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Statistical Relativism in Neuroimaging

This	editorial	considers	advances	 in	 the	analysis	of	 imaging	data	over	 the	past	
decade,	with	a	particular	emphasis	on	 the	 role	of	generative	or	 forward	models1.	
It	highlights	 the	distinction	between	establishing	statistical	dependencies	among	
variables	and	the	identification	or	inversion	of	models	that	generate	data.	This	relates	
closely	 to	 the	distinction	between	exploratory	and	hypothesis-led	analyses.	We	
will	pay	special	attention	 to	 the	articles	 in	 this	special	 issue,	when	motivating	and	
illustrating	trends	in	statistical	approaches.	To	make	this	review	entertaining	(and	a	
little	contentious),	we	invoke	the	notion	of	statistical relativism.	Linguistic	relativism	
refers	to	the	reification	of	concepts	entailed	by	the	language	used	to	describe	them.	In	
a	similar	sense,	we	will	use	statistical	relativism	to	mean	a	reification	of	models	used	
to	disclose	statistical	dependencies	as	generative	models	of	data.	In	some	instances,	
this	reification	obscures	the	fundamental	difference	between	true	causal	models	and	
probabilistic	mappings.	We	will	review	recent	developments	in	light	of	this	distinction	
and	argue	in	favour	of	generative	models	in	imaging	neuroscience.

1. Introduction

This	special	 issue	brings	 together	many	exciting	developments	 that	exemplify	
advances	made	over	 the	past	years	 in	characterising	neuroimaging	data	and,	 in	
particular,	neurophysiological	 time	series	 that	can	be	measured	with	brain	imaging.	
We	will	focus	on	functional	magnetic	response	imaging	(fMRI)	data	analysis	but	many	
of	 the	issues	also	attend	the	analysis	of	electroencephalographic	data	and	structural	
images.	The	basic	premise	of	this	editorial	is	that	these	advances	fall	into	two	classes.		
On	 the	one	hand,	 there	are	developments	 that	 rest	on	 informed	and	biophysically	
constrained	generative	models,	while	on	the	other	we	have	analyses	based	upon	tests	
for	statistical	dependencies	between	experimental	and	measured	variables	or	among	
subsets	of	measured	data.	This	distinction	emerges	in	many	domains	of	data	analysis;	
ranging	from	the	detection	of	regionally	specific	activations,	through	to	sophisticated	

1		The	Wellcome	Trust	 funded	 this	work.	We	would	 like	 to	 thank	Marcia	Bennett	 for	preparing	 this	
manuscript	and	Justin	Chumbley	for	highlighting	the	literature	on	linguistic	relativism.
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analyses	of	functional	 integration	and	distributed	brain	processing.	In	what	follows,	
we	will	clarify	the	distinction	between	generative	models	and	models	used	to	test	for	
dependencies	and	then	review	some	of	the	major	trends	in	statistical	neuroimaging,	
with	this	distinction	in	mind.		

2. Generative Models 

The	distinction	between	generative	models	and	models	of	dependency	dates	
back	to	the	first	analyses	of	fMRI	time	series.	At	the	inception	of	fMRI,	two	distinct	
approaches	 to	 data	 analysis	 emerged.	One	used	 linear	 convolution	models	 of	
hemodynamic	responses.	Here,	stimulus	functions	encoding	experimentally	evoked	
neuronal	activity	were	convolved	with	a	hemodynamic	response	function	to	provide	
explanatory	variables	or	regressors	for	observed	fMRI	responses	(Friston,	Jezzard	and	
Turner	(1994)).	The	other	approach	simply	looked	for	correlations	between	delayed	
stimulus	functions	and	the	observed	response	(Bandettini,	Jesmanowicz,	Wong	and	
Hyde	(1993)).	 	Mathematically,	 if	 the	delay	 is	 implemented	by	convolution	with	a	
hemodynamic	response	function,	then	the	inferences	furnished	by	both	approaches	are	
identical;	because	both	are	based	upon	the	same	general	linear	model.	However,	there	
is	a	conceptual	difference	between	the	linear	convolution	model,	which	can	be	used	
to	generate	data,	given	the	parameters	of	the	hemodynamic	response	function	(HRF)	
and	the	correlation	analysis,	which	simply	establishes	a	statistical	dependency	between	
explanatory	and	response	variables.	Both	significant	[non-zero]	HRF	amplitudes	and	
significant	correlations	are	sufficient	 to	establish	a	regionally	specific	activation	in	
the	brain.	However,	the	correlation	coefficient	approach	can	do	no	more	than	this.	In	
contrast,	generative	models	based	upon	convolution	models	continued	 to	develop;	
the	first	development	was	in	 terms	of	nonlinear	or	generalised	convolution	models.	
Subsequently,	state-space-models	based	upon	 the	biophysics	of	 the	hemodynamic	
response	were	introduced	in	the	context	of	Dynamic	Causal	Modelling	(DCM).

