function under the assumption of no frailty, and
then proposed asymptotically valid tests for the presence of frailty. To investigate
the finite-sample behavior of the proposed procedure, we conducted simulation
studies.

Tables 1 and 2 report some of the simulation results using 1,000 runs per
case. In Table 1, data were generated from (2.1) with frailty W following a
gamma distribution with mean 1 and variance σ2, λ0(t) ≡ 1, and no covariates.
The data generation in Table 2 is similar to that in Table 1 except the model
includes a covariate Z that was generated from the uniform distribution U [0, 1].
The coefficient β was set to 0.25. In both cases, the censoring time is set at 3 so
that, on average, there will be about 3 events for each subject at time t = 3.

Table 1. Simulation results for testing frailty in model without covariate
using S and S1 at the time 2/3 of events occurred.

Type I Power Power Power
Sample σ2 = 0 σ2 = 0.25 σ2 = 0.5 σ2 = 1

n S S1 S S1 S S1 S S1

50 0.029 0.036 0.376 0.446 0.747 0.800 0.976 0.987
75 0.032 0.045 0.558 0.602 0.917 0.935 0.999 1.000
100 0.038 0.048 0.665 0.697 0.966 0.970 1.000 1.000
125 0.043 0.048 0.780 0.801 0.989 0.992 1.000 1.000
150 0.043 0.056 0.813 0.844 0.997 0.997 1.000 1.000

Table 2. Simulation results for testing frailty in model with a covariate using
S and S1 at the time 2/3 of events occurred.

Type I Power Power Power
Sample σ2 = 0 σ2 = 0.25 σ2 = 0.5 σ2 = 1

n S S1 S S1 S S1 S S1

50 0.017 0.027 0.389 0.459 0.798 0.835 0.989 0.994
75 0.035 0.044 0.588 0.629 0.937 0.954 1.000 1.000
100 0.025 0.033 0.714 0.739 0.982 0.985 1.000 1.000
125 0.031 0.036 0.786 0.804 0.998 0.998 1.000 1.000
150 0.033 0.041 0.853 0.872 0.997 0.999 1.000 1.000
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Tables 1 and 2 summarize empirical type I error and power at time t when
2/3 of events have occurred. The nominal level of significance was set at the
usual 0.05. The results show that the test without log-transformation is rather
conservative which, we believe, results from the skewness of Λ̂R. But the test
gives reasonably good power in detecting frailty. As expected, the empirical type
I errors in the test with log-transformation are much closer to the nominal level
0.05 than those in the test without log-transformation.
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Figure 1. The Nelson-Aalen estimate Λ̂ (solid lines) and the alternative
estimate Λ̂R (dotted lines). (a) σ2 = 0; (b) σ2 = 0.25; (c) σ2 = 0.5; (d)
σ2 = 1.

From Theorem 1, we see that Λ̂R should lag behind Λ̂ when there is frailty.
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Therefore, by plotting the two estimates simultaneously we will be able to see
the impact of frailty. This is demonstrated in Figure 1, where each panel plots
10 pairs of the estimates from 10 runs. The data are generated from (2.1) with
λ0(t) = 1 and W having gamma distribution with EW = 1 and variance σ2, and
with no covariate included. The four panels correspond to four different values of
σ2: (a) σ2 = 0 (no frailty); (b) σ2 = 0.25; (c) σ2 = 0.5; (d) σ2 = 1. The sample
size is 200 for each run. It is clear that as σ2 increases, the two types of curves,
representing Λ̂R and Λ̂, drift apart.
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Figure 2. The Nelson-Aalen estimate Λ̂ (solid line) and the alternative es-
timate Λ̂R (dotted line) of baseline cumulative intensity function for tumor
occurrence with the carcinogenesis experiment as reported in Gail, Santner
and Brown (1980).

