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Abstract: Instrumental variable (IV) estimation typically requires the user to cor-

rectly specify the relationship between the regressors and the outcome to obtain

a consistent estimate of the effects of the treatments. This paper proposes dou-

bly robust IV regression estimators that only require the user to either correctly

specify the relationship between the measured confounding variables (i.e., included

exogenous variables) and the outcome, or the relationship between the measured

confounding variables and the IVs. We derive the asymptotic properties of the dou-

bly robust IV regression estimators and investigate their finite sample properties

in a simulation study. We apply our method to a study of the effect of education

on earnings.
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1. Introduction

1.1 Causal inference for observational studies

Cochran (1965) defined an observational study as a comparison of treatment
groups in which “the objective is to elucidate cause-and-effect relationships [...
in which it] is not feasible to use controlled experimentation in the sense of being
[able]... to assign subjects at random to different procedures.” Observational
studies are common in economics, education, epidemiology, medicine, psychol-
ogy, public policy, and sociology. The central difficulty in an observational study
is that, because treatment was not randomly assigned, the subjects receiving
different treatments may differ in ways other than the treatments, so different
outcomes between the treatment groups may not be effects caused by the treat-
ments. If the treatment groups differ in ways that have been measured, this
bias can be removed by adjustments such as matching or regression (Rosenbaum
(2002)). However, often there is concern that the treatment groups differ in ways
that have not been measured, i.e., there are unmeasured confounders.

As an example, consider the question, what is the causal effect of obtaining
more education on future earnings? Card (1995) conducted an observational
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Figure 1.

study to attempt to answer this question using the National Longitudinal Survey
(NLS) of Young Men; more details are provided in Section 5. The measured
potential confounders are experience, race, region of current residence, and region
where the person grew up. Unmeasured potential confounders that are of concern
include ability and motivation. In particular, we are concerned that by comparing
two men of the same experience, race, region of current residence and region
grown up in, the man who obtained more education is more likely to be more
motivated, and that this man might earn more, regardless of whether education
has a causal effect on earnings, because he is more motivated.

1.2. Instrumental variables regression for making causal inference for
observational studies

Instrumental variables (IV) regression is an approach to overcoming the prob-
lem of unmeasured confounders. An instrumental variable (IV) is a variable that
affects the treatment, has no effect on the outcome other than through its ef-
fect on the treatment (no direct effect) and is independent of the unmeasured
confounders. Card proposed as an IV whether or not a person grew up near a
four-year college. The basic idea of the IV method is to extract variation in the
treatment that is independent of the unmeasured confounders, and to use this
bias-free variation to estimate the effect of the treatment on the outcome. Figure
1 depicts the idea in the context of Card’s study. Angrist and Krueger (2001)
provide a good review of applications of the IV method.

To further explain the potential usefulness of an IV and establish notation,
we describe an additive, linear constant-effect causal model and explain how a
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valid IV enables identification of the model. For defining causal effects, we use
the potential outcomes approach (Neyman (1923); Rubin (1974)). Let Y denote
an outcome and W denote a treatment variable that an intervention could in
principle alter, e.g., Y is earnings and W is years of education in Card’s study.
Let Y

(W ∗)
i denote the outcome that would be observed for unit i if unit i’s level

of W was set to W ∗. Let Y obs
i := Yi and W obs

i := Wi denote the observed values
of Y and W for unit i. Each unit has a vector of potential outcomes, one for
each possible level of W , but we observe only one potential outcome, Yi = Y

(Wi)
i .

An additive, linear constant-effect causal model for the potential outcomes (as
in Holland (1988) and Small (2007)) is Y

(W ∗)
i = Y

(0)
i + α0W

∗. Our parameter of
interest is α0 = Y

(W ∗+1)
i − Y

(W ∗)
i , the causal effect of increasing W by one unit.

Let Xi be a vector of measured potential confounders for unit i and Zi a
proposed IV. In Card’s study, Xi is experience, race, region where the person
lives and region where the person grew up. Consider the following model for
E(Y (W ∗)

i |Xi, Zi):

Y
(W ∗)
i = α0W

∗
i + F (Xi) + D(Zi) + ui, E(ui|Xi, Zi) = 0. (1.1)

This model has been considered by Holland (1988), among others. The model
for the observed data is

Yi = α0Wi + F (Xi) + D(Zi) + ui, E(ui|Xi, Zi) = 0,

(Wi, Xi, Zi, ui), i = 1, . . . , N are i.i.d. random vectors, (1.2)

where i.i.d. reads independently and identically distributed and ui can be viewed
as a composite of unmeasured confounding variables. For this model, we say that
z is a valid IV if it satisfies assumptions (1) the partial R2 for Z in the population
regression of W obs on X and Z is greater than 0, and (2) D(Zi) = 0 for all Zi

in (1.2). (1) says that Z is associated with W obs conditional on X. (2) says
that Z is uncorrelated with the composite u of the unmeasured confounding
variables given the measured confounding variables X. A sufficient condition for
(2) to hold is that Z be uncorrelated with any of the unmeasured confounding
variables conditional on X and that Z have no direct effect on the outcome
(Angrist, Imbens, and Rubin (1996)).

In order for Z to be a valid IV, it is necessary to measure and include in X all
confounders of the relationship between Z and Y . In Card’s study, because race
and region in which the person grew up are correlated with growing up near a
four year college (Z), and also likely affect earnings (Y ), it is necessary to include
these variables in X in order for Z to be a valid IV.

The most commonly used approach for making inference about the treatment
effect using IV regression is two-stage least squares (TSLS). The TSLS estimator
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is obtained by first regressing W on (X,Z) using OLS to obtain Ê(W |X,Z),
then regressing Y on Ê(W |X,Z) and X using OLS to estimate α0 and δ. TSLS
provides a consistent estimate of α0 under the assumption that Z is a valid IV and
that F (Xi) = γT Xi for some unknown γ, i.e., that the effect of X on the potential
outcomes is linear in X. The reason is that if F (Xi) = γT Xi, then the linear
projection E∗ of Y onto X and Z is E∗(Y |X,Z) = α0E

∗(W |X,Z)+γT X. As the
sample size becomes larger, the first stage regression estimate of E∗(W |X,Z),
Ê∗(W |X,Z), converges to the true E∗(W |X,Z), and the coefficients from the
second stage regression of Y on Ê∗(W |X,Z) and X converge to α0 and γT .

Instead of assuming F (Xi) to be linear in Xi, we can assume F (Xi) is linear
in g(Xi) for some vector of known functions g, and then use TSLS with g(Xi)
replacing Xi. However, in order for TSLS to provide a consistent estimate of α0,
the model for the effect of Xi on the outcomes must (under most conditions) be
correct, i.e., F (Xi) needs to be βT g(Xi) for some β (we will show in Section 2
that if E(Zi|Xi) is linear in g(Xi) then this condition is not required for TSLS
to provide a consistent estimate of α0). If F (Xi) is incorrectly modeled, TSLS
can be substantially biased as we show in our simulation study in Section 4.

The goal of our paper is to develop an approach to IV regression that is
more robust to the functional form of how the X variables affect the outcome
Y than is TSLS. We present an easily implementable method, called doubly
robust IV regression, that provides consistent estimates of the causal effect of
the treatment when we either specify correctly the functional form of the effect
of the X variables on the outcome Y or the effect of the X variables on the
instrument Z. Before getting to our approach, we discuss the problem with a
natural alternative, semiparametric regression.

1.3 Semiparametric approach

Because it is difficult to find a good parametric model for F (Xi), semi-
parametric regression that does not require one to specify a parametric model
for F (Xi) is a potentially appealing alternative to TSLS. Robinson (1988), Ai
and Chen (2003) and Florens, Johannes, and van Bellegem (2005) described
approaches to semiparametric IV regression. Robinson (1988) showed that a√

N consistent estimate of α0 in (1.2) can be obtained, as N → ∞, under cer-
tain smoothness conditions; Robinson’s method is reviewed below. Ai and Chen
(2003) considered more general semiparametric problems, and Florens, Johannes,
and van Bellegem (2005) focused on the partial linear IV model but allowed Xi

to be endogenous. The difficulty with these semiparametric approaches is that,
even when they are

√
N consistent, when Xi is of moderate or high dimension

relative to the sample size, the semiparametric estimators’ finite sample behavior
deteriorates because of the curse of dimensionality (see, e.g., Robins and Ritov
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(1997)). This problem surfaces in Robinson’s simulation study for a non-IV
semiparametric regression model. We also present a small simulation study to
illustrate this point.

We consider the following setting related to that of Robinson (1988):

Yi = Wi +
q∑

j=1

X2
ij + ui, Wi = Zi +

q∑
j=1

0.5X2
ij + Vi,

Zi = I

1
q

q∑
j=1

Xij + εi > 0

 ,

(ui, Vi, εi|Xi) ∼ i.i.d. N

(
0
0

)
,

 1 0.5 0
0.5 1 0
0 0 1

 ,

(Xi1, . . . , Xiq) ∼ i.i.d. N


 0

...
0


 1 0.5 . . . 0.5

...
...

...
...

0.5 0.5 . . . 1


 , (1.3)

where q is the dimension of Xi and I(·) is the indicator function.
We consider two

√
N consistent semiparametric estimators based on Robin-

son (1988). To compute the estimators, we first use nonparametric regression to
estimate E(Yi|Xi) and compute Yi−Ê(Yi|Xi). For all nonparametric regressions,
we use the np package in R (Hayfield and Racine (2007)) with a Gaussian kernel
and the cross-validated bandwidths selected by the function. We next use non-
parametric regression to estimate E(Wi|Xi) and compute Wi − Ê(Wi|Xi). We
then estimate α with the instrument Zi by carrying out two-stage least squares
with the response Yi−Ê(Yi|Xi), endogenous variable Wi−Ê(Wi|Xi), and instru-
ment Zi. We denote this estimator by α̂sp,Z . As discussed by Robinson (1988),
the efficient IV is Zi − E(Zi|Xi). To compute the efficient semiparametric IV
estimator, we estimate E(Zi|Xi) using nonparametric regression and then esti-
mate α by carrying out two-stage least squares with the response Yi − Ê(Yi|Xi),
endogenous variable Wi − Ê(Wi|Xi), and instrument Zi − Ê(Zi|Xi); we denote
this estimator by α̂sp,effiv.