The	hemodynamic	response	function	remains	a	key	focus	of	research	in	statistical	
neuroimaging;	for	example,	Loh,	Lindquist	and	Wager	(this	issue)	present	an	analysis	
of	model	residuals	that	“could	be	a	valuable	tool	in	assessing	violations	of	statistical	
assumptions	and	 informing	about	differences	 in	 the	shape	and	 timing	of	 the	HRF	
across	the	brain.”	The	key	point	here	is	 that	generative	convolution	models	became	
increasingly	constrained	by	the	biophysics	and	physiology	of	evoked	hemodynamic	
responses,	which	enabled	inferences	about	the	underlying	dynamics	and	mechanisms	
generating	data.	In	general	terms,	generative	models	are	statistical	models	that	act	as	



observation	models	with	an	explicit	generative	process.	As	noted	by	Guha	and	Biswas	
(this	 issue),	“constructing	models	for	neuroscience	data	 is	a	challenging	task,	more	
so	when	the	data	sets	are	of	[a]	hybrid	nature.	The	models	have	to	be	physiologically	
meaningful,	as	well	as	statistically	justifiable.”	In	the	context	of	static	data,	Zhou	and	
Wang	(this	 issue)	present	a	nice	example	of	surface	shape-analysis.	These	authors	
present	a	novel	“statistical	surface	analysis	framework	 that	aims	 to	accurately	and	
efficiently	localize	regionally	specific	shape	changes	between	groups	of	3D	surfaces.”	
Invoking	shape	as	an	explicit	cause	of	observed	 image	data	 is	perhaps	one	of	 the	
simplest	and	most	fundamental	examples	of	generative	modelling,	an	example	that	is	
at	the	heart	of	modern	theories	of	vision	(e.g.,	Marr	(1976)).	See	also	Chung,	Hartley,	
Dalton	and	Davidson	 (this	 issue)	who	model	 the	cortical	 surface	using	spherical	
harmonics.

The	identification	or	 inversion	of	generative	models,	given	some	data,	enables	
conditional	inferences	about	the	parameters	of	these	models,	and	critically,	comparison	
of	different	generative	models	(Penny,	Stephan,	Mechelli	and	Friston	(2004)).	This	
model	comparison	has	been	an	 important	 theme	 in	 recent	developments,	because	
it	embodies	 the	scientific	process,	 in	 terms	of	hypothesis	 testing.	This	 is	because	
hypotheses	can	be	 framed	 in	 terms	of	competing	generative	models	of	 the	 same	
data	and	model	comparison	can	be	used	to	adjudicate	among	them.	A	nice	example	
of	 this	 is	provided	 in	Guha	and	Biswas	 (this	 issue)	who	compare	hidden	Markov	
and	state-space	models	of	 local	field	potentials	and	neuronal	firing	using	“standard	
model	selection	criteria	like	AIC	and	BIC”.	In	contrast,	techniques	that	rely	solely	on	
establishing	statistical	dependencies	or	probabilistic	mapping	between	behavioural	
and	physiological	data,	or	between	physiological	data	acquired	from	different	parts	of	
the	brain,	provide	no	machinery	for	model	comparison	beyond	the	existence	of	that	
mapping.	In	what	follows,	we	look	at	three	examples	of	generative	modelling	and	then	
consider	three	examples	of	models	that	aim	to	detect	statistical	dependencies.	

