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False Discovery Rates and the James-Stein Estimator

The	new	century	has	brought	us	a	new	class	of	statistics	problems,	much	bigger	
than	 their	classical	counterparts,	and	often	 involving	 thousands	of	parameters	and	
millions	of	data	points.	Happily,	 it	has	also	brought	some	powerful	new	statistical	
methodologies.	The	most	prominent	of	 these	 is	Benjamini	and	Hochberg’s	False	
Discovery	Rate	 (FDR)	procedure,	extensively	explored	 in	 this	 issue	of	Statistica 
Sinica,	along	with	ROC	techniques.	Here,	in	the	brief	format	of	an	editorial,	I	wanted	
to	step	back	from	particulars	 to	take	a	broader	look	at	 the	background,	virtues,	and	
limitations	of	FDR	methods.

There	 is	an	 important	connection	between	FDRs	and	James-Stein	estimation.	
The	connection	is	both	historical	and	methodological,	and,	perhaps,	has	something	to	
say	about	future	FDR	developments.	Suppose	we	observe	N ≥	3	independent	normal	
variates	zi ,	all	with	variance	1	but	having	possibly	different	expectations	μi ,
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and	demonstrated,	 to	 the	astonishment	of	 the	statistics	community,	 that	 it	always	

dominated	µ�
0
	 in	terms	of	total	expected	squared	error.	Moreover,	 the	improvements	

could	be	dramatic	in	realistic	situations.

James	and	Stein	worked	 in	a	purely	 frequentistic	 framework,	but	Bayesian	
connections	were	soon	discovered.	Suppose	that	the	parameters	μi	in	(1)	are	themselves	
normally	distributed,
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	 	 (3)

where	A >	0	is	some	fixed	but	unknown	hyperparameter.	Then	the	Bayes	estimator	of	
µ	is
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We	don’t	know	the	value	of	1/(A+1),	but	an	unbiased	estimate	of	it	is	 ( ) /( )N zi− ∑2 2 .	
Plugging	this	into	(4)	gives	(2).	In	other	words,	the	James-Stein	rule	is	an	empirical 
Bayes	estimator	of	µ (see	Efron	and	Morris,	(1975)).

Benjamini	and	Hochberg’s	original	1995	paper	concerns	testing	N	null	hypotheses	
on	the	basis	of	independently	observed		p-values	“	pi .”	These	can	be	converted	into		
z-values	via	 z pi i= −Φ 1( ) ,	with	 Φ 	 the	standard	normal	cdf.	This	gets	us	back	 to	
model	(1),	where	the	ith	null	hypothesis	is

	 	 (5)

(The	alternative	 z Ni i∼ ( , )µ 1 ,	µi ≠ 0 	is	more	specialized	than	necessary,	only	for	the	
sake	of	convenient	discussion	here.)

Let	 F z( ) 	be	the	right-sided	cdf	of	the	N	z-values,

	 F z z z Ni
( ) # / ;= ≥ }{ 	 (6)

F z z0 1( ) ( )= − Φ ,	the	right-sided	null	hypothesis	cdf.	Let	p0	be	the	proportion	of	true	
null	hypotheses,	and	then	define	the	estimated	FDR	to	be

	 Fdr ( ) ( ) / ( ).z p F z F z= 0 0 	 (7)

(The	1995	paper	sets	p0	equal	to	its	upper	bound	1.)	Benjamini	and	Hochberg’s	FDR	
control	rule	chooses	a	control	level	q,	say	q =.1,	computes

	 z z q
z0 = ≤ }{min ( )Fdr ,	 (8)

and	rejects	all	null	hypotheses	H0i	having		zi	≥	z0	.	Their	theorem,	almost	as	surprising	
as	James	and	Stein’s,	is	that	the	expected	proportion	of	“false	discoveries”	produced	
by	this	rule;	that	is,	the	rejected	null	hypotheses	that	are	actually	true,	is	less	than	q.