Table 1 shows the bias and root mean squared errors (RMSEs) for α̂sp,Z (the
semiparametric estimator with Zi as an IV) and α̂sp,effiv (the semiparametric

estimator with the efficient IV, Zi − Ê(Zi|Xi)) for N = 200 and 200 simulations
for q = 1, 2, 3 and 5. For q = 1 and q = 2, the semiparametric estimators
perform well, with α̂sp,effiv slightly better than α̂sp,Z . For q = 3 and q = 5, the
semiparametric estimators are substantially biased and have substantially large
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Table 1. Bias and RMSEs, for the simulation study settings described in
Section 1.2, of the semiparametric estimator with Z as an IV (α̂sp,Z) and
the semiparametric estimator with Z − Ê(Z|X) as an IV.

q = 1 q = 2 q = 3 q = 5
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

α̂sp,Z -0.03 0.19 -0.04 0.24 -0.16 0.50 -0.77 8.31
α̂

sp,effiv -0.01 0.20 0.02 0.22 -0.11 0.69 -0.14 1.50

RMSEs. This simulation result illustrates the curse of dimensionality problem
in the semiparametric approach.

1.4. Motivation for doubly robust approach

TSLS and Robinson’s semiparametric IV estimator focus on modeling the
effect of Xi on the outcomes correctly. Another approach is to focus on mod-
eling the effect of Xi on the instrumental variable(s) Zi. Robins (1994) shows
how one can estimate parameters of interest by modeling E(Zi|Xi) in structural
nested mean models which include our model as a special case. Tan (2006b)
develops various estimators for local average treatment effects at population and
subpopulation levels for binary Wi under a monotonicity assumption (Angrist,
Imbens, and Rubin (1996)). Those estimators depend either on a parametric
model for p(Zi|Xi), the probability of Zi given Xi, or parametric models for
E(Yi|Wi, Xi, Zi) and E(Wi|Xi, Zi), or on a combination of both types of mod-
els to achieve double robustness. See also Ichimura and Taber (2001). Frölich
(2007) obtains some of the results of Tan (2006b) and develops a nonparametric
analogue of Robinson’s semiparametric IV regression, called the nonparametric
IV matching estimator, that involves nonparametric estimation of E(Yi|Xi, Zi)
and E(Wi|Xi, Zi); the nonparametric IV matching estimator is

√
N consistent.

Similar to Robinson’s semiparametric IV regression method, we expect the non-
parametric IV matching estimator to perform well as long as the sample size is
large relative to the dimension of Xi, but struggle when the sample size is small
or the dimension of Xi is large relative to the sample size. We note that Frölich
(2007) also considers matching based on p(Zi|Xi) as a device for dimension re-
duction, but this approach requires that p(Zi|Xi) be modeled correctly.

When the dimension of Xi is large enough relative to the sample size so that
modeling the effect of Xi on the outcome Yi or the instrument Zi nonparamet-
rically has large potential bias, then we need to consider parametric models for
either the effect of Xi on the outcome Yi, as in two-stage least squares, or the
effect of Xi on Zi (the IV). In this paper, we present a method that involves
specifying parametric models for both the effect of Xi on Yi and on Zi. The ad-
vantage of our method is that it is doubly robust, or doubly protected, meaning
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that if either the model for the effect of Xi on Yi or on Zi is correctly specified,
then our estimator is consistent.

There has been increasing interest in doubly robust estimation for causal
inference and missing-data problems. First, a large body of work has been done
under the assumption of no unmeasured confounding or the assumption of ignor-
ability. An estimator is doubly robust if a propensity score model or an outcome
regression model is correctly specified. Locally efficient and doubly robust esti-
mators are developed by Robins (2000), Robins, Rotnitzky, and Van der Laan
(2000), Robins and Rotnitzky (2001), and Scharfstein, Rotnitzky, and Robins
(1999), among others. See Van der Laan and Robins (2003) for a textbook ac-
count and Kang, Joseph, and Schafer (2007), Lunceford and Davidian (2004),
and Neugebauer and Van der Laan (2005) for comparative reviews. Alternative
doubly robust estimators are proposed by Tan (2006a, 2010a) to improve effi-
ciency when the propensity score model is correctly specified but the outcome
regression model is misspecified.

Second, progress has been made to develop doubly robust estimation with
instrumental variables. Doubly robust estimators are proposed by Tan (2006b),
as mentioned above, for local average treatment effects under monotonicity. Also
see Tan (2010b) for doubly robust estimators in marginal and nested structural
models as extensions of Robins (1994) and Vansteelandt and Goetghebeur (2003),
and see Van der Laan, Hubbard, and Jewell (2007) for doubly robust estimators
of alternative causal paramters in randomized trials with non-compliance and a
dichotomous outcome. Our work presents a new development of doubly robust
estimators in the context of a general IV regression model, presented later in (1.4).
Special cases of this model have been extensively used in the conventional IV
analysis and in related measurement-error problems (e.g., Carroll et al. (2006)).

1.5. Framework and outline of paper

Let (Yi,Wi, Xi, Zi), i = 1, . . . , N , be an i.i.d. sample. We consider a more
general IV regression model than (1.2),

Yi = M(Wi, α0) + F (Xi) + ui

E(ui|Xi, Zi) = 0, (1.4)

where M(Wi, α0) has only a finite-dimensional unknown parameter α0 but F (Xi)
= E{Yi − M(Wi, α0)|Xi} is a completely unknown function. In (1.2) where W

and α are scalar, M(Wi, α0) = α0Wi. We can also consider cases in which W and
α are vectors and M(Wi, α0) is not linear. The vector Xi is a vector of measured
confounders and the vector Zi is a vector of IVs. Our goal is to estimate α0.
Model (1.4) is a semiparametric IV regression model where M(Wi, α0) is the
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parametric part. Note that there is a large recent literature on models in which
the function M is not known and/or the relationship between Wi and Xi is
nonadditive (Blundell and Powell (2003) provide a review), but we focus only on
the semiparametric model (1.4) in which M is a known function.

Note that (1.4) does not include the following type of structural probit model
for binary outcomes. Suppose Y ∗ is an unobservable continuous variable that
determines Y , Y = 1 if Y ∗ > 0 and Y = 0 if Y ∗ ≤ 0. Suppose that (1.2) holds
for the unobservable variable Y ∗,

Y ∗
i = α0Wi + F (Xi) + u∗

i ,

E(u∗
i |Xi, Zi) = 0,

marginal distribution of u∗ is standard normal. (1.5)

Model (1.5) implies that

Yi = Φ(α0Wi + F (Xi)) + ui,

P (ui = 1 − Φ(α0Wi + F (Xi))) = Φ(α0Wi + F (Xi)),

P (ui = −Φ(α0Wi + F (Xi))) = 1 − Φ(α0Wi + F (Xi)). (1.6)

However, E(ui|Xi, Zi) 6= 0 in general when Wi is correlated with u∗
i so that

model (1.5)-(1.6) does not belong to the class of models (1.4) (Lee (1981); Rivers
and Vuong (1988); Bhattacharya, Goldman, and McCaffrey (2006)). Similarly,
structural logistic models in which u∗ has a logistic distribution in (1.5) do not
belong to the class of models (1.4) (Vansteelandt and Goetghebeur (2003)).

Robins and Rotnitzky (2004) indicate that the doubly robust approach can
be extended to multiplicative models that are useful in analyzing count data.
However, they also show that this approach cannot be extended to logistic or
probit models such as (1.5). This problem is caused by the absence of unbiased
estimating functions for the structural estimators of the model when the outcome
variable is dichotomous. On the other hand, multiplicative models impose a log
link function and thus admit unbiased estimating functions. For the rest of the
paper, we focus on (1.4).

Our paper is organized as follows. We present our basic doubly robust IV
estimator in Section 2 and show that it is easily implementable in standard
software; also present its asymptotic theory there. In Section 3, we develop a
new estimator that is also doubly robust and has certain improved asymptotic
properties. We carry out a simulation study in Section 4 that shows the advantage
of the doubly robust IV regression estimator. Section 5 presents an application
of our methodology to a data set. Section 6 provides conclusions.
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2. Doubly Robust Estimator

For the model (1.4), the doubly robust IV regression estimator requires the
user to specify a “working” parametric model for F (Xi) = E{Yi−M(Wi, α0)|Xi},
namely F (Xi) = F (Xi, β) where F (·, ·) is a known function and β is a finite di-
mensional parameter, and a working parametric model for E(Zi|Xi), namely
E(Zi|Xi) = G(Xi, γ) where G(·, ·) is a known function and γ is a finite dimen-
sional parameter. Let f(Xi, β) = ∂F (Xi, β)/∂β′. Let γ̂ be a

√
N consistent

estimator of γ. Any estimator of γ that satisfies the conditions given below can
be used. Let

Ĥ(α, β; γ) =
1
N

N∑
i=1

(
{Yi − M(Wi, α) − F (Xi, β)}{Zi − G(Xi, γ)}

{Yi − M(Wi, α) − F (Xi, β)}f(Xi, β)

)
.

Let Ω̂ be a weighting matrix that is symmetric and positive definite, for example,
the inverse of Hansen’s (1982) optimal weighting matrix is

Ω̂−1 =
1
N

N∑
i=1

û2
i

(
{Zi − G(Xi, γ̂)}{Zi − G(Xi, γ̂)}′ {Zi − G(Xi, γ̂)}f(Xi, β̃)′

f(Xi, β̃){Zi − G(Xi, γ̂)}′ f(Xi, β̃)f(Xi, β̃)′

)
,

where ûi = Yi −M(Wi, α̃)−F (Xi, β̃) and (α̃′, β̃′)′ is some preliminary estimator
of (α′, β′)′. Our doubly robust estimator α̂ is the first part of the vector (α̂′, β̂′)′,
where (

α̂

β̂

)
= arg min

α,β
Ĥ(α, β; γ̂)′Ω̂Ĥ(α, β; γ̂).

To sum up, the steps of the estimation are the following: We specify the working
models for E{Yi −M(Wi, α0)|Xi} and E(Zi|Xi), namely F (Xi, β) and G(Xi, γ);
2); we estimate γ; 3); we estimate α and β by minimizing the quadratic form of
Ĥ(α, β; γ̂).