3. Examples of Generative Models 

3.1 Effective connectivity and models of distributed brain responses

Perhaps	the	best	example	of	generative	modelling	is	the	elaboration	of	dynamic	
models	of	multivariate	responses	entailed	by	distributed	processing	in	the	brain.	This	
ambition	 is	 illustrated	nicely	by	 the	work	 reported	 in	Sánchez-Bornot,	Martínez-
Montes,	Lage-Castellanos,	Vega-Hernández	and	Valdés-Sosa	 (this	 issue).	These	
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authors	 try	 to	estimate	voxel-based	effective	connectivity.	Effective	connectivity	
corresponds	 to	 coupling	parameters	 in	models	 of	 distributed	brain	 responses.	
Efficient	 identification	of	 these	models	 is	very	difficult	because	 there	are	many	
more	parameters	than	observations.	The	authors	harness	the	known	sparsity	of	brain	
connections	(through	the	use	of	Local	Quadratic	Approximation	and	the	Minimisation-
Maximisation	algorithm)	to	access	the	unknown	coupling	parameters.	This	is	a	nice	
example	of	using	 the	known	architectural	attributes	of	systems	generating	data	 to	
finesse	statistical	models	of	those	data.

Another	important	example	of	generative	modelling	is	Dynamic	Causal	Modelling	
(DCM;	Friston,	Harrison	and	Penny	 (2003)).	This	 is	 the	direction	on	which	my	
group	has	focused;	a	direction	which	we	see	as	a	fairly	simple	generalisation	of	the	
early	convolution	models	for	fMRI.	In	other	words,	 the	convolution	models	used	in	
statistical	parametric	mapping	are	formally	 identical	but	special	cases	of	Dynamic	
Causal	Models	of	distributed	responses.	In	DCM,	one	regards	the	data	as	being	caused	
by	perturbations	of	hidden	neuronal	states	by	experimental	inputs.	These	perturbations	
produce	neuronal	dynamics,	 through	neuronal	 interactions	and	are	passed	 through	
static	nonlinear	 functions	 to	 form	observed	 responses.	 Inversion	of	 these	models	
furnishes	 conditional	 densities	 (e.g.,	 conditional	mean	 and	 precision)	 on	 the	
parameters	of	the	underlying	neuronal	and	hemodynamic	models	and	their	marginal	
likelihood	for	model	comparison.	It	is	interesting	to	note	that	DCM	was	developed	to	
infer	on	effective	connectivity	between	nodes	in	distributed	brain	networks	exhibiting	
evoked	responses.	The	definition	of	effective	connectivity	calls	on	generative	models,	
in	 the	sense	 that	effective	connectivity	 is	defined	as	 the	causal	 influence	 that	one	
neuronal	system	exerts	over	another.	Contrast	 this	with	 the	definition	of	functional	
connectivity,	which	is	usually	taken	to	mean	statistical	dependencies	between	time-
series	acquired	from	different	parts	of	the	brain.	Functional	connectivity	is	generally	
assessed	with	correlations	between	remote	regional	time	series	or,	in	more	temporarily	
resolved	electroencephalography	data,	coherence	analyses	with	frequency	specificity	
(see	Ombao,	Shao,	Rykhlevskaia,	Fabiani	and	Gratton;	this	issue).	We	will	return	to	
advances	in	functional	connectivity	later.