FDRs	underwent	the	same	philosophical	progression	as	the	James-Stein	estimator	
–	their	 initial	frequentist	derivation	was	followed	by	a	Bayesian	reinterpretation.	A	
simple	Bayesian	“two-groups	model”	assumes	that	each	of	the	N	cases	is	either	null	or	
non-null	with	prior	probability	p0	or	p1	=	1-p0	 ,	and	with	z-values	having	right-sided	
cdf	either	F0	or	F1	,	where	F1(z)	is	an	unspecified	alternative	distribution,	presumably	
yielding	more	extreme	z-values	 than	F0(z)	 (see	Efron	(2008)).	Letting	F(z)	be	 the	
mixture	cdf

	 F z p F z p F z( ) ( ) ( ),= +0 0 1 1 	 (9)

Bayes	rule	computes	the	posterior	probability	of	a	case	being	null	as

Fdr Prob case	 	null( )z i z zi≡ { ≥ }

	 = p F z F z0 0 ( ) / ( ) .	 (10)

Comparing	(10)	with	(7)	shows	that	 Fdr ( )z 	is	an	obvious	empirical	Bayes	estimate	of	
Fdr(z).	The	control	rule	(8)	amounts	to	rejecting	those	cases	having	sufficiently	small	
estimated	posterior	probability	of	being	null.

Let	 N z zz i= ≥{ }# ,	the	number	of	zi’s	exceeding	value	z.	Then	 F z N Nz
( ) /= 	

while	F z E N N.z( ) /= }{ 	All	we	need	for	 Fdr ( )z 	to	be	a	useful	estimate	of	Fdr(z)	is	
for	Nz	to	accurately	estimate	its	own	expectation.	Even	if	independence	of	the	zi’s	fails,	

as	it	usually	does	in	microarray	applications,	 Fdr ( )z 	will	still	remain	nearly	unbiased	
for	Fdr(z)	 (though	with	 increased	variability)	and	we	can	expect	 the	Benjamini-
Hochberg	control	algorithm	to	continue	functioning	reasonably	well.

Traditional	hypothesis	testing	techniques	aim	to	control	the	probability	of	error.	
FDR	methods	aim	to	control	an	expectation	 that	 is	not	a	probability	(at	 least	not	a	
frequentist	one).	This	represents	a	major	change	in	the	way	statisticians	do	business	
with	the	scientific	world.	FDRs	take	us	away	from	the	familiar	 territory	of	p-values	
and	significance	levels.	I’ve	been	pleasantly	surprised	by	how	little	protest	 this	has	
aroused	from	our	traditional	customers.

The	relationship	between	FDR	and	the	James-Stein	estimator	can	be	illustrated	
in	terms	of	the	structural	model	in	(1).	Let	g (	μ)	represent	a	prior	distribution	for	the	
expectation	parameters	μ	in	the	model	z	~	N (	μ,1).	According	to	(3),
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	 g N A( ) ( , )µ = 0 	 (11)

for	James-Stein	estimation.	FDR	methods,	as	in	(5)	and	(9),	take	

	 g p p g( ) ( ) ( ),µ δ µ µ= +0 0 1 1 	 (12)

where	δ0(	μ)	 is	a	delta	function	at	0	representing	the	null	cases	μi	=	0,	while	g1(	μ)	
represents	the	distribution	of	non-null	cases,	those	having	μi	≠	0.

The	 fact	 that	g (	μ)	 is	much	 smoother	 in	 (11)	 than	 (12)	hints	 at	 estimation	

difficulties	in	the	FDR	context:	 µ
1
	 is	a	quite	effective	approximation	to	Bayes	rule	

(4)	for	N	as	small	as	10,	while	 Fdr ( )z 	requires	N	on	the	order	of	1,000	to	accurately	
estimate	Fdr(z)	(Efron	and	Morris	(1975);	Efron	(2008)).	The	Benjamini-Hochberg	
control	algorithm	“works”	 for	smaller	N,	 in	 its	original	 frequentist	 sense,	but	 the	
diminished	empirical	Bayes	accuracy	makes	one	(me!)	worry	about	the	relevance	of	
the	FDR	control	criterion.