We give a brief discussion of why α̂ is doubly robust. Let β∗ and γ∗ be the
probability limits of β̂ and γ̂, respectively. The important observation is that the
moment condition E{(Yi − M(Wi, α0) − F (Xi, β

∗)}{Zi − G(Xi, γ
∗)}] = 0 holds

if either the model for F (Xi) or the model for E(Zi|Xi) is correct, so that the
objective function to obtain the estimator is minimized at the true value of α0,
asymptotically. When F (Xi) = F (Xi, β

∗), it becomes a standard IV regression.
The variable Zi − G(Xi, γ

∗) is a valid IV because the residual ui is assumed to
be orthogonal to any function of Zi and Xi, so α̂ is consistent when F (Xi) =
F (Xi, β

∗). On the other hand, when E(Zi|Xi) = G(Xi, γ
∗), Zi − G(Xi, γ

∗) is
orthogonal to any function of Xi. This implies that misspecification of F (Xi)
does not affect the consistency of α̂ when the conditional mean of Zi is correctly
specified.
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Here we consider estimating both α and β jointly. However, this is not
necessary to achieve double robustness, we can also take the following estima-
tion approach. Let β̃ be some estimator of β that is consistent for β0 when
F (Xi) = F (Xi, β0). Suppose that the dimension of Zi is the same as that of α

for simplicity, a similar discussion works in more general cases. Under a rank
condition, we obtain an estimator of α based on the following sample analog of
the moment condition:

1
N

N∑
i=1

{Yi − M(Wi, α) − F (Xi, β̃)}{Zi − G(Xi, γ̂)} = 0.

We note that this estimator is doubly robust, and has the same asymptotic
variance as that of α̂ if the model for G(·) is correct. However, when the model
for F (·) is correct, the asymptotic variance of this estimator may be different
from that of α̂ and this depends on how β̃ is estimated.

To illustrate our procedure, we consider the following design which is used in
our Monte Carlo simulations. The function M is linear: M(Wi, α) = α′Wi. The
instrument Zi is binary and the dimension of Zi is the dimension of α so that
the choice of Ω̂ does not affect the estimator. We employ the probit model for
E(Zi|Xi) so that E(Zi|Xi) = G(Xi, γ0) = Φ(γ′

0Xi) for some γ0, where Φ is the
standard normal distribution function. We estimate γ0 by maximum likelihood:

γ̂ = arg max
γ

N∑
i=1

[
Zi log Φ(γ′Xi) + (1 − Zi) log{1 − Φ(γ′Xi)}

]
.

Our working model is F (Xi, β) = β′Xi. With this specification, the doubly
robust estimator α̂ is the first part of the vector (α̂′, β̂′)′ where(

α̂

β̂

)
=

[
N∑

i=1

(
{Zi − G(Xi, γ̂)}W ′

i {Zi − G(Xi, γ̂)}X ′
i

XiW
′
i XiX

′
i

)]−1

×
N∑

i=1

(
{Zi − G(Xi, γ̂)}Yi

XiYi

)
.

Thus, when M(Wi, α0) and F (Xi, β) are linear functions (in parameters), the
doubly robust estimator can be estimated, using standard software, by carrying
out two-stage least squares using the instrument Zi − G(Xi, γ̂) in place of the
instrument Zi in usual two-stage least squares. However, we note that the stan-
dard errors produced in the second stage may not be correct because they do not
reflect the estimation error from the first stage estimation of γ̂.

Note that when M(Wi, α) is linear and both F (Xi, β) and G(Xi, γ) are linear
in g(Xi) for some known vector-valued function g(·), the doubly robust estimator
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α̂ becomes the TSLS estimator, as demonstrated by Robins (2000). We note
that our method does not require that F (Xi, β) and G(Xi, γ) be linear in the
same vector of functions. However, Robins (2000) shows how to “trick” a TSLS
software program to compute a doubly robust estimator of the parameters of a
structural nested mean model (SNMM). In view of the close relationship between
our generalized IV model and a SNMM, the non-longitudinal version of Robins’
estimator is also a doubly robust estimator of α0 in model (1.4), even when the
functions F (Xi, β) and G(Xi, γ) are nonlinear.

2.1 Assumptions

Our model is (1.4), where M(·, ·) is a known function up to the finite-
dimensional unknown parameter α0. Let m(Wi, α)=∂M(Wi, α)/∂α′ and g(Xi, γ)
= ∂G(Xi, γ)/∂γ′. Let || · || be the Euclidean norm.

Assumption 1. 1. (Yi,Wi, Xi, Zi), i = 1, . . . , N are i.i.d..

2. E(ui|Xi, Zi) = 0.

3. E(u2
i ) < ∞ and E(||Zi||2) < ∞.

4. α0 is in the interior of Θα (denoted interiorΘα), where Θα ⊂ Rpα and is
compact.

5. M(Wi, α) is differentiable with respect to α in a neighborhood of α0; M(Wi, α)
is continuous (as a function of Wi) at each α ∈ Θα with probability one;
E{supα∈Θα

||M(Wi, α)||2} < ∞; E{supα∈N ||m(Wi, α)||2} < ∞, where N is a
neighborhood of α0.

Assumption 2. For the user specified working models E{Yi −M(Wi, α0)|Xi} =
F (Xi, β) and E(Zi|Xi) = G(Xi, γ) (these models may not be correct),

1. F (Xi, β) is twice differentiable with respect to β, where β ∈ Θβ ⊂ Rpβ and Θβ

is compact. F (Xi, β) is continuous (as a function of Xi) at each β ∈ Θβ with
probability one. E{supβ∈Θβ

||F (Xi, β)||2} < ∞ and E{supβ∈Θβ
||f(Xi, β)||2}

< ∞. There exists a unique β∗ ∈ interiorΘβ such that β∗ solves E[f(X,β)
{F (X) − F (X,β)}] = 0. E{supβ∈N ||∂f(Xi, β)/∂β′||2} < ∞, where N is a
neighborhood of β∗.

2. G(X, γ) is differentiable with respect to γ, where γ ∈ Θγ ⊂ Rpγ and Θγ is
compact. E{supγ∈N ||G(Xi, γ)||2} < ∞ and E{supγ∈N ||g(Xi, γ)||2} < ∞,
where N is a neighborhood of γ∗.

3. The matrix E{(m(Wi, α0)′, f(Xi, β
∗)′)′(Z ′

i − G(Zi, γ
∗)′, f(Xi, β

∗)′)} is of full
rank.

Assumptions 1 and 2 correspond to standard regularity conditions in IV
literature except that we do not assume that F (·) and E(Zi|Xi) are correctly
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modeled. Assumption 2 also guarantees that our estimator has a well-defined
limit even in the case of misspecification.

Next, we impose conditions for the asymptotic behavior of γ̂ and the weight-
ing matrix Ω̂.

Assumption 3. 1. There exists a unique γ∗ ∈ interiorΘγ such that γ̂ →p γ∗.
Moreover, the estimator γ̂ is asymptotically linear so that

√
N(γ̂ − γ∗) =∑N

i=1 ψ(Xi, Zi, γ
∗)/

√
N + op(1), where ψ(·) is differentiable with respect to

γ, E{ψ(Xi, Zi, γ
∗)} = 0, E{supγ∈N ||ψ(Xi, Zi, γ)||2} < ∞, and E{supγ∈N

||∂ψ(Xi, Zi, γ)/∂γ′||2} < ∞, where N is a neighborhood of γ∗.
2. There exists a symmetric positive definite matrix Ω such that Ω̂ →p Ω.

This assumption is satisfied with any conventional estimator for γ under
standard regularity conditions.

2.2. Possible parameterizations

We consider the following possible parameterizations for the model (1.4).

Assumption 4 (Case 1). The user specified model for F (Xi) = E{Yi − M(Wi,
α0)|Xi} is correct: F (Xi) = F (Xi, β0) where β0 = β∗.

Assumption 5 (Case 2). The user specified model for E(Zi|Xi) is correct: Zi =
G(Xi, γ0) + vi for some γ0 ∈ Θγ, where E(vi|Xi) = 0. Moreover, the parameter
γ is consistently estimated: γ∗ = γ0.

Case 1 describes situations in which we correctly model the relationship
between the outcome variable (Yi) and measured confounders (Xi). Case 2 de-
scribes situations in which the relationship between the IVs (Zi) and measured
confounders (Xi) is correctly modeled. Besides Case 1 and Case 2, we consider
Case 3: the user specified models for both F (Xi) and E(Zi|Xi) are correct.

We use the following abbreviations: mi = m(Wi, α0), F ∗
i = F (Xi, β

∗), f∗
i =

f(Xi, β
∗), g∗i = g(Xi, γ

∗), vi(γ) = Zi − G(Xi, γ), ψi = ψ(Xi, Zi, γ
∗); in Case 1,

Fi = F (Xi, β0), fi = f(Xi, β0); in Case 2, gi = g(Xi, γ0), vi = Zi − G(Xi, γ0).

2.3. Asymptotic properties of the estimator

We present the probabilty limit and the asymptotic distribution of the esti-
mator α̂. The proofs are standard and follow the arguments given by Newey and
McFadden (1994). They are collected in the Appendix.

Theorem 1. Suppose that Assumptions 1, 2, and 3 are satisfied. If Assumption
4 or 5 is satisfied, then 1) α̂ →p α0; and 2)

√
N

((
α̂

β̂

)
−

(
α0

β0

))
=

1√
N

N∑
i=1

φi + op(1) →d N(0, E(φiφ
′
i)),
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where the form of φi is given below.

Case 1: F (Xi) = F (Xi, β0). If Assumption 4 is satisfied,

φi = (D′ΩD)−1D′Ωui

(
vi(γ∗)

fi

)
, and D = E

(
−vi(γ∗)m′

i −vi(γ∗)fi

−fim
′
i fif

′
i

)
.

Case 2: E(Zi|Xi) = G(Xi, γ0). If Assumption 5 is satisfied,

φi = (D′ΩD)−1D′Ω
(

uivi(γ∗) + ai

{ui + F (Xi) − F ∗
i }f(Xi, β

∗)

)
,

D = E

(
−vim

′
i 0

−f(Xi, β
∗)m′

i f(Xi, β
∗)f(Xi, β

∗)′

)−1

,

and ai = {F (Xi) − F ∗
i }vi − E[{F (Xi) − F ∗

i }gi]ψi.