We next illustrate the method with a carcinogenesis experiment as reported
and analyzed in Gail, Santner and Brown (1980). There were 48 female rats
injected with a carcinogen for mammary cancer at day 0. They were treated
with retinyl acetate to prevent cancer for 60 days, after which the treatment
was continued for 23 rats and discontinued for the remaining 25. The entire
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experiment lasted 182 days, thus the censoring times are a constant Ci ≡ 182.
Each experimental animal could have multiple tumors. The response variables
are the event times for the appearance of tumors. It was shown in Oakes (1992)
that the Andersen-Gill-type model is not suitable and that an obvious frailty
exists. We apply test statistics S and S1 as defined in Section 3, with a covariate
Z and with time t = 137 at which about 2/3 of events occurred. The covariate Z

takes the value 1 if the rat was treated and the value 0 if it was not. The estimate
of the coefficient β is -0.823 based on the Andersen-Gill model. The standardized
test statistics S and S1 are -2.16 and -2.46, respectively. The resulting p-values
are 0.015 and 0.007. Therefore, there is a strong evidence for the presence of
frailty, in agreement with the finding of Oakes (p-value = 0.005).

We plot the two estimates as given in Figure 2. Because of the presence of
frailty, we expect the two curves to be separated and they clearly deviate from
each other.

5. Testing Gamma Frailty

If there is a nondegenerate frailty that follows a gamma distribution, infer-
ence can be carried out easily with well-established asymptotic theory (Murphy
(1994) and Parner (1998)). Although Parner (1998) provided asymptotic the-
ory for the general gamma frailty model, his result cannot be used to test the
gamma frailty assumption. In practice, however, it is very important to check
this assumption.

In this section, we show that a similar idea can be used to construct a test or
tests for the null hypothesis that the frailty distribution belongs to the family of
gamma distributions. Here, we will only outline the approach. For this method to
become effective, we find that the number of events experienced by each subject
should not be small. For simplicity, we consider the one-sample problem, it is
straightforward to extend the approach to the case when Z takes a finite number
of values.

Suppose the counting process N is modeled by (2.1), with W a gamma
distribution with mean 1 and variance σ2. Define Hj(t) = E[WΛ0(t)|N(t) =
j − 1], j ≥ 1. By Bayes formula, it is not difficult to show that

Hj(t) = Λ0(t)
E{W j exp[−WΛ0(t)]}

E{W j−1 exp[−WΛ0(t)]} =
Λ0(t)

1 + σ2Λ0(t)

[
1 + (j − 1)σ2

]
. (5.1)

Since the middle expression in (5.1) is equal to jP (Ni(t) = j)/P (Ni(t) = j − 1),
Hj(t) can be consistently estimated by

Ĥj(t) =
j

∑n
i=1 I{Ni(t) = j}∑n

i=1 I{Ni(t) = j − 1} .
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It is obvious that Hj(t)/H1(t) = 1 + (j − 1)σ2, which does not involve
t. Therefore, in large samples, Â(j, t) = Ĥj(t)/Ĥ1(t) should be approximately
constant in t and linear in j. Significant deviation from such a pattern could
indicate departure from the gamma frailty assumption.

Further modifications to Â(j, t) are possible. For example, Ĥ1(t) may be
replaced by the Nelson estimator of the cumulative hazard function of the first
event time. One could also take the average of Ĥj(t) over time to eliminate t,
for example, H̃j =

∫
Ĥj(t)dµ(t) for some known measure µ(t), and then compute

the ratios H̃j/H̃0. In doing so, the pattern to be checked against will be the
linearity of the ratios over j.

Preliminary simulation results indicate that for this approach to perform
reasonably well the number of subjects and the number of events per subject
need to be large. Further research on this matter is currently underway and
results will be reported elsewhere.

6. Remarks

The test statistics S(t) and S1(t) depend on t. Note that the assumption
Ci ≥ t was made to ensure its validity. When the Ci can take small values,
modifications to S or S1 are needed. One simple measure is to first partition
subjects into several groups according to their Ci values, and then construct S

or S1 separately for each group. If C is independent of {Z,N(t)}, a possible
modification is to introduce I{Ci ≥ t} to each term in the estimators Λ̂R(β, t)
and Λ̂(β, t).