3.2 Models of electromagnetic sources

Perhaps	 the	most	 obvious	 examples	 of	 generative	 or	 forward	models	 in	
neuroimaging	are	those	used	to	model	observed	channel	data	in	electroencephalography	
(EEG)	and	magneto-encephalography	 (MEG),	 in	 terms	of	 source	activity	 in	 the	
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brain.	There	have	been	some	remarkable	developments	in	this	field	that	rest	 largely	
upon	 the	Bayesian	 inversion	of	 constrained	 forward	models	of	 electromagnetic	
sources.	These	generative	models	embed	electromagnetic	 forward	models	based	
upon	classical	electrodynamics.	However,	 they	also	include	hierarchical	constraints	
on	the	deployment	of	sources,	which	regularise	the	ill-posed	inversion	problem.	The	
main	advances	in	this	area	pertain	to	the	empirical	optimisation	of	spatial	priors	on	
where	 these	sources	are,	 such	as	smoothness	or	 sparsity	constraints.	This	 speaks	
to	an	 important	and	generic	development	 in	generative	models,	namely	 the	use	of	
hierarchical	models	 to	explain	data.	Without	exception,	models	with	a	hierarchical	
form	induce	empirical	priors,	which	bring	important	benefits	 in	 terms	of	 increased	
precision	or	accuracy	on	the	estimated	parameters,	such	as	source	location	and	activity.	
An	excellent	example	of	this	is	the	approach	described	by	Vega-Hernández,	Martínez-
Montes,	Sánchez-Bornot,	Lage-Castellanos	and	Valdés-Sosa	 (this	 issue).	These	
authors	present	a	general	formulation	of	the	inverse	problem	“as	a	Multiple	Penalized	
Least	Squares	model,	which	encompasses	many	of	the	previously	known	methods	as	
particular	cases	(e.g.,	Minimum	Norm,	LORETA).”	Furthermore,	as	the	authors	note,	
“new	types	of	inverse	solutions	arise	since	recent	advances	in	the	field	of	penalized	
regression	have	made	[it]	possible	to	deal	with	non-convex	penalty	functions,	which	
provide	sparse	solutions.”

3.3 Multimodal or fusion models

Another	compelling	example	of	generative	models	in	neuroimaging	are	models	
that	try	to	explain	different	sorts	of	data.	A	very	nice	example	can	be	found	in	Guha	
and	Biswas	 (this	 issue).	These	authors	 introduce	various	 techniques	 for	 inverting	
models	of	multimodal	(hybrid)	time	series	data.	As	an	example,	they	consider	“local	
field	potentials	(which	is	a	continuous	time	series)	and	nerve	cell	 firings	(which	is	
a	point	process)	of	anesthetized	mice”.	Perhaps	 the	best	known	example	of	 these	
fusion	models	are	generative	models	 that	are	 framed	 in	 terms	of	neuronal	activity	
that	can	generate	or	explain	observed	electrophysiological	responses	in	EEG	or	MEG	
and,	at	 the	same	time,	explain	hemodynamic	responses	observed	with	fMRI	(e.g.,	
Daunizeau,	Grova,	Marrelec,	Mattout,	Jbabdi,	Pélégrini-Issac,	Lina	and,	Benali	(2007))	
Fusion	models	are	still	at	an	early	stage	of	development	but	represent,	for	some,	the	
holy	grail	of	generative	models	 in	neuroimaging.	The	advantage	of	 these	models	 is	
that	 they	harvest	complimentary	spatial	and	 temporal	constraints	 from	fMRI	and	
electrophysiological	measurements,	respectively.		
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In	 the	next	section,	we	 turn	 to	models	 that	are	used	 to	establish	dependencies	
between	sets	of	variables.	In	 these	models	 the	form	(and	direction)	of	 the	mapping	
from	one	set	of	variables	to	another	is	really	incidental	to	the	goal	of	establishing	that	
the	mapping	exists.	However,	 there	 is	an	understandable	 temptation	to	 think	of	 the	
generative	process,	behind	the	data,	in	terms	of	the	model	used	to	test	for	a	mapping.	
We	will	discuss	 this	conceptual	conflation	of	generative	models	and	probabilistic	
mappings	in	terms	of	linguistic	relativism	and	highlight	some	of	its	consequences.	