Case 3: F (Xi) = F (Xi, β0), E(Zi|Xi) = G(Xi, γ0). If Assumptions 4 and 5 are
satisfied,

φi = (D′ΩD)−1D′Ωui

(
vi

fi

)
, and D = E

(
−vim

′
i 0

−fim
′
i fif

′
i

)
.

The first result shows that the estimator α̂ is consistent when F (Xi) =
F (Xi, β0) or E(Zi|Xi) = G(Xi, γ0), i.e., the estimator α̂ is doubly robust, which
is one of our main results.

The second part of the theorem presents the asymptotic distribution of the
estimator. While the estimator is asymptotically normal in all three cases, the
form of the asymptotic variance varies across cases. This property makes it diffi-
cult to estimate the asymptotic variance analytically. We suggest bootstrapping
for computing the standard errors, see Horowitz (2001) for a review of the boot-
strap method. The validity of bootstrapping standard errors is easily verified
because our estimator is a version of two-step extremum estimators with smooth
objective function. However, an asymptotic refinement may not be achieved in
our case.

Remark 1. It is interesting note that, in Case 2, estimating nuisance parameters
yields a more efficient estimator than using the true value of nuisance parameters.
See Hitomi, Nishiyama, and Okui (2008) for more about this phenomenon. When
we know the parameter γ0, then ai = {F (Xi)−F ∗

i }vi. On the other hand, when
γ̂ is the maximum likelihood estimator, we have ψi = E(SiS

′
i)
−1Si where Si is

the score with respect to γ. Using the generalized information equality, we get
E[{F (Xi) − F ∗

i }g′i] = E[{F (Xi) − F ∗
i }viS

′
i]. The term ai becomes

ai = {F (Xi) − F ∗
i }vi − E[{F (Xi) − F ∗

i }viS
′
i]E(SiS

′
i)
−1Si.
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The formula indicates that ai is the residual of the regression of {F (Xi)−F ∗
i }vi

on Si. It therefore follows that estimating the parameter γ improves efficiency.
When we estimate E(Zi|Xi) nonparametrically, we use the formula in Lee (1996,
p.200) to obtain the form of the term corresponding to ai, which is {F (Xi) −
F ∗

i }vi − {F (Xi) − F ∗
i }vi = 0. Thus, estimating E(Zi|Xi) nonparametrically

improves the efficiency of the estimator, even if we can model E(Zi|Xi) with
finite-dimensional parameters.

2.4. Semi-parametric efficiency bound

We now discuss the efficiency of the doubly robust estimator α̂. We first
derive the semi-parametric efficiency bound for estimation of α under Model
(1.4). We note that Model (1.4) is a conditional moment restriction model with
unknown function (F (·)). The result of Ai and Chen (2003) can be used to derive
the efficiency bound; this is shown in the next theorem. We note that Robins
(1994) gives the efficiency bound for more general models based on the results of
Chamberlain (1987, 1992).

Theorem 2. Let p(y, x, w, z; α, F ) be the density of (Yi, Xi,Wi, Zi) given α and
F . Suppose that the parameter space for α and F is convex. Let F0 be the true
value of F and q(y, x, w, z;α, ξ) = p(y, x, w, z; α, F0 + ξ(F − F0)) where we fix F

and ξ is a scalar. Assume that q(y, x, w, z; α, ξ) is smooth in the sense of Newey
(1990, p.127, Def. A.1) The semiparametric efficiency bound for estimation of α

in Model (1.4) is V −1, where

V = E
[
{E(mi|Xi, Zi) − h∗(Xi)}{E(u2

i |Xi, Zi)}−1{E(mi|Xi, Zi) − h∗(Xi)}′
]
,

h∗(Xi) =
E

[
E{m(Wi, α0)|Xi, Zi}/E(u2

i

∣∣∣ Xi, Zi)|Xi

]
E

{
1/E(u2

i |Xi, Zi)
∣∣∣ Xi

} .

Note that the estimator α̂ is not semiparametrically efficient as it does not
take into account possible heteroskedasticity of ui. While it is possible to develop
a semiparametrically efficient estimator, it typically requires the nonparametric
estimation of conditional variances of error terms and this conflicts with our in-
tent to develop a doubly-robust estimator that avoids nonparametric estimation.
For our subsequent discussion of efficiency, we restrict attention to settings that
satisfy the following conditions.

(C1) Homoskedasticity for ui: E(u2
i |Xi, Zi) = σ2

u.

(C2) E{m(Wi, α0)|Xi, Zi} = λ{Zi − E(Zi|Xi)} for some nonsingular matrix
λ ∈ Rpα×pZ .



DOUBLY ROBUST IV REGRESSION 187

(C3) The dimension of α is the dimension of Zi: pα = pZ .

Conditions (C1) and (C2) imply that Z −E(Zi|Xi) is the optimal instrument in
the sense that the usual instrumental variables estimator that uses Z −E(Zi|Xi)
achieves the semiparametric efficiency bound. Condition (C3) implies that we
do not need to consider the choice of the weighting matrix. Under conditions
(C1)-(C3), the efficiency bound becomes

σ2
u

(
E

[
λ{Zi − E(Zi|Xi)}{Zi − E(Zi|Xi)}′λ′])−1

,

by the fact that h∗ = E(mi|Xi) = 0.
We compare the efficiency bound and the asymptotic variance of α̂ in each

case.

Case 1: F (Xi) = F (Xi, β0). The asymptotic variance of α̂ in this case is

σ2
uE[vi(γ∗){Zi − E(Zi|Xi)}′λ′]−1

×
[
E{vi(γ∗)vi(γ∗)′} − E{vi(γ∗)f ′

i}E(fif
′
i)

−1E{fivi(γ∗)′}
]

×E[λ{Zi − E(Zi|Xi)}vi(γ∗)′]−1.

Therefore, the doubly robust estimator α̂ does not attain the semiparametric
efficiency bound when only the model for F is correct.

Case 2: E(Zi|Xi) = G(Xi, γ0). We note that in this case vi(γ∗) = vi(γ0) = vi.
The asymptotic variance of α̂ in this case is

E(viv
′
iλ

′)−1E(σ2
uviv

′
i + aia

′
i)E(λviv

′
i)
−1,

where ai = {F (Xi) − F ∗
i }vi + E[{F (Xi) − F ∗

i }g′i]ψi. The estimator does not
attain the semi-parametric efficiency bound in general. The problem is that the
misspecification of F affects the asymptotic variance. We note that, while the
estimation of γ affects the asymptotic distribution of α̂, its effect is ambiguous
and it may even improve the efficiency of the estimator, as discussed in Remark
1.

Case 3: F (Xi) = F (Xi, β0) and G(Xi) = G(Xi, γ0). The asymptotic variance of
α̂ is σ2

uE(λviv
′
iλ

′)−1, and the doubly robust estimator attains the semi-parametric
efficiency bound in this case.

In summary, we find that our doubly robust estimator α̂ is not efficient in
general even under the conditions (C1)−(C3) considered in this section. However,
α̂ does attain the semiparametric efficiency bound when both the model of the
effect of measured confounders on the outcome (F (Xi)) and the model for the
relationship between the measured confounders and IVs are correct. Therefore,
the estimator α̂ is locally efficient (See e.g., Tsiatis (2006, p.63) for the definition
of local efficiency).
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3. A Regression Estimator Improvement of the Doubly Robust Esti-
mator

We are motivated to look for a way to improve the efficiency of our esti-
mator while keeping it doubly robust. In this section, we present a regression
estimator that is doubly robust and improves on the doubly robust estimator of
Section 2 when E(Zi|Xi) is correctly specified but E{y−M(Wi, α0)|Xi} may be
misspecified (Case 2). The estimator builds on the ideas in Tan (2006a, 2010a).
For simplicity, we focus our discussion on the case in which the dimension of Zi

is the same as that of α so that the weighting matrix, Ω̂, is not necessary.
Let (α̃, β̃) denote the estimator that solves

1
N

N∑
i=1

(
{Yi − M(Wi, α) − F (Xi, β)}Zi

{Yi − M(Wi, α) − F (Xi, β)}f(Xi, β)

)
= 0.

Let

Âi(α) = {Yi − M(Wi, α)}vi(γ̂) −
[

1
N

N∑
j=1

{yj − M(Wj , α)}g(Xj , γ̂)′
]
ψ(Xi, Zi, γ̂),

B̂i = F (Xi, β̃)vi(γ̂) −
{

1
N

N∑
j=1

F (Xj , β̃)g(Xj , γ̂)′
}

ψ(Xi, Zi, γ̂),

Υ̂(α) =
(

1
N

N∑
i=1

B̂iB̂
′
i

)−1{ 1
N

N∑
i=1

B̂iÂi(α)′
}

.

Roughly speaking, Âi(α) and B̂i come from the asymptotic expansions of the es-
timating equation with respect to γ̂. The matrix Υ̂(α) is the regression coefficient
of Âi(α) on B̂i. We obtain the estimator α̂r by solving

1
N

N∑
i=1

{Yi − M(Wi, α)}vi(γ̂) − Υ̂(α)′
1
N

N∑
i=1

F (Xi, β̃)vi(γ̂) = 0.

We call α̂r the regression doubly robust estimator and α̂ the basic doubly
robust estimator. The main purpose of introducing the regression doubly ro-
bust estimator is to improve the efficiency in Case 2. We note that in Case 2,
the primary source of inefficiency is that F (Xi) might be misspecified. Note
that the asymptotic variance of α̂ contains the variance of {F (Xi) − F ∗

i }vi −
E[{F (Xi)−F ∗

i }gi]ψi. The major role of the matrix Υ̂(α) is to alleviate the effect
of misspecification of F . We modify the estimating equation so that the term
{F (Xi)−F ∗

i }vi−E[{F (Xi)−F ∗
i }gi]ψi in α̂ becomes the residual of the projection

of F (Xi)vi − E{F (Xi)gi}ψi on F ∗
i vi − E(F ∗

i gi)ψi in α̂r.
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3.1. Asymptotic properties of the regression doubly robust estimator

This subsection present the probability limit and the asymptotic distribution
of α̂r. The proof of the theorem is in the Appendix.

