Statistica Sinica 27 (2017), 287-311
Abstract: We propose a new technique for consistent estimation of the number
and locations of the change-points in the second-order structure of a time series.
The core of the segmentation procedure is the Wild Binary Segmentation method
(WBS), a technique which involves a certain randomised mechanism. The advantage
of WBS over the standard Binary Segmentation lies in its localisation feature,
thanks to which it works in cases where the spacings between change-points are
short. In addition, we do not restrict the total number of change-points a time
series can have. We also ameliorate the performance of our method by combining
the CUSUM statistics obtained at different scales of the wavelet periodogram, our
main change-point detection statistic, which allows a rigorous estimation of the
local autocovariance of a piecewise-stationary process. We provide a simulation
study to examine the performance of our method for different types of scenarios.
A proof of consistency is also provided. Our methodology is implemented in the R
package wbsts, available from CRAN.
Key words and phrases: Binary segmentation, change-points, locally stationary wavelet processes, non-stationarity.