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False Discovery Rates and the James-Stein Estimator

The new century has brought us a new class of statistics problems, much bigger
than their classical counterparts, and often involving thousands of parameters and
millions of data points. Happily, it has also brought some powerful new statistical
methodologies. The most prominent of these is Benjamini and Hochberg’s False
Discovery Rate (FDR) procedure, extensively explored in this issue of Statistica
Sinica, along with ROC techniques. Here, in the brief format of an editorial, | wanted
to step back from particulars to take a broader look at the background, virtues, and
limitations of FDR methods.

There is an important connection between FDRs and James-Stein estimation.
The connection is both historical and methodological, and, perhaps, has something to
say about future FDR developments. Suppose we observe N > 3 independent normal
variates z;, all with variance 1 but having possibly different expectations ;,
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The obvious estimator of A= (i, Hyseoer k) is 1 =2=(2,,2,,...Zy)". James and
Stein (1961) proposed the seemingly illogical competitor
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and demonstrated, to the astonishment of the statistics community, that it always

~0
dominated & in terms of total expected squared error. Moreover, the improvements
could be dramatic in realistic situations.

James and Stein worked in a purely frequentistic framework, but Bayesian
connections were soon discovered. Suppose that the parameters y; in (1) are themselves
normally distributed,
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ind

1, ~ N0, 4), i=1,2,...,N, 3)

where A > 0 is some fixed but unknown hyperparameter. Then the Bayes estimator of
M is
~ Bayes

1
poo=l-r)e @)

We don’t know the value of 1/(A+1), but an unbiased estimate of it is (N —2) /(2 z%).

Plugging this into (4) gives (2). In other words, the James-Stein rule is an empirical
Bayes estimator of [ (see Efron and Morris, (1975)).

Benjamini and Hochberg’s original 1995 paper concerns testing N null hypotheses
on the basis of independently observed p-values “ p;.” These can be converted into

z-values via z, =®(p,), with @ the standard normal cdf. This gets us back to
model (1), where the ith null hypothesis is

H, :z, ~N(u;,1) with i, =0. (5)

(The alternative z, ~ N(1,1), 1 #0 is more specialized than necessary, only for the
sake of convenient discussion here.)

Let E(z) be the right-sided cdf of the N z-values,
ﬁ(z)=#{zi >z}/N; (6)

F,(z) =1-®(z), the right-sided null hypothesis cdf. Let p, be the proportion of true
null hypotheses, and then define the estimated FDR to be

Fdr(z) = p,F,(2)/ F(2). @)

(The 1995 paper sets p, equal to its upper bound 1.) Benjamini and Hochberg’s FDR
control rule chooses a control level g, say q =.1, computes

zO:min{lfd\r(z)Sq}, (8)
and rejects all null hypotheses Hy; having z; > z,. Their theorem, almost as surprising

as James and Stein’s, is that the expected proportion of “false discoveries” produced
by this rule; that is, the rejected null hypotheses that are actually true, is less than g.
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FDRs underwent the same philosophical progression as the James-Stein estimator
— their initial frequentist derivation was followed by a Bayesian reinterpretation. A
simple Bayesian “two-groups model” assumes that each of the N cases is either null or
non-null with prior probability p, or p, = 1-p, , and with z-values having right-sided
cdf either F, or F,, where F,(z) is an unspecified alternative distribution, presumably
yielding more extreme z-values than Fy(z) (see Efron (2008)). Letting F(z) be the
mixture cdf

F(Z) = poFo (Z) + plFl(Z)’ 9)

Bayes rule computes the posterior probability of a case being null as

Fdr(z) = Prob{case i null|z, > z}
= poFo(z)/ F(Z)- (10)

Comparing (10) with (7) shows that f&(z) is an obvious empirical Bayes estimate of

Fdr(z). The control rule (8) amounts to rejecting those cases having sufficiently small
estimated posterior probability of being null.

Let N, =#{z, > z}, the number of zs exceeding value z. Then F(z) = N,/N

while F(z) = E{N,}/N. All we need for Fdr(z) to be a useful estimate of Fdr(z) is
for N, to accurately estimate its own expectation. Even if independence of the z’s fails,
as it usually does in microarray applications, lfd\r(z) will still remain nearly unbiased

for Fdr(z) (though with increased variability) and we can expect the Benjamini-
Hochberg control algorithm to continue functioning reasonably well.

