Abstract

By defining a logarithmic functional central subspace along the Fr´echet mean curve, a novel

intrinsic functional sliced inverse regression model is proposed for a Riemannian or Wasserstein functional predictor and a scalar response. This approach is applicable to both Euclidean submanifolds

and manifolds without a natural ambient space. Under mild conditions, a truncation-based estimation

procedure is developed for the logarithmic functional central subspace, and its asymptotic properties

are subsequently investigated within the framework of intrinsic geometry. Furthermore, the flatness of

the Wasserstein space ensures that the proposed method can identify the optimal truncation number

to achieve the minimax optimal convergence rate for estimating the logarithmic functional central subspace. The finite-sample performance of the proposed method is demonstrated through both simulation

studies and real data applications.

Information

Preprint No.SS-2024-0349
Manuscript IDSS-2024-0349
Complete AuthorsXinyu Li, Jianjun Xu
Corresponding AuthorsJianjun Xu
Emailsxjj1994@mail.ustc.edu.cn

References

  1. Ambrosio, L., N. Gigli, and G. Savar´e (2006). Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Z¨urich. Springer.
  2. Arsigny, V., P. Fillard, X. Pennec, and N. Ayache (2007). Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM journal on matrix analysis and applications 29(1), 328–347.
  3. Bhattacharya, R. and V. Patrangenaru (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds. The Annals of Statistics 31(1), 1–29.
  4. Bigot, J., R. Gouet, T. Klein, and A. L´opez (2017). Geodesic PCA in the Wasserstein space by convex PCA. Annales de l’Institut Henri Poincar´e, Probabilit´es et Statistiques 53(1), 1–26.
  5. Boente, G., M. S. Barrera, and D. E. Tyler (2014). A characterization of elliptical distributions and some optimality properties of principal components for functional data. Journal of Multivariate Analysis 131, 254–264.
  6. Cai, T. T. and P. Hall (2006). Prediction in functional linear regression. The Annals of Statistics 34(5), 2159–2179.
  7. Chagny, G. and A. Roche (2016). Adaptive estimation in the functional nonparametric regression model. Journal of Multivariate Analysis 146, 105–118.
  8. Chen, D., P. Hall, and H.-G. M¨uller (2011). Single and multiple index functional regression models with nonparametric link. The Annals of Statistics 39(3), 1720–1747.
  9. Chen, D. and H.-G. M¨uller (2012). Nonlinear manifold representations for functional data. The Annals of Statistics 40(1), 1–29.
  10. Chen, R., S. Tian, D. Huang, Q. Lin, and J. S. Liu (2023). On the optimality of functional sliced inverse regression. arXiv preprint arXiv:2307.02777.
  11. Cheng, G., J. Ho, H. Salehian, and B. C. Vemuri (2016). Recursive computation of the fr´echet mean on non-positively curved riemannian manifolds with applications. In Riemannian Computing in Computer Vision, pp. 21–43. Springer.
  12. Chiou, J.-M., Y.-F. Yang, and Y.-T. Chen (2016). Multivariate functional linear regression and prediction. Journal of Multivariate Analysis 146, 301–312.
  13. Dai, X., Z. Lin, and H.-G. M¨uller (2021). Modeling sparse longitudinal data on riemannian manifolds. Biometrics 77(4), 1328–1341.
  14. Dai, X. and H.-G. M¨uller (2018). Principal component analysis for functional data on riemannian manifolds and spheres. The Annals of Statistics 46(6B), 3334–3361.
  15. Ferraty, F., A. Mas, and P. Vieu (2007). Nonparametric regression on functional data: inference and practical aspects. Australian & New Zealand Journal of Statistics 49(3), 267–286.
  16. Ferraty, F. and P. Vieu (2002). The functional nonparametric model and application to spectrometric data. Computational Statistics 17, 545–564.
  17. Ferr´e L and A F Yao (2003) Functional sliced inverse regression analysis Statistics 37(6) 475–488.
  18. Ferr´e, L. and A.-F. Yao (2005). Smoothed functional inverse regression. Statistica Sinica 15(3), 665–683.
  19. Hall, P. and J. L. Horowitz (2007). Methodology and convergence rates for functional linear regression. The Annals of Statistics 35(1), 70–91.