Theorem 3. Suppose that Assumptions 1, 2 and 3 are satisfied. If either As-
sumption 4 or 5 holds, we have α̂r →p α0, and

√
N(α̂r − α0) =

1√
N

N∑
i=1

φi + op(1) →d N(0, E(φiφ
′
i)),

where the form of φi is given below.

Case 1: F (Xi) = F (Xi, β0). If Assumption 4 is satisfied, the form of φi is
available in the proof in the Appendix.

Case 2: E(Zi|Xi) = G(Xi, γ0). If Assumption 5 is satisfied,

φi = E(vim
′
i)
−1(uivi + ai), ai = Ai − E(AjBj)E(BjB

′
j)

−1Bi,

Ai = F (Xi)vi − E{F (Xi)gi}ψi, Bi = F ∗
i vi − E{F ∗

i gi}ψi.

Case 3: F (Xi) = F (Xi, β0), E(Zi|Xi) = G(Xi, γ0). If Assumptions 4 and 5 are
satisfied, φi = E(vim

′
i)
−1uivi.

The first part of the theorem shows the consistency of the regression doubly
robust estimator, α̂r, and indicates that α̂r is doubly robust. The proof essentially
follows the same argument as that for α̂.

The second part of the theorem shows the asymptotic normality of the esti-
mator and presents the asymptotic distribution. For Case 1, we do not present
the form of the asymptotic variance in the main text because it is too compli-
cated and is without intuitive interpretation. It is not clear whether α̂r is more
or less efficient than α̂ in Case 1.

The important result is for Case 2, in which we show that the regression dou-
bly robust estimator α̂r is more efficient than the original doubly robust estimator
α̂. The asymptotic variance is E(vim

′
i)
−1E(u2

i viv
′
i + aia

′
i)E(miv

′
i)
−1; the asymp-

totic variance of the old estimator α̂ in just-identified cases is E(vim
′
i)
−1E{u2

i viv
′
i

+(Ai − Bi)(Ai − Bi)′}E(miv
′
i)
−1. Note that Ai − E(AjB

′
j)E(BjB

′
j)

−1Bi is the
residual of the regression of Ai on Bi, thus it is also a residual of the regression
of Ai − Bi on Bi. This implies that the variance of Ai − E(AjB

′
j)E(BjB

′
j)

−1Bi

is smaller than Ai − Bi. Note that while α̂r is more efficient than α̂, α̂r is not
semiparametrically efficient even in linear homoskedastic cases.

In Case 3, the asymptotic variances of α̂ and α̂r are the same. This result
implies that α̂r is also locally efficient (see Section 2.4).

As in the case of α̂, the asymptotic variance of α̂r varies across cases. We
suggest bootstrapping as a way to construct standard errors.
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Remark 2. We also observe that estimating γ̂ might improve the efficiency of
the estimator even in the case of α̂r in Case 2. Suppose that we do not estimate
γ0 (i.e. ψi = 0). Then the asymptotic variance of the new estimator, α̂r, is
E(vim

′
i)
−1E(u2

i viv
′
i + bib

′
i)E(miv

′
i)
−1, where bi = F (Xi)vi − E{F (Xj)F ∗

j vjv
′
j}

E{F ∗2
j vjv

′
j}−1F ∗

i vi. Here bi is the residual from the regression of {F (Xi)−F ∗
i }vi

on F ∗
i vi. Suppose that γ̂ is the maximum likelihood estimator and let Si be the

score function with respect to γ. Then we can write

Ai = F (Xi)vi − E{F (Xi)vjS
′
j}E(SjS

′
j)

−1Si,

Bi = F ∗
i vi − E(F ∗

j vjS
′
j)E(SjS

′
j)

−1Si,

by the generalized information equality. Therefore Ai − Bi is the residual from
the regression of {F (Xi) − F ∗

i }vi on Si, and Bi is the residual of the regression
of F ∗

i on Si. Since Ai − E(AjB
′
j)E(BjB

′
j)

−1Bi is the residual of the regression
of Ai −Bi on Bi, Ai −E(AjB

′
j)E(BjB

′
j)

−1Bi is the residual of the regression of
{F (Xi) − F ∗

i }vi on both Si and F ∗
i vi. Thus, estimating γ with the maximum

likelihood estimator improves efficiency.

Remark 3. There is an alternative DR estimator, α̂rm, similar to the marginal-
ized estimators in Tan (2006a); Tan (2010a, Sec. 3.4). The estimator is defined
by keeping only the first terms in the definitions of Âi and B̂i, so that we replace
Âi(α) and B̂i in the definition of α̂r with

Âi(α) = {Yi − M(Wi, α)}vi(γ̂),

B̂i = F (Xi, β̃)vi(γ̂).

The asymptotic expansions of α̂rm can be obtained by suitable modifications
to those of α̂r, as similarly done in Tan (2010a, Sec. 3.4). A subtle aspect is
that α̂rm is asymptotically not as efficient as α̂r in Case 2 where the model for
E(Zi|Xi) is correct, and hence does not guarantee asymptotic variance reduction
compared with the basic IV estimator α̂ in this case. On the other hand, from
our experience, α̂rm performs similarly to, sometimes more stably than, α̂r in
finite samples. See Sections 4 and 5.

4. Simulation Study

In this section, we compare the two-stage least estimator to the doubly ro-
bust estimator α̂ and the regression doubly robust estimator α̂r. Specifically,
we consider a setting with two included exogenous variables Xi1 and Xi2 that
are distributed as independent standard normals, one instrument Zi, and one
endogenous variable Wi, where M(Wi, α0) = α0Wi. We consider the following
models: for Zi,
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Model 1 for Zi: Zi = I(Xi1 + Xi2 + ei > 0),

Model 2 for Zi: Zi = I(Xi1 + Xi2 + Xi1Xi2 + ei > 0);

for Wi:

Model 1 for Wi: Wi = I(Xi1 + Xi2 + Xi1Xi2 + Zi + vi > 0),

Model 2 for Wi: Wi = I(−2 + Xi1 + Xi2 + Xi1Xi2 + Zi + vi > 0);

for Yi:

Model 1 for Yi: Yi = Wi + Xi1 + Xi2 + ui,

Model 2 for Yi: Yi = Wi + Xi1 + Xi2 + Xi1Xi2 + ui,

Model 3 for Yi: Yi = Wi + eXi1 + eXi2 + eXi1+Xi2 + ui,

Model 4 for Yi: Yi = Wi + eXi1 + Xi2 + 0.6Xi2e
Xi1 + ui,

where  ei

vi

ui

 ∼ i.i.d. N

 0
0
0

 ,

 1 0 0
0 1 0.5
0 0.5 1

 .

We consider a 2× 2× 4 complete factorial design for the simulation study with a
sample size of N =1,000 and 1,000 simulations for each setting. We consider two
TSLS estimators: TSLS.Noint (where Noint stands for no interaction) that uses
Xi1 and Xi2 as included exogenous variables, and TSLS.Int (where Int stands
for interaction) that uses Xi1, Xi2, and Xi1Xi2 as included exogenous variables;
four basic doubly robust estimators: DR.Noint.Noint that uses a probit model
with no interactions for E(Zi|Xi1, Xi2) and a linear model with no interactions
for E(Yi − Wiα|Xi1, Xi2), DR.Noint.Int that uses a probit model with no inter-
actions for E(Zi|Xi1, Xi2) and a linear model with an interaction between Xi1

and Xi2 for E(Yi−Wiα|Xi1, Xi2), DR.Int.Noint that uses a probit model with an
interaction between Xi1 and Xi2 for E(Zi|Xi1, Xi2) and a linear model with no
interactions for E(Yi − Wiα|Xi1, Xi2), and DR.Int.Int that uses a probit model
with an interaction between Xi1 and Xi2 for E(Zi|Xi1, Xi2) and a linear model
with an interaction between Xi1 and Xi2 for E(Yi−Wiα|Xi1, Xi2); four regression
doubly robust estimators RDR.Noint.Noint, RDR.Noint.Int, RDR.Int.Noint and
RDR.Int.Int that correspond to the doubly robust estimators with the same suf-
fixes; and four modified regression doubly robust estimators MRDR.NoInt.NoInt,
MRDR.Noint.Int, MRDR.Int.Noint, and MRDR.Int.Int that correspond to the
doubly robust estimators with the same suffixes, where the modified regression
doubly robust estimator is described in Remark 3.

Table 2 shows the RMSEs and Table 3 shows the biases of the ten estimators
for the settings in the simulation study. We now summarize the results.
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Table 2. RMSEs, for the simulation study settings described in Section 4.2,
of various two-stage least squares, doubly robust, regression doubly robust
estimators, and and modified regression doubly robust estimator (uses only
the first terms in Âi(α) and B̂i). “*” indicates that the estimator is not
consistent in the model. “Y ” indicates that the model for Y is misspecified
and the model for Z is correctly specified. “Z” indicates that the model for
Z is misspecified and the model for Y is correctly specified. “Y Z” indicates
that both the models for Y and Z are misspecified.

