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The Role and Development of Applied Statistics 
to Advance Brain Science

In	 this	special	 issue	we	have	 the	pleasure	of	 reading	18	papers	on	 the	 theory	
and	application	of	modern	statistics	 in	brain	science.	Brain-based	research	 topics	
include	the	study	of	disrupted	glial-neuronal	interactions	in	HIV-associated	dementia,	
cortical	surface	morphology	in	autism,	schizophrenia	and	family	pedigrees,	serotonin	
receptor	occupancy,	mouse	auditory	cortex,	bilateral	hand	movements	in	Parkinson’s	
disease	 research,	 task	 switching,	word	generation,	visual	hemifields	and	 resting	
states,	visual	attention,	hippocampal	surfaces	 in	schizophrenia,	cortical	 thickness,	
hemispheric	asymmetry,	and	programmed	stimulation	of	motor	neurons	for	prosthetic	
robotic	devices.	Measurement	technology	and	methods	include	brain	tissue	analysis,	
electrophysiology,	electroencephalography	(EEG),	positron	emission	 tomography	
(PET),	 structural	magnetic	 resonance	 imaging	 (MRI)	 volumetry	 and	 surface	
reconstruction,	 functional	MRI	 (fMRI)	and	 functional	near	 infrared	spectroscopy	
(fNIRS).	Several	brain	imaging	methods	used	today	are	not	represented	here,	including	
MR	diffusion	 tensor	 imaging	 (MR-DTI),	magnetoencephalography	 (MEG),	MR	
spectroscopy	(MRS),	MR	spectroscopic	imaging	(MRSI),	and	transcranial	magnetic	
stimulation	 (TMS).	Mathematical	 and	statistical	methods	and	models	also	vary:	
point	processes,	 time	series,	penalized	regression	and	inverse	problems,	varieties	of	
Markov	models,	state-space	models,	principal	component	analysis	(PCA),	independent	
component	analysis	 (ICA),	 functional	connectivity,	spatiotemporal	power	spectra,	
spherical	harmonics	and	bootstrap	 techniques.	Sample	sizes	 range	 from	1	 to	131	
subjects,	not	all	human.	There	are	13	demonstrations	of	new	statistical	methods	with	
a	data	example	and	5	data	analyses	with	results	 that	contribute	 to	 the	brain	science	
literature,	a	mix	common	to	many	high-quality	statistical	and	biostatistical	 journals.	
Each	paper	provides	accessible	 introductory	background	material	on	 the	statistical	
theory	and	practice	to	which	they	contribute	and	some	provide	background	material	
in	brain	 science.	The	scientific	 topics,	mathematical	and	statistical	methods	and	
neuroscience	addressed	here	could	easily	fill	many	undergraduate	courses,	graduate	
courses,	masters	theses,	doctoral	dissertations	and	research	programs	—	they	do,	they		
should	and	they	will.

All	papers	address	research	 topics	 in	brain	structure	and	function	 that	 involve	
neurons,	 the	main	cells	 in	 the	brain	 that	help	enable	all	our	 talents	of	mind,	brain	
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and	behavior,	and	aspects	of	blood	 flow,	volume	and	oxygenation.	The	 idea	 that	
neuronal	activity	is	related	directly	to	changes	in	brain	metabolism	and	blood	supply	
was	perhaps	first	put	forth	by	Roy	and	Sherrington	in	1890.	They	conducted	highly	
invasive	experiments	with	dogs,	cats	and	rabbits	treated	with	curare	to	relax	skeletal	
muscles.	Interestingly,	they	began	their	report	on	a	statistical	note:

“.	 .	 .	 the	cause	of	 these	discrepancies	[in	 the	results	of	different	
researchers	 in	 the	area]	 is	 to	be	 found	 in	 the	great	difficulty	of	
avoiding	the	sources	of	error	which	plentifully	surround	the	subject,	
and	in	overcoming	certain	technical	difficulties	.	.	.	.	The	ease	with	
which	one	can	obtain	results	upon	certain	points,	on	taking	up	the	
subject,	 is	 itself,	we	believe,	apt	 to	make	the	inquirer	careless	 in	
controlling	sources	of	error,	which,	 it	may	be	noted,	are	some	of	
them	not	at	first	sight	obvious.	We	must	on	this	account	say	more	
about	the	technology	of	our	subject	than	would	be	necessary	were	
the	subject	a	simpler	one.”	

(Roy	and	Sherrington	(1890))

These	two	brain	science	pioneers	were	speaking	mainly	of	physiological	noise	and	
the	proper	design	and	analysis	of	experiments.	Nearly	one	hundred	and	twenty	years	
later,	we	still	grapple	with	these	and	many	other	statistical	issues	in	our	search	for	a	
deeper	and	wider	understanding	of	what	the	brain	is	and	how	it	works.	It	can	be	argued	
that	all	brain	science,	especially	imaging,	is	statistical.	It	can	also	be	argued,	perhaps	
more	strongly,	that	every	one	of	our	methods	and	models,	calculations	and	cautions	are	
meaningful	to	brain	science	only	when	coupled	with	the	principles	and	current	state	
of	neuroscientific	knowledge	and	its	underlying	physics,	chemistry	and	clinical	utility.	
An	excellent	comprehensive	source	in	neuroscience	is	Kandel,	Schwartz,	and	Jessell	
(2000).	An	equally	excellent	source	in	MR	physics	is	Stark	and	Bradley	(1999).	In	this	
author’s	view,	parts	of	these	texts	are	required	reading	for	any	statistician	working	in	
brain	science.

This	editorial	is	written	primarily	for	statisticians	interested	in	applying	their	skills	
to	advance	brain	science	in	meaningful	ways	to	help	improve	people’s	 lives.	In	 the	
following	pages	the	reader	will	find	a	brief	summary	of	each	article,	some	connecting	
themes,	and	closing	remarks.