  20. Happ, C. and S. Greven (2018). Multivariate functional principal component analysis for data observed on different (dimensional) domains. Journal of the American Statistical Association 113(522), 649–659.
  21. Hardle, W., P. Hall, and H. Ichimura (1993). Optimal Smoothing in Single-Index Models. The Annals of Statistics 21(1), 157–178.
  22. Hsing, T. and R. Eubank (2015). Theoretical foundations of functional data analysis, with an introduction to linear operators, Volume 997. John Wiley & Sons.
  23. Hsing, T. and H. Ren (2009). An RKHS formulation of the inverse regression dimensionreduction problem. The Annals of Statistics 37(2), 726–755.
  24. Huang, D., S. Tian, and Q. Lin (2023). Sliced inverse regression with large structural dimensions. arXiv preprint arXiv:2305.04340.
  25. Jeon, J. M., B. U. Park, and I. Van Keilegom (2021). Additive regression for non-euclidean responses and predictors. The Annals of Statistics 49(5), 2611–2641.
  26. Jeon, J. M., B. U. Park, and I. Van Keilegom (2022). Nonparametric regression on lie groups with measurement errors. The Annals of Statistics 50(5), 2973–3008.
  27. Kong, D., K. Xue, F. Yao, and H. H. Zhang (2016). Partially functional linear regression in high dimensions. Biometrika 103(1), 147–159.
  28. Lee, J. M. (2006). Riemannian manifolds: an introduction to curvature, Volume 176. Springer Science & Business Media.
  29. Lee, K.-Y. and L. Li (2022). Functional sufficient dimension reduction through average fr´echet derivatives. The Annals of Statistics 50(2), 904–929.
  30. Lee, K.-Y., L. Li, B. Li, and H. Zhao (2023). Nonparametric functional graphical modeling through functional additive regression operator. Journal of the American Statistical Association 118(543), 1718–1732.
  31. Li B (2018) S ffi i t di i d ti M th d d li ti ith R Ch and Hall/CRC.
  32. Li, B. and J. Song (2022). Dimension reduction for functional data based on weak conditional moments. The Annals of Statistics 50(1), 107–128.
  33. Li, Y. and T. Hsing (2010). Deciding the dimension of effective dimension reduction space for functional and high-dimensional data. The Annals of Statistics 38(5), 3028–3062.
  34. Lian, H. (2015). Functional sufficient dimension reduction: Convergence rates and multiple functional case. Journal of Statistical Planning and Inference 167, 58–68.
  35. Lian, H. and G. Li (2014). Series expansion for functional sufficient dimension reduction. Journal of Multivariate Analysis 124, 150–165.
  36. Lila, E., J. A. D. Aston, and L. M. Sangalli (2016). Smooth Principal Component Analysis over two-dimensional manifolds with an application to neuroimaging. The Annals of Applied Statistics 10(4), 1854–1879.
  37. Lin, Q., X. Li, D. Huang, and J. S. Liu (2021). On the optimality of sliced inverse regression in high dimensions. The Annals of Statistics 49(1), 1–20.
  38. Lin, Q., Z. Zhao, and J. S. Liu (2018). On consistency and sparsity for sliced inverse regression in high dimensions. The Annals of Statistics 46(2), 580–610.
  39. Lin, Z., D. Kong, and L. Wang (2023). Causal inference on distribution functions. Journal of the Royal Statistical Society Series B: Statistical Methodology 85(2), 378–398.
  40. Lin, Z. and H.-G. M¨uller (2021). Total variation regularized fr´echet regression for metricspace valued data. The Annals of Statistics 49(6), 3510–3533.
  41. Lin, Z., H.-G. M¨uller, and B. U. Park (2023). Additive models for symmetric positive-definite matrices and lie groups. Biometrika 110(2), 361–379.
  42. Lin, Z. and F. Yao (2019). Intrinsic riemannian functional data analysis. The Annals of Statistics 47(6), 3533–3577.
  43. Lin, Z. and F. Yao (2021). Functional regression on the manifold with contamination. Biometrika 108(1), 167–181.
  44. Ling, N. and P. Vieu (2021). On semiparametric regression in functional data analysis. Wiley Interdisciplinary Reviews: Computational Statistics 13(6), e1538.
  45. Lu, Z. J. (2007). Nonparametric functional data analysis: Theory and practice. Technometi 49(2) 226 226
  46. Luo, H., G. Nattino, and M. T. Pratola (2022). Sparse additive gaussian process regression. Journal of Machine Learning Research 23(61), 1–34.
