*Corresponding author |
Sequential Monte Carlo |
Guest editors: Arnaud Doucet and Jun S. Liu |
|
Foreword: An Overview
Jun S. Liu |
|
1067 |
|
A Langevinized Ensemble Kalman Filter for Large-Scale Dynamic Learning
Peiyi Zhang, Qifan Song and Faming Liang* |
Supp |
doi:10.5705/ss.202022.0172
1071 |
|
A Divide and Conquer Sequential Monte Carlo Approach to High Dimensional Filtering
Francesca R. Crucinio* and Adam M. Johansen |
Supp |
doi:10.5705/ss.202022.0243
1093 |
|
Particle-Based, Rapid Incremental Smoother Meets Particle Gibbs
Gabriel Cardoso*, Eric Moulines and Jimmy Olsson |
Supp |
doi:10.5705/ss.202020.0215
1115 |
|
An Iterated Block Particle Filter for Inference on Coupled Dynamic Systems With Shared and Unit-Specific Parameters
Edward Ionides*, Ning Ning and Jesse Wheeler |
Supp |
doi:10.5705/ss.202022.0188
1145 |
|
Approximating Optimal SMC Proposal Distributions in Individual-Based Epidemic Models
Lorenzo Rimella*, Christopher Jewell and Paul Fearnhead |
Supp |
doi:10.5705/ss.202022.0198
1167 |
|
Resampling Strategy in Sequential Monte Carlo for Constrained Sampling Problems
Chencheng Cai*, Rong Chen and Ming Lin |
|
doi:10.5705/ss.202022.0185
1187 |
|
De-Biasing Particle Filtering for a Continuous Time Hidden Markov Model With a Cox Process Observation Model
Ruiyang Jin*, Sumeetpal S. Singh and Nicolas Chopin |
Supp |
doi:10.5705/ss.202022.0210
1215 |
|
Differentiable Particle Filters With Smoothly Jittered Resampling
Yichao Li#, Wenshuo Wang#, Ke Deng* and Jun S. Liu* |
Supp |
doi:10.5705/ss.202022.0256
1241 |
|
Estimating Boltzmann Averages for Protein Structural Quantities Using Sequential Monte Carlo
Zhaoran Hou and Samuel W.K. Wong* |
Supp |
doi:10.5705/ss.202022.0340
1263 |