1217EDITORIALS

Bai,	Shen,	Huang	and	Truong	propose	a	supervised	singular	value	decomposition	
(SVD)	 for	 ICA	with	 application	 to	 fMRI	 and	provide	 an	 example	of	 bilateral	
finger	 tapping	in	Parkinson’s	disease	research.	Their	SVD	and	ICA	decompose	the	
fMRI	signal	 into	 its	spatial	and	 temporal	components	by	data	projections	 to	 lower	
dimensional	subspaces.	They	seek	to	improve	scientific	inference	by	using	stimulus-
locked	filters	 that	match	aspects	of	periodic	experimental	designs.	For	instance,	 the	
fundamental	frequency	and	onset	of	 the	experimental	forcing	function	is	employed	
to	exclude	from	the	analysis	all	off-frequency	and/or	out-of	phase	fMRI	time	series.	
Such	data	exclusion	can	be	useful	in	the	pursuit	of	tight	a priori	goals	when	“noise”,	
such	as	random	and	 intermittent	spikes,	 is	well	understood	and	characterized.	But	
there	is	an	incurred	risk	of	missing	important	yet	unanticipated	brain	activity	that	 is	
relevant,	perhaps	indirectly,	 to	the	goals	of	the	study.	(This	point	is	emphasized	and	
expanded	by	Linquist,	Zhang,	Glover	and	Shepp,	and	by	Loh,	Lindquist	and	Wager	
in	 this	 issue.)	When	one	accepts	 this	risk,	however,	data	filtering	is	best	performed	
objectively	and	systematically,	as	advised	by	the	authors.	Such	practice	is	certainly	
an	 improvement	over	 the	highly	subjective	and	nonsystematic	pixel	surfing	during	
the	halcyon	days	of	early	fMRI,	when	large,	darkened	rooms	were	filled	with	cathode	
ray	 tubes	armed	by	eager	 researchers	searching	for,	 finding	and	publishing	a	 few	
local	brain	activations	that	matched	their	boxcar	functions.	Lower	dimensional	data	
transformations	should	not,	however,	depend	too	heavily	on	a priori	expectations	if	the	
analysis	is	to	escape	a	kind	of	self-fulfilling	circularity.	One	can	still	read	a	new	brain	
imaging	research	report	in	which	the	premise	and	conclusions	rely	on	little	sufficiently	
objective	empirical-inductive	investigation	(after	some	digging	into	specifics).	As	we	
know,	the	development	and	application	of	objective	statistical	methods	is	an	essential	
contribution	of	our	field.	The	proposal	offered	by	Bai	et	al.	can	be	useful	in	this	regard	
when	applied	appropriately.

Bellec,	Marrelec	and	Benali	present	a	circular	block	bootstrap	for	fMRI	studies	
of	“functional	connectivity”	that	they	call	“Yet	Another	Double	Bootstrap	(YADB)”.	
In	imaging	neuroscience,	functional	connectivity	refers	to	an	emerging	subfield	that	
seeks	to	understand	relationships	between	interacting	neuronal	clusters	that	“talk”with	
each	other	via	long-	and	short-range	projections.	There	are	an	estimated	100	billion	
neurons	and	100	trillion	synapses	 in	 the	human	brain.	Mappings	between	them	are	
many-many,	many-one,	one-many	and	one-one.	There	are	also	important	connections	
between	neurons	and	non-neuronal	glial	 (“glue”)	cells,	as	studied	by	Landau	and	
Everall	 in	 this	 issue.	The	simple	McCullough-Pitts	neuron	(McCullough	and	Pitts	
(1943)),	a	foundation	of	modern	neural	computation	models,	is	a	many-one	mapping	
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of	electrochemical	 signals	 from	dendrites	 (input	channels	 from	other	neurons)	 to	
synapses	on	 the	membrane	and/or	axon	of	a	single	neuron.	The	neuron	fires	 if	 the	
weighted	sum	of	the	signals	exceeds	a	threshold;	weights	and	thresholds	vary	across	
neuronal	ensembles.	From	a	simple	perspective,	 functional	connectivity	 in	 fMRI	
statistics	involves	the	inspection	of	spatial	arrays	of	Pearson	correlations	of	inter-voxel	
time	series.	The	authors	remind	us	that	 these	series	are	not	 independent,	 identically	
distributed	or	Gaussian	distributed.	Their	YADB,	and	many	bootstrap	predecessors,	
intends	to	address	these	and	other	distributional	assumption	violations	to	protect	global	
false-positive	error	and	false	discovery	rates.	They	report	 that	YADB	has	coverage	
and	power	properties	superior	to	several	bootstrap	alternatives	in	simulations	and	also	
apply	it	in	a	longitudinal	motor	learning	study	of	N	=	3	young	healthy	male	subjects.

Chung,	Hartley,	Dalton	and	Davidson	describe	and	extend	 the	mathematics	
of	weighted	 spherical	 harmonic	 expansions	 for	 cortical	 surface	 rendering,	 1-1	
hemispheric	correspondence	and	asymmetry	indices	for	 the	human	brain.	Spherical	
harmonics,	pioneered	 in	 imaging	neuroscience	by	Dr.	Guido	Gerig	and	others,	use	
polar	coordinate	basis	 representations	 to	span	cortical	 surface	vector	spaces.	The	
authors	compute	a	1-1	mapping	of	 the	cortical	surface	 to	 the	unit	sphere	assuming	
that	 the	 two	are	 topologically	equivalent.	Model	fitting	 is	 iterative.	Since	 the	PET	
image	reconstruction	work	of	Drs.	Larry	Shepp	and	Yehuda	Vardi	in	the	early	1980s	
that	estimated	 joint	probabilities	 from	a	series	of	marginal	projections	by	 the	EM	
algorithm,	the	choice	of	stopping	criteria	that	strikes	a	balance	between	bias	(underfit)	
and	variance	(overfit)	has	been	a	challenge.	The	authors	present	their	choice	based	on	
a	generalization	curve	used	in	machine	learning	and	elsewhere.	Artifacts	in	estimated	
surfaces	due	to	abrupt	topographic	changes	(Gibbs	ringing),	at	a	sulcal-gyral	interface	
for	 instance,	are	ameliorated	by	weighting	 the	spherical	harmonic	coefficients	and	
squared	residuals	to	speed	convergence.	The	classical	hemispheric	asymmetry	index	
of	Galaburda,	Rosen,	and	Sherman	(1990),	proportional	 to	 (Left	–	Right)	 /	 (Left	
+	Right),	 is	 the	 ratio	of	 the	positive-	and	negative-order	harmonics	of	 the	series	
expansion.	The	authors’	framework	enables	further	study	of	the	possible	importance	
of	other	harmonic	combinations.	Their	 representation	 is	employed	 to	study	 inter-
hemispheric	differences	 in	cortical	 thickness	 in	autism	versus	 typical	development.	
They	begin	by	applying	3D	linear	transformations	from	the	image	spaces	of	individual	
subjects	 to	a	common	Cartesian	coordinate	 reference	frame	based	on	a	publically	
available	structural	MRI	brain	“template”	derived	from	305	subjects	at	the	Montreal	
Neurological	 Institute	 (MNI).	Such	mapping	 is	 termed	“spatial	normalization”,	
“coregistration”,	or	“stereotaxic	 transformation”.	Im	et	al.	 (2008)	have	pointed	out,	
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however,	 that	 linear	mappings	can	cause	major	distortions	of	cortical	 thickness	and	
other	shape-based	measures	when	these	measures	depend	on	size.	For	instance,	when	
comparing	two	groups	of	people	having	differences	in	a	global	size	measure,	such	as	
total	brain	volumes	for	males	and	females	which	differ	by	roughly	10%	on	average,	
linear	stereotaxy	can	distort	a	geometric	similarity	measure	that	varies	with	this	global	
scaling,	 introducing	a	source	of	non-biological	variance	that	has	nothing	to	do	with	
any	true	biological	differences	between	the	two	groups.	Volumetric	components	of	the	
healthy	adult	and	pediatric	brain,	however,	do	not	all	scale	proportionally	with	total	
brain	volume	(Kennedy,	Lange	et	al.	(1998)).	Local	developmental	factors	exist	 that	
introduce	non-proportional	scalings	of	considerable	magnitudes	that	affect	volumetric	
group	analyses.	The	nonlinear	stereotaxic	 transformation	used	by	Zhu	et	al.	 in	 this	
issue	may	obviate	 such	potential	distortions	of	cortical	 thickness	measurements.	
Despite	this	possible	weakness,	Chung	et	al.	have	contributed	an	excellent	probe	of	the	
brain	basis	of	autism	spectrum	disorders.