There	are	 important	 intermediate	situations	 lying	between	 (11)	and	 (12).	We	
might,	for	instance,	replace	δ0(μ)	in	(12)	with	a	 N ( , )0 0

2σ 	distribution,	where	σ 0 	has	
some	small	value	that	allows	uninteresting	cases	to	vary	a	bit	from	μi	=	0.	That	is,	we	
might	broaden	the	definition	of	“null.”	In	an	observational	study,	σ 0 	could	represent	
the	disturbing	effects	of	uncontrolled	covariates.	In	this	situation	the	appropriate	null	
distribution,	F0(z)	in	(7),	would	be	broadened	from	N(0,1)	to	 N ( , )0 1 0

2+σ .

Broadening	the	null	distribution	is	more	than	a	hypothetical	possibility.	Figure	
1	concerns	a	microarray	experiment	 involving	 two	types	of	 leukemia.	For	each	of	
N =	7,128	genes,	a	two-sample	 t-statistic	“ti”	was	computed,	comparing	type	2	with	
type	1	patients,	and	then	converted	to	a	z-value	“zi.”	Under	the	usual	assumptions,	we	
expect	zi	~	N(0,1),	 the	 theoretical null,	 to	hold	for	the	presumably	large	majority	of	
genes	not	involved	in	type	1/type	2	differences.	However	the	histogram	of	the	7,128		
z-value	contradicts	this	expectation:	its	center,	where	the	null	cases	must	predominate,	
is	much	wider	than	N(0,1);	a	normal	curve	fit	to	the	central	50%	of	the	histogram,	the	
so-called	empirical null,	is	N(0.09,1.682)	(fit	by	algorithm	locfdr,	Efron	(2008)).

Uncontrolled	covariation	 is	one	of	 four	 reasons	discussed	 in	Efron	(2008)	for	
possible	 failure	of	 the	 theoretical	null.	Whatever	 the	 reason,	 the	choice	between	
N(0,1)	and	N(0.09,1.682)	makes	an	enormous	difference	to	an	FDR	analysis.	Figure	2	

compares	 Fdr ( )z 	curves,	slightly	smoothed,	for	 the	 two	nulls,	showing	how	much	
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Figure	1:	Histogram	of	z-values	comparing	 two	 leukemia	 types,	N=7,128	
genes;	histogram	center	is	highly	overdispersed	compared	to	theoretical	N(0,1)	
null	distribution;	empirical	null	fit	 to	center	 is	N(0.09,1.682).	Data	are	from	
Golub	et	al.	(1999).

Figure	 2:	 Fdr ( )z 	 for	 z >	 0	 ;	 theoretical	 null	 yields	 788	 genes	 having	

Fdr ( ) .zi ≤ 0 1,	those	with	zi	≥	2.18	;	empirical	null	yields	48,	those	with	zi	≥	5.43.
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more	conservative	is	 the	choice	of	 the	empirical	null,	at	 least	 in	 this	case.	There	 is	
nothing	wrong	with	the	FDR	algorithm	here,	except	for	the	tendency	in	the	literature	
to	forget	that	the	numerator	F0(z)	in	(7)	also	needs	careful	consideration.

The	charm	of	exactness	exerts	a	powerful	force	on	statisticians.	Both	the	James-
Stein	and	Benjamini-Hochberg	theorems	bask	in	this	charm,	offering	exact	bounds	on	
their	error	rates.	This	is	not	an	unmitigated	blessing.	The	tendency	in	both	literatures	
has	been	a	 further	pursuit	of	exact	 results.	However,	 this	pursuit	can	come	at	 the	
expense	of	ignoring	the	messy	but	necessary	details	that	arise	in	actual	applications.

I	don’t	 think	 it	 is	an	accident	 that	 the	 James-Stein	and	Benjamini-Hochberg	
methods	enjoy	both	frequentist	and	Bayesian	support.	Multiple	inference,	especially	
large-scale	multiple	 inference,	 seems	 to	 flow	easily	across	 the	 frequentist/Bayes	
barrier.	In	addition,	the	FDR	story	also	combines	hypothesis	testing	with	estimation.	
Perhaps	the	old	categories	are	breaking	down,	and	FDRs	are	just	the	opening	salvo	in	
a	multi-pronged	attack	on	twenty-first	century	data	analysis	problems.
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