4. Examples of Inference on Mappings 

Linguistic	relativism	began	with	a	question	posed	by	Franz	Boas	in	 the	1900s,	
with	his	work	with	the	Inuit	 tribe.	Could	a	culture’s	evolution	be	described	with	the	
evolution	of	its	language?	Whereas	early	relativists	emphasised	vocabulary	to	explain	
differences	in	culture	(e.g.,	Intuit	words	for	snow),	modern	linguists	now	tend	to	study	
sentence	structure	or	word	placement	(Lucy	(1992)).	In	the	same	sense,	we	will	take	
statistical	relativism	to	mean	concepts	about	how	data	are	generated	that	are	tied	to	
the	structure	or	form	of	models	used	to	characterise	those	data.	Clearly,	 this	is	quite	
natural	for	generative	models	but	what	about	parametric	models	of	mappings	used	in	
exploratory	analyses?	These	sort	of	models	are	exemplified	nicely	by	the	interesting	
combination	of	singular	value	decomposition	 (SVD)	and	 independent	component	
analysis	 (ICA)	presented	 in	Bai,	Shen,	Huang	and	Truong	(this	 issue)	“to	explore	
spatio-temporal	features	in	fMRI	data”.	Another	example	of	the	exploratory	approach	
can	be	found	in	Ombao,	Shao,	Rykhlevskaia,	Fabiani	and	Gratton	(this	 issue)	who	
“develop	the	concept	of	a	location-dependent	temporal	spectrum	for	a	wide	class	of	
spatio-temporal	processes.”	This	furnishes	a	potential	data-feature	that	may	disclose	
important	dependencies,	 in	 relation	 to	cognition,	 sleep,	diagnosis	and	 treatment	
outcomes.	

As	noted	above,	analyses	of	functional	connectivity	are,	by	definition,	concerned	
with	establishing	a	significant	dependence	or	mutual	 information	between	regional	
activities	 in	different	parts	of	 the	brain.	Bellec,	Marrelec	and	Benali	 (this	 issue)	
address	an	interesting	question	about	how	to	detect	changes	in	functional	connectivity;	
note	that	these	changes	“may	be	used	to	track	brain	reorganization	while,	for	example,	
a	subject	learns	a	new	skill.”	We	will	focus	on	two	of	the	many	developments	in	the	
field	of	 functional	connectivity,	namely,	 resting-state	 functional	connectivity	and	
Granger	causality.
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4.1 Functional connectivity and resting-state correlations

Since	 the	 finding	of	Biswal,	Yetkin,	Haughton	 and	Hyde	 (1995)	 that	 low-
frequency	coherence	between	 region-specific	 fMRI	 time	series	 recapitulates	 the	
spatial	deployment	of	functional	(motor)	systems,	there	has	been	a	plethora	of	papers	
analysing	correlations	among	data	acquired	at	 rest.	The	advent	of	 these	analyses	
has	been	a	source	of	contention	between	the	proponents	of	resting-state	functional	
connectivity	and	those	 trying	to	understand	task	and	context-dependent	changes	 in	
effective	connectivity.	For	some,	 the	main	problem	with	 resting-state	correlation	
studies	 is	 that	 there	 is	no	hypothesis	or	model	comparison	above	and	beyond	 the	
question:	Do	 the	endogenous	hemodynamics	 in	one	part	of	 the	brain	depend	on	
hemodynamics	in	another?	Clearly,	the	spatial	organisation	of	these	dependencies	can	
be	related	in	an	interesting	way	to	known	functional	brain	architectures	(or	profiles	
of	metabolism)	but	beyond	this	there	is	no	question	pertaining	to	the	mechanisms	of	
functional	integration.	In	particular,	the	linear	models	used	to	test	for	dependencies	do	
not	allow	one	to	ask	how	connectivity	changes	with	experimental	manipulations.	This	
contrasts	with	the	questions	about	changes	in	effective	connectivity	inherent	in	DCM	
and	the	changes	in	functional	connectivity	considered	by	Bellec,	Marrelec	and	Benali	
(this	issue).		