Model for Z 1 1 1 1 1 1 1 1

Model for W 1 1 1 1 2 2 2 2

Model for Y 1 2 3 4 1 2 3 4

TSLS.Noint 0.24 0.34∗Y 5.70∗Y 1.25∗Y 0.70 0.97∗Y 18.76∗Y 3.85∗Y

TSLS.Int 0.24 0.24 5.55∗Y 1.19∗Y 0.69 0.67 17.61∗Y 3.61∗Y

DR.Noint.Noint 0.32 0.39Y 0.60Y 0.36Y 0.79 1.01Y 1.44Y 1.00Y

DR.Noint.Int 0.31 0.32 1.00Y 0.37Y 0.80 0.76 2.59Y 1.06Y

DR.Int.Noint 0.31 0.32Y 0.58Y 0.35Y 0.80 0.76Y 1.36Y 0.99Y

DR.Int.Int 0.31 0.32 0.59Y 0.34Y 0.80 0.76 1.42Y 0.99Y

RDR.Noint.Noint 0.32 0.39Y 0.55Y 0.36Y 0.79 1.01Y 1.33Y 0.98Y

RDR.Noint.Int 0.31 0.32 0.74Y 0.35Y 0.80 0.76 2.01Y 1.00Y

RDR.Int.Noint 0.31 0.32Y 0.52Y 0.34Y 0.80 0.76Y 1.23Y 0.97Y

RDR.Int.Int 0.31 0.32 0.53Y 0.34Y 0.80 0.76 1.25Y 0.97Y

MRDR.Noint.Noint 0.32 0.39Y 0.55Y 0.36Y 0.79 1.01Y 1.33Y 0.98Y

MRDR.Noint.Int 0.31 0.32 0.74Y 0.35Y 0.80 0.76 2.02Y 1.00Y

MRDR.Int.Noint 0.31 0.32Y 0.52Y 0.34Y 0.80 0.76Y 1.23Y 0.97Y

MRDR.Int.Int 0.31 0.32 0.53Y 0.34Y 0.80 0.76 1.25Y 0.97Y

Model for Z 2 2 2 2 2 2 2 2

Model for W 1 1 1 1 2 2 2 2

Model for Y 1 2 3 4 1 2 3 4

TSLS.Noint 0.17 1.64∗Y 2.29∗Y 0.53∗Y 0.31 3.07∗Y 4.42∗Y 1.00∗Y

TSLS.Int 0.19 0.20 8.28∗Y 1.61∗Y 0.51 0.54 21.62∗Y 4.21∗Y

DR.Noint.Noint 0.18Z 1.67∗Y Z 0.76∗Y Z 0.76∗Y Z 0.34Z 3.17∗Y Z 1.41∗Y Z 1.44∗Y Z

DR.Noint.Int 0.21Z 0.22Z 6.52∗Y Z 1.26∗Y Z 0.58Z 0.60Z 17.68∗Y Z 3.43∗Y Z

DR.Int.Noint 0.29 0.29Y 0.65Y 0.33Y 0.78 0.79Y 1.76Y 0.90Y

DR.Int.Int 0.29 0.29 0.59Y 0.34Y 0.78 0.79 1.77Y 0.90Y

RDR.Noint.Noint 0.18Z 1.66∗Y Z 0.72∗Y Z 0.84∗Y Z 0.33Z 3.23∗Y Z 1.35∗Y Z 1.53∗Y Z

RDR.Noint.Int 0.21Z 0.29Z 5.06∗Y Z 0.82∗Y Z 0.55Z 0.67Z 10.09∗Y Z 1.84∗Y Z

RDR.Int.Noint 0.29 0.30Y 0.64Y 0.33Y 0.78 0.79Y 1.70Y 0.89Y

RDR.Int.Int 0.29 0.29 0.64Y 0.33Y 0.78 0.79 1.72Y 0.89Y

MRDR.Noint.Noint 0.18Z 1.67∗Y Z 0.72∗Y Z 0.84∗Y Z 0.33Z 3.23∗Y Z 1.35∗Y Z 1.52∗Y Z

MRDR.Noint.Int 0.21Z 0.29Z 5.07∗Y Z 0.83∗Y Z 0.55Z 0.67Z 10.16∗Y Z 1.86∗Y Z

MRDR.Int.Noint 0.29 0.30Y 0.64Y 0.33Y 0.78 0.79Y 1.70Y 0.89Y

MRDR.Int.Int 0.29 0.29 0.64Y 0.33Y 0.78 0.76 1.72Y 0.90Y

1. When the outcome model for a TSLS estimator was correct, the TSLS estima-
tor achieved moderate efficiency gains over the doubly robust estimators. For
example, when the model for E(Zi|Xi) was a probit without interactions and
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Table 3. Biases, for the simulation study settings described in Section 4.2,
of various two-stage least squares, doubly robust, regression doubly robust
estimators, and modified regression doubly robust estimator (uses only the
first terms in Âi(α) and B̂i). “*” indicates that the estimator is not consis-
tent in the model. “Y ” indicates that the model for Y is misspecified and
the model for Z is correctly specified. “Z” indicates that the model for Z is
misspecified and the model for Y is correctly specified. “Y Z” indicates that
both the models for Y and Z are misspecified.

Model for Z 1 1 1 1 1 1 1 1

Model for W 1 1 1 1 2 2 2 2

Model for Y 1 2 3 4 1 2 3 4

TSLS.Noint 0.00 -0.01∗Y -5.25∗Y -1.10∗Y -0.02 -0.04∗Y -15.72∗Y -3.16∗Y

TSLS.Int 0.00 -0.01 -5.20∗Y -1.08∗Y -0.02 -0.03 -15.34∗Y -3.09∗Y

DR.Noint.Noint -0.01 -0.03Y -0.01Y -0.02Y -0.03 -0.04Y -0.04Y -0.02Y

DR.Noint.Int -0.01 -0.02 0.00Y 0.00Y -0.03 -0.04 -0.24Y -0.05Y

DR.Int.Noint -0.02 -0.01Y 0.02Y -0.02Y -0.03 -0.01Y -0.03Y -0.04Y

DR.Int.Int -0.01 -0.01 0.00Y -0.01Y -0.03 -0.04 -0.03Y -0.02Y

RDR.Noint.Noint -0.01 -0.03Y -0.01Y -0.02Y -0.03 -0.04Y -0.04Y -0.04Y

RDR.Noint.Int -0.01 -0.01 -0.02Y -0.01Y -0.03 -0.04 -0.12Y -0.04Y

RDR.Int.Noint -0.01 -0.01Y -0.01Y -0.01Y -0.03 -0.05Y -0.02Y -0.02Y

RDR.Int.Int -0.01 -0.01 -0.01Y -0.01Y -0.03 -0.04 -0.03Y -0.02Y

MRDR.Noint.Noint -0.01 -0.03Y -0.01Y -0.02Y -0.03 -0.04Y -0.04Y -0.03Y

MRDR.Noint.Int -0.01 -0.01 -0.02Y -0.01Y -0.03 -0.04 -0.13Y -0.04Y

MRDR.Int.Noint -0.01 -0.01Y -0.01Y -0.01Y -0.03 -0.05Y -0.02Y -0.02Y

MRDR.Int.Int -0.01 -0.01 -0.01Y -0.01Y -0.03 -0.04 -0.03Y -0.02Y

Model for Z 2 2 2 2 2 2 2 2

Model for W 1 1 1 1 2 2 2 2

Model for Y 1 2 3 4 1 2 3 4

TSLS.Noint -0.02 1.62∗Y -1.86∗Y 0.43∗Y 0.00 3.04∗Y -3.57∗Y 0.78∗Y

TSLS.Int -0.02 -0.02 -7.73∗Y -1.51∗Y -0.01 -0.02 -20.06∗Y -3.88∗Y

DR.Noint.Noint -0.02Z 1.65∗Y Z -0.46∗Y Z 0.73∗Y Z 0.01Z 3.14∗Y Z -0.88∗Y Z 1.37∗Y Z

DR.Noint.Int -0.02Z -0.02Z -6.17∗Y Z -1.18∗Y Z -0.02Z -0.03Z -16.57∗Y Z -3.15∗Y Z

DR.Int.Noint -0.08 -0.05Y 0.32Y 0.00Y -0.01 0.02Y 0.01Y -0.02Y

DR.Int.Int -0.03 -0.03 -0.01Y -0.01Y -0.04 -0.05 0.01Y -0.04Y

RDR.Noint.Noint -0.02Z 1.65∗Y Z -0.36∗Y Z 0.81∗Y Z 0.00Z 3.20∗Y Z -0.74∗Y Z 1.46∗Y Z

RDR.Noint.Int -0.02Z -0.04Z -4.82∗Y Z -0.72∗Y Z -0.02Z -0.02Z -9.73∗Y Z -1.66∗Y Z

RDR.Int.Noint -0.03 -0.04Y -0.01Y -0.01Y -0.04 -0.06Y 0.01Y -0.04Y

RDR.Int.Int -0.03 -0.03 -0.01Y -0.01Y -0.04 -0.05 0.01Y -0.04Y

MRDR.Noint.Noint -0.02Z 1.65∗Y Z -0.36∗Y Z 0.81∗Y Z 0.00Z 3.20∗Y Z -0.74∗Y Z 1.46∗Y Z

MRDR.Noint.Int -0.02Z -0.04Z -4.84∗Y Z -0.72∗Y Z -0.02Z -0.02Z -9.80∗Y Z -1.67∗Y Z

MRDR.Int.Noint -0.03 -0.04Y -0.01Y -0.01Y -0.04 -0.06Y 0.01Y -0.04Y

MRDR.Int.Int -0.03 -0.03 -0.01Y -0.01Y -0.04 -0.05 0.01Y -0.04Y

E(Yi − Wiα|Xi) was linear without interactions (model for Zi=1, model for
Wi= 1 or 2, model for Yi=1) so that the TSLS estimators were using correct
outcome models and the doubly robust estimators were using correct models
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for E(Zi|Xi) and for the outcome, then all the estimators had small bias, but
the TSLS estimators had about 14-25% smaller RMSEs.

2. When the outcome model for TSLS was incorrect but the model for E(Zi|Xi)
was correct for a doubly robust estimator with the same incorrect outcome
model as the TSLS estimator, then the doubly robust estimator was substan-
tially better than the TSLS estimator. For example when the outcome model
for Yi was Model 3 (E(Yi −Wiα|Xi) = eXi1 + eXi2 + eXi1+Xi2), then the TSLS
estimators had RMSEs that were 2.5-15 times as large as the corresponding
doubly robust estimators that used a correct model for E(Zi|Xi) (where both
the doubly robust estimator and the TSLS estimator used the same incorrect
model for E(Yi − Wiα|Xi)). The results were similar when the model for Yi

was Model 4, (E(Yi − Wiα|Xi) = eXi1 + Xi2 + 0.6Xi2e
Xi1).