Eden	and	Brown	contribute	an	outstanding	paper	in	motor	decoding	that	describes	
the	 stochastic	process	models	 and	control	 theory	used	 in	 the	design	of	 robotic	
prosthetic	devices	 to	control	muscle	movements	 through	programmed	stimulations	
of	primary	motor	neurons.	The	authors	contribute	 to	 this	 field	by	making	explicit	
connections	between	adaptive	filters	of	point	processes	for	the	analysis	of	neural	spike	
trains	in	continuous	time	and	a	new	filter	for	estimating	state-space	models	from	point	
processes.	Such	 innovative	 technology	may	provide	safe	and	efficacious	 therapies	
for	people	with	spinal	cord	 injuries	and	neural	degeneration,	possibly	 in	 tandem	
with	neural	regeneration	therapy	and	stem	cell	 transplantation.	By	use	of	simulated	
neuronal	stimulation	patterns	derived	from	a	previously	published	animal	model,	the	
authors	generate	smooth	arm	movements	that	compare	favorably	with	the	actual	3D	
arm	trajectories	of	a	Macaque	monkey.	The	current	mean	squared	displacement	error	
of	their	system	in	2D	is	about	2.5cm/sec	in	both	directions,	attributed	to	observation	
error.	There	is	more	work	to	be	done	and	this	research	holds	future	promise	to	help	
many	people	with	a	variety	of	motor	impairments.

In	related	work,	Guha	and	Biswas	present	an	overview	of	continuous-time	models	
for	local	field	potentials	and	point	process	models	for	neuronal	firing	patterns.	Field	
potentials	are	the	trans-membrane	electrical	currents	generated	by	cell	firings.	Their	
application	example	involves	the	location	of	the	auditory	cortex	in	the	mouse	brain.	
Humans	possess	a	tonotopic	map	between	pitch	and	neuronal	location	in	the	primary	
auditory	cortex,	but	mice	do	not.	Projections	from	the	auditory	cortex	to	other	regions	
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such	as	the	caudate	nucleus	and	putamen	are	more	variable	in	primates	than	in	rodents	
(Borgmann	and	Jürgens	 (1999)).	Therefore	a	 further	 statistical	understanding	of	
these	and	other	connections	in	the	mouse	brain	is	essential	in	animal	models	of	pitch	
discrimination,	for	example.	The	authors	also	provide	an	extensive	literature	review	
that	includes	seminal	work	by	Dr.	David	Brillinger.	We	all	can	learn	from	his	example,	
a	brilliant	 theoretical	statistician	who,	avoiding	simplistic	reductions	 to	convenient	
statistical	formulations,	takes	the	time	and	energy	needed	to	learn	the	principles	and	
current	findings	in	the	science	he	engages.	The	authors	present	comparative	results	and	
choices	from	a	wide	range	of	Markov	models,	state-space	models	and	a	new	ARMA-
type	model	and	find	that	their	Markov	chain	model	is	the	most	robust	in	their	context.

Jiang	and	Ogden	present	an	alternative	approach	to	the	analysis	of	plasma	kinetics	
via	PET.	As	its	name	indicates,	PET	is	an	emission	tomography	method,	in	contrast	to	
transmission	tomography	methods	such	as	2D	X-ray	and	3D	computerized	tomography	
(CT).	Ionizing	radiation	from	ligands	bound	to	macromolecules	helps	locate	sites	with	
of	high	glucose	metabolism.	In	 the	brain,	 these	sites	can	be	as	 large	as	 tumors	and	
as	small	as	targeted	presynaptic	and	postsynaptic	receptors	of	hundreds	of	chemical	
signaling	agents	(neurotransmitters).	Some	statistical	methods	for	PET	data	analysis	
select	design	matrices,	one	for	each	voxel,	from	a	library	of	basis	functions	for	use	in	
subsequent	regression	analyses.	The	authors	propose	to	achieve	statistical	gains	when	
adopting	this	approach	by	assuming	that	a	common	parameter	is	shared	by	all	voxel	
values	and	also	recommend	the	use	of	spatial	variance-covariance	patterns	generated	
by	conditional	autoregressive	(CAR)	models.	The	authors	apply	their	proposal	 to	a	
PET	study	of	serotonin	(5HT1A	),	a	neurotransmitter	that	regulates	mood,	where	levels	
are	manipulated	by	medications	 for	 treatment	of	depression	and	other	biological	
disorders.