Resting-state	 functional	 connectivity	provides	 a	nice	 example	of	 statistical	
relativism.	Typically,	data	are	low-pass	filtered	to	preserve	frequencies	in	the	range	
0.1	 to	0.01	Hz.	 	Simple	 linear	models	are	 then	used	 to	 test	 the	null	hypothesis	of	
independence	between	pair-wise	 time	series	 from	different	parts	of	 the	brain.	 It	 is	
usually	assumed	that	 the	source	of	 this	dependency,	when	detected,	 is	due	 to	slow	
fluctuations	 in	underlying	neuronal	activity.	 	People	have	speculated	on	the	source	
of	slow	neuronal	dynamics	that	might	subtend	observed	low-frequency	correlations.	
The	problem	with	this	line	of	thinking	is	that	there	is	no	generative	model,	based	on	
neuronal	activity,	which	supports	this	interpretation.	In	other	words,	if	one	generated	
synthetic	neuronal	data	with	broadband	(e.g.,	scale-free)	coherence	that	showed	no	
frequency-specificity,	and	 then	convolved	 the	neuronal	 time	series	with	a	HRF	to	
generate	synthetic	 fMRI	data,	one	would	see	(after	addition	of	observation	noise)	
coherence	in	and	only	in	 the	frequency	range	0.1	to	0.01	Hz.	This	 is	because	these	
are	 the	only	frequencies	 that	are	passed	by	the	hemodynamic	response	function.	In	
short,	 low-frequency	correlations	 in	hemodynamic	responses	do	not	mean	 that	 the	
correlations	among	neuronal	responses	are	low-frequency.	This	example	highlights	the	
dangers	of	reifying	a	model	of	dependencies	among	data-features,	in	the	absence	of	a	
true	generative	model.



1210 EDITORIALS

4.2 Granger causality and vector autoregressive models

Granger	causality	represents	another	example	of	statistical	relativism,	in	which	
a	 test	 for	mutual	 information	becomes	 reified	as	 a	 causal	 relationship.	Granger	
causality	rests	upon	the	rejection	of	 the	null	hypothesis	of	statistical	 independence	
between	a	time	series	at	one	point	of	 the	brain	and	the	history	of	activity	at	others.	
Despite	 its	name,	 this	 falls	 in	 the	class	of	 tests	 for	statistical	dependency	with	no	
generative	model.	The	reason	 that	 there	 is	no	underlying	generative	model	 is	 that	
the	vector	autoregression	model	used	 to	 test	 for	 statistical	dependence	does	not	
model	neuronal	activity.	 In	other	words,	 inferences	are	made	purely	on	 the	basis	
of	observed	hemodynamic	responses	and	cannot	be	used	to	make	inferences	about	
causal	 interactions	mediated	by	neuronal	connections.	A	similar	criticism	could	
be	 levelled	at	 any	 technique	 that	uses	hemodynamic	 responses	 to,	 for	 example,	
“obtain	accurate	 temporal	ordering	of	 the	various	regions	of	 the	brain	 involved	 in	
a	cognition	experiment”	(Lindquist,	Zhang,	Glover	and	Shepp;	 this	 issue).	Perhaps	
the	simplest	example	of	the	dangers	of	reifying	vector	autoregression	(VAR)	models	
is	when	 the	hemodynamic	response	function	 in	a	source	area	has	a	 longer	 latency	
than	in	a	target	area.	Because	neuronal	responses	in	the	target	area	will	be	expressed,	
hemodynamically,	before	 their	causes	 in	 the	source	area,	Granger	causality	will	be	
inferred	from the target to the source.	In	fact,	the	development	of	DCM	was	motivated	
by	the	failure	of	conventional	signal	processing	models	like	VAR	models	to	furnish	
proper	generative	models	of	underlying	neuronal	interactions.