3. The regression doubly robust estimator provided small to moderate gains over
the corresponding basic doubly robust estimator when E(Yi − Wiα|Xi) was
misspecified but E(Zi|Xi) was correctly specified. For example, when Yi fol-
lowed Model 3 and the model for E(Zi|Xi) was correctly specified (Model 1
for all the regression doubly robust estimators and Model 2 for RDR.Int.Noint
and RDR.Int.Int), then the RMSEs of the basic doubly robust estimator were
3-29% larger than those of the corresponding regression doubly robust esti-
mators. On the other hand, when E(Yi −Wiα|Xi) was correctly specified but
E(Zi|Xi) was misspecified, there were cases in which the basic doubly robust
estimator had smaller RMSEs than those of the regression doubly robust esti-
mator (compare DR.Noint.Int and RDR.Noint.Int in the cases with Model 2
for Z and Model 2 for Y ). However, in other cases, the performances of these
two estimators were similar.

4. The modified regression doubly robust estimator performed very similarly to
the regression doubly robust estimator. The RMSEs of the corresponding
modified regression doubly robust and regression doubly robust estimators
were within 2% of each other in all settings considered.

5. Application

The causal effect of education on earnings is of longstanding interest in eco-
nomics (see Griliches (1977); Card (2001)). A fundamental difficulty is that ed-
ucation levels are not randomly assigned, but self-selected by individuals. Card
(1995) proposed to use the presence of college in the local community of a person
as an IV. We analyze the data used in Card’s study from the National Longi-
tudinal Survey (NLS) of Young Men, and illustrate the performances of various
procedures.

The NLS of Young Men began in 1966 with 5,525 men of age 14–24 and
continued with follow-up interviews through 1981. We focus on the analytical
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Table 4. Estimates and standard errors of the return of schooling based on
the data set of Card (1995). RIV stands for the estimator of Robins (1994),
DR is the doubly robust estimator, RDR is the regression doubly robust
estimator, and MRDR is the modified regression doubly robust estimator.
See Section 5 for details.

OLS TSLS RIV DR RDR MRDR
Estimate 0.075 0.132 0.150 0.131 0.167 0.131

Standard error 0.003 0.064 0.087 0.070 0.175 0.074

sample in Card (1995), which comprises 3,010 men with valid education and
wage responses in the 1976 interview. The dependent variable, Yi, is log wage,
the treatment, Wi, is years of schooling, the instrument, Zi, is a binary variable
which is 1 if one resides near a 4 years college, and the measured confounding
variables, Xi, consist of a black indicator, indicators for southern residence and
residence in an SMSA in 1976, indicators for region in 1966 and living in an
SMSA in 1966, as well as experience and experience squared.

We adopt model (1.1) with M(Wi, α) = α0Wi, and estimate α with the six
procedures. The first procedure is OLS, we regress Y on W and X. The second
procedure is TSLS in which the set of instruments is Zi and Xi. The effect of
Xi on Yi is assumed to be linear so that F (Xi, β) = X ′

iβ. We also consider
the estimator of Robins (1994). Assume that E(Zi|Xi) = G(Xi, γ) = Φ(X ′

iγ)
(probit), estimate γ by maximum likelihood, then estimate the regression model
of Y on W using instrument Z −G(X, γ̂). We call this “RIV.” RIV is consistent
when E(Zi|Xi) = Φ(X ′

iγ) (i.e., Case 2). It does not require the assumption on
the form of F (Xi), however it is not consistent when the probit model is wrong.
Lastly, we examine three doubly robust estimators. “DR” stands for the doubly
robust estimator with F (Xi, β) = X ′

iβ and G(Xi, γ) = Φ(X ′
iγ); “RDR” is the

regression doubly robust estimator (α̂r); “MDRD” is the modified regression
doubly robust estimator (α̂rm) discussed in Remark 3. All standard errors are
computed by bootstrap (including those for OLS and TSLS). The number of
bootstrap repetition is 100. Ox 5.10 (see Doornik (2007)) is used to compute the
statistics.

Table 4 summarizes the estimation results. The OLS estimate of the return
to years of schooling is 7.5% while the TSLS estimate is 13.2%. These results
are also found in Card (1995). The estimate from Robins’ method is 15%. The
doubly robust estimate is 13.1% and is similar to that of TSLS. This indicates
that the specification of F may be appropriate and Case 1 in the previous section
seems to be more appropriate than Case 2. The regression doubly robust estimate
is 16.7%, high compared with other estimates, but with a large standard error.
We note that although the regression doubly robust estimator is more efficient
than the doubly robust estimator when the model for E(Zi|Xi) is correct (Case
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2), it is not clear which is more efficient when the model for F (Xi) is correct
(Case 1). A high standard error of the regression doubly robust estimator is
another indication of the appropriateness of the model for the effect of Xi on
Yi. The value of the modified regression doubly robust estimator, which may
be more stable than the regression doubly robust estimator, is 13.1%, close to
the doubly robust estimate, and its standard error is also similar to that of the
doubly robust estimator.

This example illustrates a situation in which we can develop two different
assumptions to estimate the effect of education. These assumptions lead to dif-
ferent estimates (TSLS and Robins’ method). The doubly robust estimator is
consistent if either one of the assumptions is correct and it is more reliable. More-
over, the doubly robust estimate is useful to see which assumption looks to be
more appropriate.

6. Conclusion

For IV regression, we have presented two doubly robust estimators that
provide consistent estimates of the effects of treatments when either the rela-
tionship between the measured confounders and the outcome is specified cor-
rectly or the relationship between the measured confounders and the instru-
ments is specified correctly. Asymptotic analysis and a simulation study show
that the doubly robust estimators offer large benefit over TSLS when the model
for E{Yi − M(Wi, α)|Xi} is misspecified but the model for E(Zi|Xi) is cor-
rectly specified, while suffering at most a moderate loss when the model for
E{Yi − M(Wi, α)|Xi} is correctly specified. The basic doubly robust estimator
is as easily calculated with standard software as the usual TSLS estimator. We
suggest that a doubly robust estimator should be routinely used in place of TSLS.

We also suggest that the possibility of doubly robust estimation in other
econometric models should be investigated in future research. As discussed in
the introduction as well as Robins and Rotnitzky (2004), there are models to
which the doubly robust approach can be extended, but there are also models for
which it is not possible. It is then of interest to examine in which models doubly
robust estimation is possible.
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Appendix: Proofs

Proof of Theorem 1. We first proves consistency by following the standard
argument for the consistency of the GMM estimator. Let

H(α, β, γ) = E

(
{Yi − M(Wi, α) − F (Xi, β)}{Zi − G(Xi, γ)}

{Yi − M(Wi, α) − F (Xi, β)}f(Xi, β)

)
.

First, we see that if there exists a unique (α∗, β∗) such that H(α∗, β∗; γ∗) = 0,
then (α̂, β̂) →p (α∗, β∗). This part can be proven by slightly modifying Theorem
2.6 of Newey and McFadden (1994). In particular, since our objective function in-
volves the pre-estimated parameter γ, we need to show that supα,β ||Ĥ(α, β; γ̂)−
H(α, β; γ∗)|| →p 0. (Note that a simple application of Theorem 2.6 of Newey and
McFadden (1994) requires that supα,β ||Ĥ(α, β; γ∗)−H(α, β; γ∗)|| →p 0.) We see
that

||Ĥ(α, β; γ̂) − H(α, β; γ∗)||
≤ ||Ĥ(α, β; γ∗) − H(α, β; γ∗)|| + ||γ̂ − γ∗|| · ||∂Ĥ(α, β; γ̄)||,

where γ̄ is between γ̂ and γ∗. Thus, under the assumptions, it holds that
supα,β ||Ĥ(α, β; γ̂) − H(α, β; γ∗)|| →p 0. The rest of the proof of this part is
identical to that of Theorem 2.6 of Newey and McFadden (1994).

Next, we show that the α∗ that uniquely solves H(α, β; γ∗) = 0 with some
β is in fact equal to α0.

Case 1: F (Xi) = F (Xi, β0).

H(α, β; γ∗)

= E

(
{−M(Wi, α) + M(Wi, α0) − F (Xi, β) + F (Xi, β0)}{Zi − G(Xi, γ

∗)}
{−M(Wi, α) + M(Wi, α0) − F (Xi, β) + F (Xi, β0)}f(Xi, β)

)
.

This is zero only when α = α0 and β = β0, by Assumptions 2 and 4.

Case 2: E(Zi|Xi) = G(Xi, γ0).

H(α, β; γ∗) = E

(
{−M(Wi, α) + M(Wi, α0)}{Zi − G(Xi, γ0)}

{−M(Wi, α) + M(Wi, α0) − F (Xi, β) + F (Xi)}f(X,β)

)
.

This is zero only when α = α0 and β = β∗, by Assumptions 2 and 5.

Case 3: F (Xi) = F (Xi, β0) and E(Zi|Xi) = G(Xi, γ0). The result of this case
is obtained as a corollary of either Case 1 or Case 2.
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Therefore, we have α̂ →p α0.
We derive the asymptotic distribution by following the argument as given in

Newey and McFadden (1994, pp.2148-2149). Let D̂(α, β; γ)=∂Ĥ(α, β; γ)/∂(α′,
β′) and D(α, β; γ) = ∂H(α, β; γ)/∂(α′, β′). Noting that, under the assumptions,
(α̂′, β̂′) →p (α′

0, β
∗′), D̂(α̂, β̂; γ̂) →p D(α0, β

∗, γ∗), Ω̂ →p Ω, ∂Ĥ(α0, β
∗; γ̄)/∂γ′

→p ∂H(α0, β
∗; γ∗)/∂γ′ and

√
N(γ̂ − γ∗) =

∑N
i=1 ψi/

√
N + op(1), we can write

√
N

((
α̂

β̂

)
−

(
α0

β∗

))
= −

(
D(α0, β

∗; γ∗)′ΩD(α0, β
∗; γ∗)

)−1
D(α0, β

∗; γ∗)′Ω

× 1√
N

N∑
i=1

(
Hi +

∂H(α0, β
∗; γ∗)

∂γ′ ψi

)
+ op(1),

where

Hi =
(
{ui + F (Xi) − F ∗

i }vi(γ∗)
{ui + F (Xi) − F ∗

i }f∗
i

)
.

The rest of the proof derives the formulas of the terms in the above expression
in each case.

Case 1: F (Xi) = F (Xi, β0). In this case, we have β∗ = β0. First,

∂H(α0, β0; γ∗)
∂γ′ = E

(
−uig(Xi, γ

∗)
0

)
= 0,

which implies that the estimation of γ does not affect the asymptotic distribution
of (α̂, β̂). We also have

D(α0, β0; γ∗) = E

(
−vi(γ∗)m′

i −vi(γ∗)f ′
i

−fim
′
i fif

′
i

)
and Hi =

(
uivi(γ∗)

uifi

)
.