Keller,	Roche,	Tucholka	and	Thirion	address	the	deleterious	effects	on	population	
inferences	of	 imperfect	 spatial	 normalization	 across	 subjects	 in	 fMRI	 studies.	
Intuitively,	the	spatial	extents	of	activated	regions	under	misalignment	are	larger	than	
they	would	be	if	perfect	alignment	were	possible.	The	authors	present	an	attractive	
extension	of	the	two-level	empirical/full	Bayes	formulation	that	acknowledges	voxel	
location	uncertainty.	Models	are	fit	via	Markov	chain	Monte	Carlo	(MCMC)	sampling	
with	conjugate	priors,	a	separate	Metropolis	accept/reject	 rule	for	obtaining	draws	
from	the	conditional	distribution	of	spatial	displacements,	and	a	sign	permutation	
test	to	control	false	positive	error	rate.	Although	the	authors,	and	others	before	them,	
argue	that	their	MCMC	sampling	time	is	considerably	less	than	the	total	time	required	
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to	design,	enroll	and	implement	a	 typical	fMRI	study,	some	clinical	brain	 imaging	
studies	require	results	quickly.	The	authors	apply	 their	approach	 to	an	fMRI	study	
of	calculation	and	sentence	switching	to	locate	number	processing	regions.	Setting	a	
threshold	that	limits	the	global	false	positive	rate	to	1%,	their	Bayes	factor	maps	detect	
broad	activity	in	the	posterior	parietal	cortex	where	spatial	extent	decreases	under	their	
spatial	uncertainty	model	to	become	comparable	to	that	detected	by	a	common	t-statistic	
map	with	0.1%	coverage.	When	 they	 threshold	 their	map	at	 this	 same	coverage	
probability,	the	activation	pattern	becomes	tighter,	as	expected,	and	includes	the	more	
localized	brain	activity	seen	in	other	similar	studies	of	mental	calculation	(Rueckert,	
Lange	et	al.	(1996);	Chochon,	Cohen,	van	de	Moortele,	and	Dehaene	(1999);	Dehaene,	
Piazza,	Pinel,	and	Cohen	(2003)).

Landau	and	Everall	have	chosen	an	active	research	area	in	brain	tissue	analysis	
to	demonstrate	 their	extension	of	semi-parametric	bootstrap	methods	for	regression	
models	of	Professor	Brian	Ripley’s	K-functions	 for	 inhomogeneous	spatial	point	
processes	(SPPs)	(Diggle,	Lange,	and	Benes	(1991)).	They	extend	current	approaches	
to	multivariate	(Landau,	Rabe-Hesketh,	and	Everall	(2004))	mixed-effects	(Carpenter,	
Goldstein,	and	Rasbash	 (2003))	models.	Professor	Ripley’s	K-functions	quantify	
divergence	from	complete	spatial	randomness	and	are	invariant	 to	random	thinning.	
In	contrast	 to	employing	a	brain	science	data	 set	as	an	example	application	of	a	
new	statistical	method,	 the	authors	have	provided	us	with	an	example	of	statistical	
methodology	generated	to	answer	a	specific	set	of	research	questions	in	brain	science.	
HIV-associated	dementia	 (HAD)	 is	 thought	 to	be	due,	 in	part,	 to	disruptions	of	
spatial	 interactions	between	astrocytes,	a	 type	of	glial	cell,	and	pyramidal	neurons.	
Interestingly,	 there	is	no	particular	reason	why	two	brain	cells	are	in	their	particular	
locations,	excluding	cells	that	communicate	by	very	short-range	electrical	fields	called	
gap	junctions.	Once	positioned,	however,	cell	densities	and	arrangements	change	over	
time	by	a	variety	of	processes	 including	programmed	cell	death	(apoptosis),	neural	
generation	(controversial	 in	 the	human	brain),	 tissue	shrinkage	not	due	to	cell	 loss,	
and	random	thinning.	The	spatial	distributions	of	neurons	in	the	six	layers	of	human	
neocortex	diverge	greatly	from	3D	Poisson	SPPs	of	complete	spatial	randomness	to	
include	sub-Poisson	SPPs	(more	regularly	spaced	patterns	with	exclusionary	distances	
between	cells),	supra-Poisson	SPPs	(spatial	clustering,	mother-daughter	processes)	
and	other	patterns.	Spatial	arrangements	of	glial	cells,	however,	are	generated	by	3D	
Poisson	SPPs.	Glial	cell	analysis	was	once	thought	to	be	a	research	backwater	when	
most	attention	was	directed	 to	understanding	neuronal	 interactions	at	 the	synapse.	
Astrocytes	now	play	a	central	 role	 in	molecular	genetic	 studies	of	 the	 tripartite 
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synapse	(Halassa,	Fellin,	and	Haydon	(2007)).		Astrocytes	are	coupled	to	one	another	
by	gap	junctions.	Their	processes	are	contained	within	100	µm	regions	contiguous	
to	the	neuronal	membrane.	One	astrocyte	makes	contact	with	over	100,000	synapses	
(Bushong,	Martone,	Jones,	and	Ellisman	(2002)).	They	regulate	 the	availability	of	
D-Serine,	an	endogenous	ligand	that	binds	to	 the	glycine	site	on	the	predominantly	
glutamatergic	NMDA	receptor	(Halassa,	Fellin,	and	Haydon	(2007)).	NMDA	receptor	
hypofunction	has	been	implicated	in	schizophrenia	(Tsai	and	Coyle	(2002)).	Increasing	
D-Serine	levels,	enabled	by	astrocytes,	may	decrease	positive	and	negative	symptoms	
in	schizophrenia	(Tsai,	Yang,	Chung,	Lange,	and	Coyle	(1998)).	Astrocyte	dysfunction	
has	been	associated	with	HAD	and	epilepsy,	and	possibly	Alzheimer’s	disease	and	
depression.	Through	their	regulation	of	 local	blood	flow,	astrocytes	make	important	
contributions	to	 the	cellular	bases	of	functional	brain	imaging	(Magistretti	 (2000)).	
Hence,	 further	understanding	of	correlations	between	 the	spatial	arrangements	of	
neurons	and	astrocytes	will	 continue	 to	 reveal	 the	molecular	genetic	etiology	of	
major	brain	disorders.	Landau	and	Everall	present	a	clear,	experienced	and	detailed	
description	of	 their	statistical	machinery	that	enables	others	 to	use	and	extend	their	
work	to	similar	situations	and	know	precisely	what	they	are	doing.	Theirs	is	a	well-
written	paper	worthy	of	attention	by	anyone	interested	in	brain	tissue	analysis.