4.3 Multivariate models for pattern classification

Another	notable	development	over	the	past	few	years	is	 the	use	of	multivariate	
pattern	classification	procedures	to	establish	statistical	dependence	between	distributed	
responses	in	a	circumscribed	part	of	the	brain	and	some	experimental	variable.	These	
analyses	have	excited	much	attention	and	claim	to	be	more	sensitive	than	equivalent	
univariate	analyses	(e.g.,	Haynes	and	Rees	(2006)).	This	claim	is	certainly	true	but	
conflates	the	multivariate	aspect	of	these	approaches	with	classification.	Multivariate	
models	are	generally	more	sensitive	 than	univariate	models	because	they	have	less	
localising	power,	irrespective	of	whether	one	tests	for	a	mapping	between	experimental	
factors	and	brain	responses	or	vice versa.	Classification	is	somewhat	incidental	here	
and	just	provides	a	surrogate	for	optimal	tests	of	statistical	dependency.	Having	said	
this,	the	cross-validation	tests	used	in	classification	analyses	have	intuitive	appeal	and	
(like	re-randomisation	procedures)	are	robust	and	relatively	assumption	free.	From	the	
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point	of	view	of	people	who	have	invested	in	generative	models,	multivariate	pattern	
classification	procedures	are	interesting	but	represent	something	of	a	retrograde	step.	
This	is	because	they	represent	a	return	to	neo-phrenology:	The	only	inference	that	is	
obtained	from	a	multivariate	classification	analysis	is	that	there	is	some	probabilistic	
mapping	between	activity	 in	 a	 subset	 of	brain	voxels	 and	 some	aspects	of	 the	
sensorium	or	behaviour.	Put	simply,	 this	 just	establishes	 functional	specialisation,	
albeit	of	a	regionally	finessed	and	distributed	sort.	Although	an	important	aspect	of	
neuroimaging,	this	sort	of	inference	is	generally	seen	as	a	prelude	to	more	mechanistic	
models	of	how	specialisation	emerges	and	the	connectivity	architectures	that	support	
it.		

Pattern	classification	analyses	harbour	one	of	 the	more	pernicious	examples	of	
statistical	 relativism	in	 the	rhetoric	of	decoding2.	The	supposition	here	 is	 that	 if	a	
statistical	dependence	can	be	established	between	neuronal	activity	and	its	sensory	
cause,	one	has	effectively	decoded	the	brain’s	encoding	of	that	cause	or	attribute.	This	
is	not	 the	case.	Neuronal	encoding	involves	 the	 inversion	of	a	generative	model	of	
sensory	data	and	unless	there	is	an	explicit	model	of	this	perceptual	inversion,	there	
can	be	no	inference	about	decoding.	A	simple	example	here	would	be	a	successful	
decoding	of	information	in	the	visual	field	based	on	calcium	imaging	of	the	retina.	This	
decoding	does	not	mean	that	the	retina	encodes	or	perceives	the	causes	of	the	sensory	
input,	it	just	means	that	there	is	a	statistical	dependence	between	sensory	information	
and	the	stimulus.

5. Conclusion

It	might	be	asked,	do	we	really	need	to	know	the	neuronal	mechanisms	underlying	
fMRI	responses?		In	the	context	of	brain	mapping	per se,	the	answer	is	probably	“no”.	
If	one	was	simply	interested	in	which	parts	of	 the	brain	exhibit	neuronal	responses	
to	particular	experimental	manipulations,	 then	 it	 is	 sufficient	 to	know	 that	 fMRI	
signals	are	caused	by	changes	in	neural	activity.	This	is	because	a	significant	change	
in	fMRI	signal	must	be	caused	by	a	significant	change	in	neuronal	activity.	It	 is	not	
necessary	to	know	the	mechanisms	or	nature	of	the	causal	 link.	 	However,	 if	one	is	
interested	 in	 the	underlying	dynamics	and	computations	subtending	 these	signals,	
then	the	mappings	between	different	 levels	of	description	(neural	codes,	population	