Case 2: E(Zi|Xi) = G(Xi, γ0). In this case, we have γ∗ = γ0, and each term is

∂H(α0, β0; γ∗)
∂γ′ = −E

(
−{F (Xi) − F ∗

i }g′i
0

)
,

D(α0, β
∗; γ0) = E

(
−vim

′
i −vif

∗′
i

−f∗
i m′

i −f∗
i f∗′

i

)
, and Hi =

(
uivi + {F (Xi) − F ∗

i }vi

{ui + F (Xi) − F ∗
i }f∗

i

)
.

Case 3: F (Xi) = F (Xi, β0) and E(Zi|Xi) = G(Xi, γ0). The result here is
obtained as a corollary of either Case 1 or Case 2.

Proof of Theorem 2. We use the formula for the semiparametric efficiency
bound given by Theorem 6.1 of Ai and Chen (2003). The efficiency bound for
estimation of α in Model (1.4) is the inverse of

E
[
{E(mi|Xi, Zi) − h∗(Xi)}{E(u2

i |Xi, Zi)}−1{E(mi|Xi, Zi) − h∗(Xi)}′
]
,
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where h∗ solves

min
h∈F

E
(
[−E{−m(X,α0)|X,Z}+h] E(u2|X,Z)−1 [−E{−m(X,α0)|X,Z} + h]′

)
,

F is the set of functions of X that are square integrable and twice differentiable.
The formula for h∗ is given in the theorem.

Proof of Theorem 3. The proof is similar to that of Theorem 1.
We first show consistency. We see that if there is unique α∗ that solves the

limit of the estimating equation, then we have α̂r →p α0. We note that there
exists β∗ such that β̃ →p β∗ and

√
N(β̃−β∗) = Op(1). We also note that β∗ = β0

when F (Xi) = F (Xi, β0). Let

Ai(α) = {Yi − M(Wi, α)}vi(γ∗) −
[
E{M(Wj , α0) − M(Wj , α) + F (Xj)}g∗′j

]
ψi,

Bi = F ∗
i vi(γ∗) −

{
E(F ∗

j g∗′j )
}

ψi,

Υ(α) =
{
E(BiB

′
i)

}−1
E{BiAi(α)′}.

Then, the estimating equation for α converges to

E[{Yi − M(Wi, α)}vi(γ∗)] − Υ(α)′E{F ∗
i vi(γ)}

= E[{M(Wi, α0) − M(Wi, α) + F (Xi)}vi(γ∗)]
−E{Ai(α)B′

i}
{
E(BiB

′
i)

}−1
E[F ∗

i vi(γ∗)].

Case 1: F (Xi) = F (Xi, β0). Since β∗ = β0, we have Fi = F ∗
i = F (Xi). This

implies that the limit of the estimating equation is

E[{M(Wi, α0)−M(Wi, α)}vi(γ∗)]−E[{Ai(α)−Bi}B′
i]E(BiBi)−1E{F ∗

i vi(γ∗)},

Noting that E[{Ai(α) − Bi}B′
i] = 0 when α = α0, the limit of the estimating

equation is zero when α = α0.

Case 2: E(Zi|Xi) = G(Xi, γ0). In this case, vi(γ∗) = vi(γ0) = Zi − E(Zi|Xi)
and the limit of the estimating equation is

E[{M(Wi, α0) − M(Wi, α)}vi(γ0)],

which is zero only if α = α0

Case 3: F (Xi) = F (Xi, β0), E(Zi|Xi) = G(Xi, γ0). Case 3 is a special case of
Case 1 or 2.

First consider asymptotic normality in Case 1. We take the dimension of α

and Zi to be 1 (pα = 1) for simplicity. Let

H̃(α) =
1
N

N∑
i=1

{Yi − M(Wi, α)}vi(γ̂) − Υ̂(α)′
1
N

N∑
i=1

F (Xi, β̃)vi(γ̂).
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The estimator α̂r satisfies H̃(α̂r) = 0. By applying a Taylor expansion around
α0 and rearranging the formula, we obtain

√
N(α̂r − α0) = −

{
∂H̃(α̃)

∂α′

}−1 √
NH̃(α0),

where α̃ is between α̂r and α0.
We have that

∂H̃(α̃)
∂α′ = − 1

N

N∑
i=1

m(Wi, α̃)vi(γ̂)

− 1
N

N∑
i=1

Â
(1)
i (α̃)B′

i

(
1
N

N∑
i=1

BiB
′
i

)−1
1
N

N∑
i=1

F (Xi, β̃)vi(γ̂),

where

Â
(1)
i (α) = −m(Wi, α)vi(γ̂) +

{
1
N

N∑
j=1

m(Wj , α)g(Xj , γ̂)′
}

ψ(Xi, Zi, γ̂).

Noting that β̃ →p β0 in this case, we have

∂H̃(α̃)
∂α′ →p −E{mivi(γ∗)}

−E
([

mivi(γ∗) + E{mjg
∗′
j }ψi

]
B′

i

) {
E(BiB

′
i)

}−1
E{F ∗

i vi(γ∗)}.

For the asymptotic distribution of
√

NH̃(α0), we have that

√
NH̃(α0) =

1√
N

N∑
i=1

uivi(γ∗) +
1√
N

N∑
i=1

{F (Xi) − Γ̂F (Xi, β̃)}vi(γ̂)

− 1√
N

N∑
i=1

{uivi(γ∗)B′
i + uig

∗
i E(ψjB

′
j)}E(BjB

′
j)

−1E{F (Xj)vj(γ∗)} + op(1),

where

Γ̂ =
1
N

N∑
i=1

B̂∗
i B̂′

i

{
E(BjB

′
j)

}−1
,

B̂∗
i = F (Xi)vi(γ̂) −

{
1
N

N∑
j=1

F (Xj)g(Xj , γ̂)′
}

ψ(Xi, Zi, γ̂).
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Now we have

1√
N

N∑
i=1

{B̂∗
i B̂′

i − E(BjB
′
j)}

=
1√
N

N∑
i=1

{BiB
′
i − E(BjB

′
j)} + E(BiB

β
i )
√

N(β̃ − β0)

+E(BiB
γ
i )
√

N(γ̂ − γ) + op(1),

where

Bβ
i = fivi(γ∗) − E(fig

∗
i )ψi, Bγ

i = 2
{

Fig
∗
i − E

(
Fi

∂g∗i
∂γ

)
ψi − E(Fig

∗
i )

∂ψi

∂γ

}
.

Note that in this case,
√

N(β̃ − β0) =
∑

βiui/
√

N , where

βi =
{
E(fif

′
i) − E(fiZ

′
i)E(miZ

′
i)
−1E(mif

′
i)

}−1 {fi − E(fimi)E(miZi)−1Zi}.

It therefore follows that

1√
N

N∑
i=1

{F (Xi) − Γ̂F (Xi, β̃)}vi(γ̂)

=
1√
N

N∑
i=1

{F (Xi) − F (Xi, β̃)}vi(γ∗) − 1
N

N∑
i=1

F (Xi, β̃)vi(γ∗)
√

N(Γ̂ − 1)

=
[
−E{vi(γ∗)f ′

i} − E{F (Xi)vi(γ∗)}E(BiB
′
i)
−1E(BiB

β
i )

] 1√
N

N∑
i=1

βiui

−E{F (Xi)vi(γ∗)}E(BiB
′
i)
−1

[
E(BiB

γ
i )

1√
N

N∑
i=1

ψi

+
1√
N

N∑
i=1

{BiB
′
i − E(BjB

′
j)}

]
.

To sum up,
√

NH̃(α0) =
∑N

i=1 ai/
√

N where

ai = uivi(γ∗) − {uivi(γ∗)B′
i + uig

∗
i E(ψjB

′
j)}E(BjB

′
j)

−1E{F (Xj)vj(γ∗)}

+
[
−E{vj(γ∗)f ′

j} + E{F (Xj)vj(γ∗)}E(BiB
′
i)
−1E(BiB

β
i )

]
βiui

+E{F (Xj)vj(γ∗)}E(BjB
′
j)

−1E(BjB
γ
j )ψi

+E{F (Xj)vj(γ∗)}E(BjB
′
j)

−1{BiB
′
i − E(BjB

′
j)}.

Therefore the φi and Σ in the theorem are given by φi = −{plim∂H̃(α̃)/∂α′}−1ai

and Σ = E(φiφ
′
i).
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For Case 2, let H̃(α) be defined as in the proof of Theorem 1. As in Case 1,
we consider the limit of ∂H̃(α̃)/∂α′ and the asymptotic distribution of

√
NH̃(α0).

First, noting that E(F ∗
i vi) = 0, we have

∂H̃(α̃)
∂α′ →p −E(mivi).

Then

√
NH̃(α0)=

1√
N

N∑
i=1

{F (Xi) + ui}{vi − g(Xi, γ0)′(γ̂ − γ0)}

−Υ(α0)′
1√
N

N∑
i=1

{F (Xi, β
∗)+f(Xi, β

∗)(β̃−β∗)}{vi−g(Xi, γ0)′(γ̂−γ0)}

+op(1).

Observing that the terms involving β̃ are op(1), we get

√
NH̃(α0) =

1√
N

N∑
i=1

uivi +
1√
N

N∑
i=1

F (Xi)vi − E{F (Xi)gi}
1√
N

N∑
i=1

ψi

−E(AiB
′
i)E(BiB

′
i)
−1

{
1√
N

N∑
i=1

F ∗
i vi + E(F ∗

i g′i)
1√
N

N∑
i=1

ψi

}
+op(1)

=
1√
N

N∑
i=1

uivi +
1√
N

N∑
i=1

{
Ai − E(AjB

′
j)E(BjB

′
j)

−1Bi

}
+ op(1).

Then

√
N(α̂r − α0) =

1√
N

N∑
i=1

{E(mjvj)}−1 {uivi + Ai − E(AjB
′
j)E(BjB

′
j)

−1Bi}.

The result for Case 3 follows from the results for Case 1 and Case 2.
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