  47. Moakher, M. (2005). A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM journal on matrix analysis and applications 26(3), 735– 747.
  48. Panaretos, V. M. and Y. Zemel (2020). An invitation to statistics in Wasserstein space. Springer Nature.
  49. Petersen, A. and H.-G. M¨uller (2016). Functional data analysis for density functions by transformation to a hilbert space. The Annals of Statistics 44(1), 183–218.
  50. Petersen, A. and H.-G. M¨uller (2019). Wasserstein covariance for multiple random densities. Biometrika 106(2), 339–351.
  51. Raichlen, D. A., P. K. Bharadwaj, M. C. Fitzhugh, and e. a. Haws (2016). Differences in resting state functional connectivity between young adult endurance athletes and healthy controls. Frontiers in Human Neuroscience 10, 218705.
  52. Salehian, H., R. Chakraborty, E. Ofori, D. Vaillancourt, and B. C. Vemuri (2015). An efficient recursive estimator of the fr´echet mean on a hypersphere with applications to medical image analysis. Mathematical Foundations of Computational Anatomy 3, 143–154.
  53. Schultz, M. B., A. E. Kane, S. J. Mitchell, and e. a. MacArthur (2020). Age and life expectancy clocks based on machine learning analysis of mouse frailty. Nature communications 11(1), 4618.
  54. Shao, L., Z. Lin, and F. Yao (2022). Intrinsic riemannian functional data analysis for sparse longitudinal observations. The Annals of Statistics 50(3), 1696–1721.
  55. Sturm, K. (2003). Probability measures on metric spaces of nonpositive curvature, heat kernels and analysis on manifolds, graphs, and metric spaces (paris, 2002). Contemp. Math. 338, 357–390. Van Essen, D. C., S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, K. Ugurbil, W.-
  56. M. H. Consortium, et al. (2013). The wu-minn human connectome project: an overview. Neuroimage 80, 62–79.
  57. Virta, J., K.-Y. Lee, and L. Li (2022). Sliced inverse regression in metric spaces. Statistica Sinica 32, 2315–2337.
  58. Wang, G. and H. Lian (2020). Functional sliced inverse regression in a reproducing kernel hilbert space. Statistica Sinica 30(1), 17–33.
  59. Wang, G., Y. Zhou, X.-N. Feng, and B. Zhang (2015). The hybrid method of fsir and fsave for functional effective dimension reduction. Computational statistics and data analysis 91, 64–77.
  60. Wang, J.-L., J.-M. Chiou, and H.-G. M¨uller (2016). Functional data analysis. Annual Review of Statistics and its application 3, 257–295.
  61. Yao, F. (2007). Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data. Journal of Multivariate Analysis 98(1), 40–56.
  62. Yao, F., H.-G. M¨uller, and J.-L. Wang (2005). Functional linear regression analysis for longitudinal data. The Annals of Statistics 33(6), 2873–2903.
  63. Yaqing Chen, Z. L. and H.-G. M¨uller (2023). Wasserstein regression. Journal of the American Statistical Association 118(542), 869–882.
  64. Yuan, M. and T. T. Cai (2010). A reproducing kernel hilbert space approach to functional linear regression. The Annals of Statistics 38(6), 3412–3444.
  65. Zhang, X. and J.-L. Wang (2016). From sparse to dense functional data and beyond. The Annals of Statistics 44(5), 2281–2321.
  66. Zhou, H., Z. Lin, and F. Yao (2026). Intrinsic wasserstein correlation analysis. 36, forthcoming.
  67. Zhou, H. and H.-G. M¨uller (2023). Functional principal component analysis for distributionvalued processes. arXiv preprint arXiv:2310.20088.
  68. Zhu, L. P. and Y. Z (2007). On spline approximation of sliced inverse regression. Science in China Series A: Mathematics 50(9), 1289–1302. International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, 230026, Anhui, China.

Acknowledgments

We thank the Co-Editor, an associate editor and two anonymous referees for their helpful

comments and constructive suggestions. This research was supported by the Fundamental

Research Funds for the Central Universities [Grant number JZ2024HGQA0121, JZ2025HGTA0142]

and the China Postdoctoral Science Foundation [Grant number 2023M733406].

Supplementary Materials

The supplementary material contains the proofs of theoretical results and additional numerical results.


Supplementary materials are available for download.