Modifications of test statistic are needed when there is random censoring.
One possible approach is to use the idea outlined in previous paragraph. However,
the investigation of this approach is very much incomplete.
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Appendix

We prove Theorems 3.1 and 3.2. For Theorem 3.1, we need an inequality
which can be found in Casella and Berger (1990, p.184).

Lemma A.1. Suppose that f is an increasing function, g a decreasing function.
Then for any random variable X, E{f(X)g(X)} ≤ Ef(X)Eg(X). The inequality
is strict if f is strictly increasing, g strictly decreasing and X nondegenerate.
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Proof of Theorem 3.1. It is easy to check that

Λ̄R(t) =
EI{1 ≤ N(t) ≤ m}

E(I{N(t) ≤ m − 1}eβ′Z/[N(t) + 1])
= Λ0(t)

when W is degenerate. We only need to show that

Λ̄R(t) < Λ0(t) (A.1)

when W is nondegenerate. Now

EI{1 ≤ N(t) ≤ m} = E
[ m∑

j=1

1
j!

(
WΛ0(t)eβ′Z

)j
exp{−WΛ0(t)eβ′Z}

]
.

Let f(W ) = W and

g(W ) =
m∑

j=1

1
j!

E
[(

WΛ0(t)eβ′Z
)j

exp{−WΛ0(t)eβ′Z} 1
W

|W
]
.

Then f is strictly increasing. In addition, it is not difficult to show that g′(W ) <

0. By Lemma A.1, E[f(W )g(W )] < Ef(W )Eg(W ), which clearly entails (A.1).

Proof of Theorem 3.2. Write
√

n
[
Λ̂R(β̂, t) − Λ̂(β̂, t)

]
= I1 + I2 + I3 + I4, (A.2)

I1 =
√

n
(
Λ̂R(β̂, t) − Λ̂R(β, t) − Λ̂(β̂, t) + Λ̂(β, t)

)
,

I2 =
√

n
(
Λ̂R(β, t) − E

∑n
i=1 I{1 ≤ Ni(t) ≤ m}∑n

i=1 I{Ni(t) ≤ m − 1}eβZi/(Ni(t) + 1)

)
,

I3 =
√

n
( E

∑n
i=1 I{1 ≤ Ni(t) ≤ m}∑n

i=1 I{Ni(t) ≤ m − 1}eβ′Zi/(Ni(t) + 1)
− Λ0(t)

)
,

I4 =
√

n
(
Λ0(t) − Λ̂(β, t)

)
.

Note that

I1 =
[∂Λ̂R(β, t)

∂β
− ∂Λ̂(β, t)

∂β

]√
n(β̂ − β) + o(‖β̂ − β‖),

I2 =
η(t)√

n

n∑
i=1

[
I{1 ≤ Ni(t) ≤ m} − EI{1 ≤ Ni(t) ≤ m}

]
+ op(1),

I3 =
η(t)Λ0(t)√

n

n∑
i=1

[
E

(I{Ni(t)≤m−1}eβ′Zi

Ni(t)+1

)
− I{Ni(t)≤m−1}eβ′Zi

Ni(t)+1

]
+op(1),

and I4 =
1√

nEeβ′Z

n∑
i=1

[ENi(t) − Ni(t)] + op(1),
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where η(t) =
{
EI{N(t) ≤ m − 1}eβ′Z/(N(t) + 1)

}−1
.

By the standard result on β̂ (Andersen and Gill (1982)),
√

n(β̂ − β) =
I−1(β)U(β) + op(1), where U(β) is the partial likelihood score function for β

and is equal to

1√
n

n∑
i=1

∫ ∞

0

(
Zi −

∑n
j=1 ZjI(Cj ≥ u)eβ′Zj

∑n
j=1 I(Cj ≥ u)eβ′Zj

)
dNi(u).

Therefore, (A.2) is asymptotically a sum of independent zero-mean random vari-
ables. The standard Multivariate Central Limit Theorem can be used to get the
convergence in distribution. Finally, V̂ (β̂, t) converges to the limiting variance
by the Law of Large Numbers and the consistency of β̂.
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