2		A	rhetoric	which	I	personally	find	very	appealing	(e.g.,	Friston,	Chu,	Mourão-Miranda,	Hulme,	Rees,	Penny	
and	Ashburner	(2008).	Bayesian	decoding	of	brain	images	.	NeuroImage	39,	181-205).
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dynamics,	electrophysiological	and	hemodynamic)	become	critical.	Over	 the	past	
years,	a	dialectic	has	emerged	in	 the	imaging	neuroscience	community.	On	the	one	
hand,	 there	 is	a	move	 towards	mechanistic	and	biophysically	plausible	generative	
models	of	the	signal,	as	exemplified	in	articles	by	Sánchez-Bornot,	Martínez-Montes,	
Lage-Castellanos,	Vega-Hernández	 and	Valdés-Sosa	 (this	 issue)	 and	Guha	and	
Biswas	(this	issue).	On	the	other	hand,	there	have	been	developments	in	multivariate	
pattern	classification	and	decoding	approaches,	which	are	purely	descriptive	or	
phenomenological	in	nature	(e.g.,	Haynes	and	Rees	(2006)).	Both	are	united	in	a	focus	
on	 the	neuronal	code.	However,	generative	modelling	 tries	 to	explore	 the	space	of	
mechanistic	and	algorithmic	models	of	brain	function,	whereas	decoding	approaches	
are	concerned	with	 the	spatial	deployment	of	signals	 that	may	encode	something	
in	 the	environment.	Decoding	approaches	can	be	 regarded	as	a	 refinement	of	 the	
brain	mapping	initiative	that	go	beyond	questions	about	where	the	code	is	located	in	
the	cortex	to	address	 the	nature	of	 its	spatial	and	temporal	distribution.	In	contrast,	
generative	models	 try	 to	connect	brain	 imaging	data	 to	 the	underlying	anatomy,	
electrophysiology	and	algorithms	employed	by	the	brain.

This	review	of	approaches	to	data	in	imaging	neuroscience	is	biased	by	a	strong	
preference	for	analyses	based	upon	generative	models.	There	is	a	principled	reason	
for	 this:	The	 inversion	and	comparison	of	generative	models	allows	one	 to	answer	
questions	about	how	 the	brain	works.	Operationally,	 this	proceeds	by	comparing	
different	generative	models	of	observed	data	and	assessing	one	model	 in	relation	to	
others,	 in	terms	of	their	marginal	 likelihood	or	evidence	(the	probability	of	the	data	
given	a	model).	Increasingly,	over	the	past	few	years,	we	have	seen	the	benefit	of	this	
approach	in	terms	of	solving	some	very	hard	problems	in	neuroimaging.	These	range	
from	the	number	of	equivalent	current	dipoles	to	use	in	distributed	reconstructions	of	
EEG	data	(c.f.,	Vega-Hernández,	Martínez-Montes,	Sánchez-Bornot,	Lage-Castellanos	
and	Valdés-Sosa;	this	issue),	through	to	the	selection	among	many	alternative	DCMs	of	
distributed	responses	using	fMRI	(e.g.,	Fairhall	and	Ishai	(2007)).	Usually,	this	entails	
some	form	of	Bayesian	model	comparison	and	a	departure	from	classical	statistics.	
The	alternative	is	to	use	models	of	mappings	and	classical	statistics	or	cross-validation	
procedures	to	establish	statistical	dependencies.	This	reduces	to	a	comparison	of	two	
models,	one	with	a	mapping	and	one	without.	The	only	interesting	information	that	is	
obtained	from	this	sort	of	model	comparison	rests	on	where	and	when	the	variables	
came	from.	Although	this	is	clearly	an	important	endeavour,	particularly	in	exploratory	
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analyses,	generative	models	 seem	 to	meet	 the	questions	about	mechanisms	and	
functional	architectures	in	a	more	direct	fashion.	On	a	final	note,	the	articles	solicited	
by	the	Guest	Editors	of	this	issue	represent	a	healthy	balance	of	impressive	generative	
modelling	and	exploratory	methods	with,	happily,	a	slight	bias	to	the	former.
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