Lindquist,	Zhang,	Glover	 and	Shepp	 contribute	 an	 excellent	 paper	 on	 an	
innovative	approach	 to	 functional	MR	 image	acquisition	 that,	when	brought	 to	
fruition,	could	 revolutionize	 the	 field.	As	 the	authors	point	out,	when	we	seek	 to	
use	current	 fMRI	 technology	 to	understand	spatiotemporal	 relations	between	 the	
activation	 sequences	 induced	by	 controlled	 external	 stimuli,	 its	 poor	 temporal	
resolution	makes	 such	attempts	 futile.	They	direct	our	 attention	away	 from	 the	
slowly	evolving	post-stimulus	signal	peak	to	 the	 transient,	 low	magnitude	negative	
dip	immediately	following	the	stimulus.	This	dip	is	an	early	component	of	the	blood	
oxygen-level	dependent	(BOLD)	response	that	is	believed	by	many	MR	physicists	and	
neurochemists	to	be	due	to	an	immediate	decoupling	of	cerebral	oxygen	consumption	
and	blood	flow	in	 the	capillary	bed.	The	existence	of	 the	negative	dip	remains	an	
unproven	hypothesis,	yet	the	authors’	innovation	in	MR	image	acquisition	makes	this	
controversy	partially	irrelevant	because	their	new	acquisition	technique	has	potential	
applications	 in	other	MRI	areas.	 In	 the	 frequency	domain,	 instead	of	 traversing	
gradient	history	space	(k-space)	conceived	as	stacks	of	2D	echo-planar	images	(EPI)	in	
the	spatial	domain,	the	authors	traverse	k-space	in	true	3D	by	developing	an	alternative	
to	a	method	proposed	originally	by	Dr.	Peter	Mansfield,	a	pioneer	inventor	of	MRI,	
that	he	called	echo-volumnar	imaging	(EVI).	In	so	doing,	they	reduce	the	time	it	takes	
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to	collect	a	high-resolution	whole	head	image	in	fMRI	(the	time-to-repetition	or	TR)	
drastically	from	2000	ms	to	100	ms.	The	Nyquist	sampling	theorem	tells	us	 that	a	
sampling	frequency	of	100	ms	enables	reconstruction	of	any	periodic	function	with	
frequency	200	ms	or	more	(in	other	words,	two	points	determine	a	straight	line).	The	
authors	focus	on	dips	instead	of	peaks,	trade	spatial	resolution	for	temporal	resolution,	
collect	rapid	snapshots	to	locate	negative	dips	(if	any),	put	the	dips	in	correspondence	
with	 their	 future	peaks	 (What	goes	down	must	go	up?),	and	 thus	obtain	 temporal	
sequence	orderings	that	are	more	spatially	accurate.	They	actually	start	with	possible	
peak	locations	identified	by	the	general	linear	model	options	available	in	the	widely-
used	Statistical	Parametric	Mapping	(SPM)	program.	There	are	potential	sources	of	
false	positives	(declaring	a	dip,	a	peak,	or	a	dip-peak	correspondence	when	they	do	not	
exist)	and	false	negatives	(missing	dips	and	peaks	when	they	exist).	Brain	vasculature	
slowly	overreacts	to	the	call	for	more	freshly	oxygenated	blood	required	to	perform	
neural	computations,	memorably	described	by	Dr.	Robert	Turner	as	“watering	 the	
garden	for	 the	sake	of	a	single	flower”.	This	slow	response	 is	characterized	by	the	
brain’s	hemodynamic	response	function	(HRF)	and	 is	a	major	confound	 in	BOLD	
signal	detection	and	analysis.	As	 is	customary,	 the	authors	assume	a	global	HRF	
with	a	common	delay	between	5-8	seconds.	Relaxation	of	 this	assumption	to	allow	
location-dependent	HRFs	modeled	by	two-parameter	gamma	distributions	(Lange	and	
Zeger	(1997))	may	improve	the	spatial	accuracy	of	their	technique;	yet	that	model	is	
nonlinear	in	its	parameters	and	its	iteration	may	be	too	costly.	The	authors	address	the	
sensitivity	and	specificity	of	their	proposal	by	analyzing	an	fMRI	data	set	generated	
by	one	subject	 in	an	audiovisual	study	of	motor	cortex.	They	choose	a	 time	series	
decomposition	model	with	AR(2)	correlation	structure	that	separates	signal,	trend	and	
seasonal	components,	 followed	by	bootstrap	hypothesis	 testing.	Lindquist,	Zhang,	
Glover	and	Shepp	have	demonstrated	proof	of	concept	for	a	method	that	addresses	a	
major	problem	in	fMRI	data	analysis	directly	that	has	until	now	been	largely	ignored.	
Readers	 seeking	 to	 learn	more	MR	physics	and	help	 resolve	 temporal	 sequence	
ordering	problems	in	fMRI	should	study	this	paper.	