Traditional hypothesis testing techniques aim to control the probability of error.
FDR methods aim to control an expectation that is not a probability (at least not a
frequentist one). This represents a major change in the way statisticians do business
with the scientific world. FDRs take us away from the familiar territory of p-values
and significance levels. I’ve been pleasantly surprised by how little protest this has
aroused from our traditional customers.

The relationship between FDR and the James-Stein estimator can be illustrated
in terms of the structural model in (1). Let g () represent a prior distribution for the
expectation parameters x in the model z ~ N (x,1). According to (3),
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g(u) =N(0,A) (11)

for James-Stein estimation. FDR methods, as in (5) and (9), take

g(1) = peS, (1) + P, 9, (1), (12)

where d,( 1) is a delta function at O representing the null cases y; = 0, while g,( )
represents the distribution of non-null cases, those having g; # 0.

The fact that g (u) is much smoother in (11) than (12) hints at estimation
difficulties in the FDR context: ;tl is a quite effective approximation to Bayes rule

(4) for N as small as 10, while fd\r(z) requires N on the order of 1,000 to accurately

estimate Fdr(z) (Efron and Morris (1975); Efron (2008)). The Benjamini-Hochberg
control algorithm “works” for smaller N, in its original frequentist sense, but the
diminished empirical Bayes accuracy makes one (me!) worry about the relevance of
the FDR control criterion.

There are important intermediate situations lying between (11) and (12). We
might, for instance, replace d,(x) in (12) with a N(0,0¢) distribution, where &, has
some small value that allows uninteresting cases to vary a bit from z; = 0. That is, we
might broaden the definition of “null.” In an observational study, o, could represent
the disturbing effects of uncontrolled covariates. In this situation the appropriate null
distribution, F,(z) in (7), would be broadened from N(0,1) to N(0,1+0?).

Broadening the null distribution is more than a hypothetical possibility. Figure
1 concerns a microarray experiment involving two types of leukemia. For each of
N = 7,128 genes, a two-sample t-statistic “t;” was computed, comparing type 2 with
type 1 patients, and then converted to a z-value “z.” Under the usual assumptions, we
expect z; ~ N(0,1), the theoretical null, to hold for the presumably large majority of
genes not involved in type 1/type 2 differences. However the histogram of the 7,128
z-value contradicts this expectation: its center, where the null cases must predominate,
is much wider than N(0,1); a normal curve fit to the central 50% of the histogram, the
so-called empirical null, is N(0.09,1.68°) (fit by algorithm locfdr, Efron (2008)).

Uncontrolled covariation is one of four reasons discussed in Efron (2008) for
possible failure of the theoretical null. Whatever the reason, the choice between
N(0,1) and N(0.09,1.68%) makes an enormous difference to an FDR analysis. Figure 2

compares lfd\r(z) curves, slightly smoothed, for the two nulls, showing how much
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Figure 1: Histogram of z-values comparing two leukemia types, N=7,128
genes; histogram center is highly overdispersed compared to theoretical N(0,1)
null distribution; empirical null fit to center is N(0.09,1.68%). Data are from
Golub et al. (1999).
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Figure 2: lchr(z) for z > 0 ; theoretical null yields 788 genes having
Ffd\r(zi) <0.1, those with z; > 2.18 ; empirical null yields 48, those with z; > 5.43.
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more conservative is the choice of the empirical null, at least in this case. There is
nothing wrong with the FDR algorithm here, except for the tendency in the literature
to forget that the numerator F,(z) in (7) also needs careful consideration.

The charm of exactness exerts a powerful force on statisticians. Both the James-
Stein and Benjamini-Hochberg theorems bask in this charm, offering exact bounds on
their error rates. This is not an unmitigated blessing. The tendency in both literatures
has been a further pursuit of exact results. However, this pursuit can come at the
expense of ignoring the messy but necessary details that arise in actual applications.

I don’t think it is an accident that the James-Stein and Benjamini-Hochberg
methods enjoy both frequentist and Bayesian support. Multiple inference, especially
large-scale multiple inference, seems to flow easily across the frequentist/Bayes
barrier. In addition, the FDR story also combines hypothesis testing with estimation.
Perhaps the old categories are breaking down, and FDRs are just the opening salvo in
a multi-pronged attack on twenty-first century data analysis problems.
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