Loh,	Lindquist	and	Wager	address	the	important	problem	of	model	misspecification	
in	fMRI.		Their	idea	is	to	alert	the	practitioner	to	potential	biases	and	statistical	power	
losses	when	estimating	onsets	and	widths	of	brain	activations	by	using	a	moving	time	
window	of	cumulative	weighted	averages	(discarding	noise	spikes)	 to	identify	large	
absolute	value	residuals	from	a	fitted	model.	The	authors	state	that	roughly	10-20%	of	
previously	reported	activations	in	the	neuroimaging	literature	are	false	positives.	(This	
reader	does	not	doubt	this	statement	but	 it	would	be	useful	 to	learn	how	to	produce	
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such	estimates.)	As	pointed	out	in	the	previous	paper	by	Drs.	Lindquist,	Zhang,	Glover	
and	Shepp	in	this	issue,	inaccuracies	in	estimates	of	onset	delay	and	peak	width	can	
cause	major	deleterious	effects	on	practical	 inferences	and	scientific	interpretations.	
An	important	element	in	the	authors’	mismodeling	detection	kit	 is	the	assessment	of	
size	and	shape	parameters	governing	the	assumed	HRF.	Freshly	oxygenated	blood	is	
delayed	by	the	transit	 time	through	the	cerebral	vasculature	proportional	 to	how	far	
it	has	traveled	from	the	site	of	flow	regulation	(Lee,	Glover,	and	Meyer	(1995)).	In	
addition,	the	quantification	and	modeling	of	intravascular	effects	and	the	dependence	
of	 the	BOLD	 signal	 on	 vessel	 size	 also	 continue	 to	 be	 important	 unresolved	
problems	 in	 fMRI	 research.	The	spatially	 localized	size	and	shape	parameters	of	
the	aforementioned	Lange-Zeger	HRF	may	 improve	model	accuracy.	The	authors		
quantify	bias	and	variance	tradeoffs	by	fitting	models	with	design	matrices	that	include	
and	exclude	necessary	covariates,	 their	X	+	Г	and	X,	respectively.	It	was	unclear	to	
this	reader	 if	 they	treat	 the	case	when	X	contains	unnecessary	covariates,	and	thus	
variance	inflation,	by	specifying	only	that	Г≠	0,	unless	some	–	Г	performs	the	removal	
somehow;	there	appears	to	be	an	inconsistency	in	the	role	of	Г	since	it	appears	to	be	
defined	both	as	part	of	the	larger	“true”	model	and	the	incorrect,	smaller	model.	The	
authors	employ	finite	impulse	response	basis	sets,	as	in	the	previous	paper,	and	present	
useful	simulated	bias	curves,	power	 loss	curves	and	spatial	maps.	 It	 is	difficult	 to	
understand	what	the	authors	mean	by	the	“true	onset	time”	in	their	actual	fMRI	data	
example	purposely	mismodeled.	It	may	be	of	interest	to	note	that	in	a	brief	section	on	
maxima	of	Gaussian	processes	 they	mention	Hotelling’s	volume-of-tubes	formula,	
a	result	derived	from	a	new	branch	of	mathematics	spawned	by	a	practical	scientific	
research	problem	and	consistent	with	the	editorial	theme.	

Martínez-Montes,	Sánchez-Bornot	and	Valdés-Sosa	offer	a	penalized	version	
of	multi-way	factor	analysis	with	constraints	 to	obtain	solutions	to	EEG	regression	
problems.	The	authors	argue	 that	 the	high	dimension	and	low	signal-to-noise	ratio	
(SNR)	of	brain	science	data	 require	 strong	prior	constraints	 in	order	 to	arrive	at	
physiologically	 interpretable	 results.	Their	algorithm	solves	a	 trilinear	 system	of	
optimization	problems,	each	with	ridge	regression	penalties.	Starting	with	the	solution	
to	the	unconstrained	maximization	problem	followed	by	iterative	estimation	of	penalty	
weights	and	approximate	degrees	of	freedom	by	inspection	of	 the	 logarithm	of	 the	
generalized	cross-validation	criterion,	 they	find	an	“optimal”	(the	authors’	quotes)	
solution.	Three	types	of	sparseness	constraints	for	EEG	data	with	brief	and	infrequent	
signals	are	presented.	They	choose	 to	make	their	solution	depend	strongly	on	their	
choice	of	“prior”	distributions	 that	are	derived	during	the	course	of	 their	 iterations	
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and	have	some	correspondence	 to	existing	knowledge	of	brain	physiology.	They	
demonstrate	 their	method	with	simulations	and	with	an	example	analysis	of	sparse	
EEG	data.

Ombao,	Shao,	Rykhlevskaia,	Fabiani	and	Gratton	provide	 theory	and	method	
for	nonparametric,	asymptotically	Gaussian	estimation	of	spatiotemporal	processes	
in	 the	 frequency	domain.	They	demonstrate	 the	utility	of	 their	approach	with	an	
example	analysis	of	event-related	optical	signal	(EROS)	phase	delay	data	collected	
by	160	detector	pairs	in	bilateral	medial-frontal	and	central-posterior	gyri	from	a	sole	
subject	during	a	Stroop	test	of	spatial-verbal	 task	switching.	The	spatial	 resolution	
of	brain	EROS	is	about	5	mm	and	its	 temporal	 resolution	 is	about	1	ms,	 the	 latter	
comparable	to	that	of	EEG.	In	1935,	 	Dr.	John	Stroop	studied	cognitive	dissonance	
using	an	 interference	 task,	 for	 instance,	presenting	 the	word	red	written	 in	green	
(Stroop	(1935)).	His	basic	idea	and	its	variations	have	since	been	employed	throughout	
cognitive	psychology.	The	authors	claim	that	there	have	been	no	previous	frequency	
domain	approaches	 that	analyze	variation	 in	spatially	contiguous	 locations.	Their	
results	indicate	expected	left-dominant	language	lateralization	and	a	possible	role	of	
a	 left	central	posterior	gyrus	when	switching	from	a	less	challenging	cognitive	task	
to	a	more	challenging	one.	Their	paper	is	an	important	contribution	to	the	theory	and	
application	of	multivariate	time	series	in	brain	science.

Purkayastha,	Wager	and	Nichols	propose	a	useful	method	for	testing	hypotheses	
regarding	the	codependence	of	fMRI	brain	activations	arising	from	a	bank	of	 tasks	
administered	 to	 the	 same	 subject	during	a	 single	 experiment.	The	authors	 shift	
our	attention	away	from	“massively	univariate”	analyses	of	 the	mean	function	 in	
spatiotemporal	series	 to	multivariate	analyses	of	 the	variance-covariance	function.	
They	apply	 their	proposal	 to	an	event-related	fMRI	study	of	working	memory	and	
reaction	time	in	a	2	x	2	factorial	design	of	attention	switching	tasks.	Event-related	
fMRI	designs	sacrifice	SNR	to	improve	temporal	resolution	from	about	2	seconds,	the	
time	it	 takes	to	collect	a	whole	head,	to	the	millisecond	range	by	using	fine-grained	
stimuli	 timings	generated	at	random,	by	a	gamma	density	for	 instance,	followed	by	
deconvolution.	The	authors	suggest	a	classical	two-stage	approach	to	empirical	Bayes	
model	fitting	by	reducing	individual	data	 to	regression	summary	statistics	followed	
by	between-subject	aggregation.	Their	variance	parameter	estimate	 is	maximum	
likelihood,	appropriate	also	for	restricted	maximum	likelihood	(REML)	estimation.	
These	authors	remind	us	 that	when	counting	degrees	of	freedom	the	sampling	unit	
providing	an	independent	source	of	information	is	 the	individual,	not	 the	timepoint,	
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brain	voxel	or	region	of	interest.	The	authors	mention	two	limitations	of	their	proposal,	
its	sensitivity	to	outliers	and	imperfect	spatial	normalization	across	subjects,	both	of	
which	being	addressed	in	related	papers	in	this	issue.	Their	central	contribution	is	a	
straightforward	adaptation	of	 traditional	methods	for	analyzing	variance-covariance	
patterns	arising	from	multiple	brain	locations	to	those	arising	from	multiple	conjoint	
tasks	that	addresses	an	important	need	in	cognitive	psychology	and	other	disciplines.

Sánchez-Bornot,	Martínez-Montes,	Lage-Castellanos,	Vega-Hernández	and	
Valdés-Sosa	contribute	a	 second	paper	 that	 applies	 a	variation	of	 the	 statistical	
methods	proposed	 in	 their	 first	paper	 to	 the	study	of	neuronal	connectivity.	They	
develop	and	analyze	symmetric	and	asymmetric	connectivity	matrices	generated	by	
interleaved	fMRI	and	EEG	data.	The	challenge	here	is	again	to	find	optimal	solutions	
to	constrained	maximization	problems	for	sparse	data	 that	contain	small	numbers	
of	neuronal	clusters.	The	nearly	simultaneous	recording	of	fMRI	and	EEG	signals	
remains	a	challenging	goal	 in	functional	brain	 imaging	for	 the	obvious	reason	that	
electrical	and	magnetic	fields	interact	strongly	with	each	other.	Researchers	attempt	to	
obtain	separable	signals	with	minimum	overlap	by	interleaving	acquisition	sequences	
for	these	two	imaging	modalities,	exploiting	their	differences	in	temporal	and	spatial	
resolutions.	The	authors	employ	simulations	and	data	from	an	fMRI-EEG	study	of	
resting	state	brain	rhythms,	another	currently	active	research	area	in	brain	research.	
The	authors	present	a	many-many	map	with	varying	connection	strengths	between	
bilateral	visual,	somatosensory	and	insular	cortices	and	thalamus.	Their	map	is	a	fully	
connected,	directed	graph	(except	for	the	insignificant	left	 insula-left	somatosensory	
cortex	edge).	The	authors	ask	 the	 reader	 to	compare	 their	estimated	connectivity	
network	to	a	previous	graph	(not	shown	or	described)	that	was	obtained	from	the	same	
data	set	by	similar	statistical	machinery	(Eichler	(2005)).	Doing	so,	it	appears	that	the	
authors’	graph	shows	many	more	connections	between	these	cortical	and	subcortical	
brain	regions.

Singh,	Clowney,	Okamoto,	Cole	and	Dan	add	to	their	previous	work	on	spatial	
normalization	and	false	discovery	rate	in	functional	near-infrared	spectroscopy	(fNIRS)	
by	comparing	nonparametric	and	parametric	hypothesis	 testing	alternatives.	 fNIRS	
measures	changes	in	the	concentration	of	oxy-	and	deoxyhemoglobin,	as	does	fMRI,	
as	well	as	changes	in	the	redox	state	of	cytochrome-c-oxidase	(Cyt-Ox).	It	 is	a	type	
of	optical	imaging	that	employs	a	thin	strip	of	sensors	affixed	to	the	subject’s	scalp,	
on	the	forehead	without	hair	removal	for	instance.	After	a	brief	review	of	the	basics	
of	the	 t-,	permutation	and	bootstrap	tests,	the	authors	use	simulations	and	an	example	
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fNIRS	data	set	to	investigate	how	family-wise	error	rates	compare	with	one	another.	
The	number	of	input	channels	is	also	varied.	The	fNIRS	example	is	taken	from	a	word	
generation	study	in	which	nouns	are	generated	after	category	naming.	The	authors	
conclude	that	the	nonparametric	alternatives	they	consider	are	preferable	to	parametric	
approaches	in	this	context.

In	 their	 third	paper	 in	 this	 issue,	Vega-Hernández,	Martínez-Montes,	Sánchez-
Bornot,	Lage-Castellanos	and	Valdés-Sosa	offer	alternative	regularized	solutions	to	
EEG	inverse	problems.	EEG	is	sensitive	to	electromagnetic	flux	in	gyri	because	they	
are	generally	parallel	 to	 the	cortical	surface,	whereas	MEG	is	suited	for	detecting	
activity	at	synapses	of	pyramidal	neurons	 in	sulci	 tangential	 to	 the	surface.	MEG	
appears	 to	be	 less	sensitive	 than	EEG	to	 the	assumptions	of	conductivity	models.	
In	1853,	Dr.	Hermann	von	Helmholtz	saw	that	it	 is	 impossible	to	locate	the	internal	
sources	of	electromagnetic	fields	measured	at	 the	surface	of	 the	brain	uniquely;	 the	
inverse	problem	is	ill-posed	and	model	assumptions	are	required.	Regularized	solutions	
to	the	inverse	problem	impose	physiological,	prior	and	penalty	constraints	in	search	of	
unique	source	localizations.	It	has	also	been	shown	that	interleaved	fMRI	can	provide	
useful	constraints	for	EEG.	As	in	their	other	contributions	here,	 the	authors	provide	
an	accessible	review	of	previous	relevant	work,	 including	Tikhonov	regularization,	
spatiotemporal	autogressive	models	to	obtain	smoother	activity	surfaces,	non-convex	
penalties	and	combinations	of	penalties.	They	proceed	to	compare	different	members	
of	the	local	likelihood	estimation	methods	pioneered	by	Drs.	Jerome	Friedman,	Trevor	
Hastie	and	Rob	Tibshirani	though	simulations	and	a	publicly-available	example	EEG	
data	set.	They	find,	in	general,	 that	approaches	with	non-convex	penalties	appear	to	
provide	more	concentrated	 localizations	 than	the	popular	and	less	regularized	low-
resolution	electromagnetic	 tomography	(LORETA)	approach,	yet	demonstrations	of	
validity	are	required.

Zhou	and	Wang	provide	us	an	excellent	development	and	application	of	statistical	
theory	that	can	reduce	the	number	of	time-consuming	computations	required	to	obtain	
exact	permutation	distributions	in	brain	imaging.	In	simpler	contexts,	the	exact	solution	
is	not	necessarily	better	 than	an	approximate	one	(Agresti	and	Coull	 (1998)).	The	
authors	approximate	exact	permutation	distributions	for	univariate	and	multivariate	
linear	and	nonlinear	test	statistics	by	using	the	first	four	moments	(when	they	exist)	of	
a	probability	distribution	proposed	in	1895	by	Dr.	Karl	Pearson	in	the	mathematical	
theory	of	evolution	for	skew	variation.	The	authors	factor	expressions	for	any	moment	
of	 the	permutation	distribution	into	a	permutation	of	 test	statistic	coefficients	and	a	
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summation	term	over	products	of	the	data,	reducing	the	order	of	the	computation	to	the	
sample	size	or	square	of	the	sample	size.	They	demonstrate	that	their	approximations	
compare	favorably	with	exact	solutions	via	simulations	and	also	in	a	cortical	surface	
morphology	example	based	on	spherical	harmonics,	as	in	the	Chung	et	al.	paper	in	this	
issue,	that	compares	3D	hippocampal	surface	shapes	in	a	small-sample	schizophrenia	
versus	control	study.

Zhu,	Li,	Tang,	Bansal,	Hao,	Weissman	and	Peterson	conduct	an	analysis	of	 the	
effects	of	genetic	variation	and	sex-age	interactions	on	cortical	thickness	measurements	
gathered	from	structural	MRI	data	contributed	by	n	=	131	subjects	sampled	from	
N	=	49	 families	of	 sizes	 ranging	 from	1	 to	15.	They	employ	a	nonlinear	 spatial	
normalization	method	developed	at	Washington	University,	Saint	Louis,	and	 thus	
their	cortical	thickness	measures	after	coregistration	are	likely	to	be	less	distorted	than	
they	could	have	been	under	a	linear	transformation,	such	as	the	publicly	available	and	
frequently	used	linear	MNI	stereotaxic	method.	They	first	define	mixed-effects	models	
with	patterned	variance-covariance	matrices	under	a	classical	partition	of	total	genetic	
variance	into	individual	allele,	within-locus	and	between-locus	interactions.	It	 is	of	
interest	to	note	that	precursors	of	the	compact	mixed-effects	models	we	employ	today	
began	with	the	statistical	methods	developed	for	very	large-sample	animal	breeding	
experiments	pioneered	by	Drs.	Shayle	Searle,	Harold	Henderson,	David	Harville	and	
others.	These	methods	include	multilevel	models,	inversion	formulas	for	large	block-
diagonal	matrices,	up-	and	down-dating	 formulas	 for	 regression	diagnostics,	and	
REML	estimation.	(Some	of	the	principles	and	practice	of	the	EM	algorithm	existed	
prior	 to	 the	seminal	paper	by	Drs.	Art	Dempster,	Nan	Laird	and	Don	Rubin.)	The	
very	high	dimension	of	brain	imaging	outcomes	now	calls	for	new,	creative	ways	to	
combine	what	has	been	learned	in	population	genetics	with	modern	computer-intense	
inferential	methods.	This	paper	places	wild	bootstrap	inference	(Mammen	(1993))	in	
competition	with	mixed-model	based	score	tests	derived	by	Newton-Raphson	iteration	
and	having	asymptotic		χ2	distributions.		Those	readers	interested	in	applications	of	the	
wild	bootstrap	in	magnetic	resonance	diffusion	tensor	 imaging	(MR-DTI)	may	find	
the	paper	by	Whitcher,	Tuch,	Wisco,	Sorensen,	and	Wang	(2008)	useful.	The	authors	
use	only	the	first	 two	moments	of	their	data	and	thus	avoid	a	multivariate	Gaussian	
assumption;	it	would	have	been	informative	to	see	results	under	that	assumption	and	
a	distributional	 test.	The	authors	provide	 log	p-value	maps	of	significant	sex-age	
interactions	on	cortical	 thickness	 that	have	been	corrected	for	 testing	multiplicity.	
Their	tests	for	the	effects	of	genetic	variation	did	not	yield	any	significant	results	after	
correction.	The	authors	state	that	a	larger	sample	size	may	be	needed	to	detect	genetic	
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effects	on	cortical	 thickness	 if	 they	exist.	The	depth	and	breadth	of	 the	pedigree	
structure	of	a	larger	sample	would	also	play	a	major	role	in	improving	the	sensitivity	
of	 their	method.	The	authors’	contribution	 is	an	example	of	an	 important	clinical	
application	of	classical	and	modern	statistical	procedures	to	the	use	of	brain	imaging	
in	population	genetic	studies.

Concluding Remarks

All	of	 the	authors	and	Statistica Sinica	 should	be	commended	for	writing	and	
publishing	 this	collection	of	papers	 in	 this	special	Brain	Science	 issue.	There	are	
important	contributions	here.	Many	statisticians	 interested	 in	working	 in	 this	vast	
area	will	 learn	 some	 fundamental	concepts	and	current	 findings	 in	neuroscience	
and		neuroscientists	will	now	be	more	familiar	with	our	methods	that	can	help	them	
design	and	conduct	the	best	studies	that	are	scientifically	possible	with	us.	There	are	
valid	 institutional	and	personal	 reasons	why	statistical	articles	sometimes	employ	
examples	of	brain	data	as	seemingly	an	afterthought,	without	taking	the	time	needed	
to	more	fully	understand	some	of	 the	underlying	brain	science	 that	motivates	and	
directs	 the	study.	When	statisticians	working	 the	area	are	able	 to	spend	some	time	
in	the	field	—	in	MRI	and	PET	control	rooms,	observing	or	participating	in	clinical	
brain	imaging	studies,	designing	and	conducting	their	own	studies,	 looking	through	
the	microscope,	having	peer-to-peer	conversations	with	MR	physicists,	neurologists,	
biologists,	molecular	geneticists,	asking	questions	—	then	not	only	will	 they	make	
their	own	mistakes	but	 they	will	also	obtain	a	personal	measure	of	 the	 large	gap	
between	statistical	theory	and	practice	that	exists	in	present	day	brain	science.	We	will	
see	that	for	statistical	thinking	to	maintain	and	advance	its	unique	and	vital	position	in	
brain	research	this	gap	needs	to	be	filled	more	effectively.	Acceptance	of	statistical	and	
imaging	neuroscience	discoveries	by	the	larger	scientific	and	medical	community	and	
application	of	the	knowledge	gained	to	the	development	of	effective	ways	to	improve	
people’s	lives	depend	critically	on	the	quality	of	the	research	we	do.	
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