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Abstract: Missing data are common in medical and social science studies and often
pose a serious challenge in data analysis. Multiple imputation methods are popular
and natural tools for handling missing data, replacing each missing value with a set
of plausible values that represent the uncertainty about the underlying values. We
consider a case of missing at random (MAR) and investigate the estimation of the
marginal mean of an outcome variable in the presence of missing values when a set
of fully observed covariates is available. We propose a new nonparametric multiple
imputation (MI) approach that uses two working models to achieve dimension re-
duction and define the imputing sets for the missing observations. Compared with
existing nonparametric imputation procedures, our approach can better handle co-
variates of high dimension, and is doubly robust in the sense that the resulting
estimator remains consistent if either of the working models is correctly specified.
Compared with existing doubly robust methods, our nonparametric MI approach is
more robust to the misspecification of both working models; it also avoids the use of
inverse-weighting and hence is less sensitive to missing probabilities that are close
to 1. We propose a sensitivity analysis for evaluating the validity of the working
models, allowing investigators to choose the optimal weights so that the resulting
estimator relies either completely or more heavily on the working model that is
likely to be correctly specified and achieves improved efficiency. We investigate the
asymptotic properties of the proposed estimator, and perform simulation studies
to show that the proposed method compares favorably with some existing methods
in finite samples. The proposed method is further illustrated using data from a
colorectal adenoma study.
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1. Introduction

Missing data are common in medical and social science studies. When the
missingness does not depend on the data values, missing or observed, the data are
called missing completely at random (MCAR) and one can perform a so-called
complete case analysis by ignoring the observations with missing values (Little
and Rubin! (2002))). In practice, the assumption of MCAR is rarely satisfied, and
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a complete case analysis can lead to biased estimation. A more realistic missing
mechanism is that the data are missing at random (MAR) (Rubinl (I987); Little
and Rubin/ (2002)) ), which means that the missing status is independent of missing
values conditional on observed covariates.

1.1. The problem

Let Y denote the outcome variable of interest with missing values, § denote
the missingness indicator, § = 0 if Y is missing and § = 1 if Y is observed, and
X = (Xi,...,X,) denote a set of fully observed covariates that are predictive
of Y or 6. Suppose (Y;,X;,0;) (i = 1,...,n) constitute an independent and
identically distributed sample from n subjects. The observed data can be written
as (0;Y;,X;,6;) (i = 1,...,n) where 6;Y; is missing when §; = 0. We consider
the estimation of u = E(Y') when Y is independent of § given X. For this type
of problems, one can use imputation methods (either single or multiple) or the
inverse probability weighting methods that are doubly robust.

1.2. Imputation methods

An imputation method replaces each missing value with one “plausible” value
(single imputation) or a set of “plausible” values (multiple imputation, MI), and
subsequently standard analysis is performed using the imputed datasets. Adjust-
ments are necessary for computing standard errors to account for the uncertainty
of the imputed values (Rubin! (I987); [Little and Rubinl (2002])). The imputation
models can be parametric (Matloffl (I981]); [Little and Rubin! (2002)), semipara-
metric (Wang, Linton, and Hardle (2004)) or nonparametric (Titterington and
Sedranskl (1989); (Cheng (1994); [Aerts et al. (2002)). Despite being efficient when
the parametric component is correctly specified, the parametric and semipara-
metric imputation methods are sensitive to model misspecifications. While a
nonparametric imputation approach is more robust to model misspecification,
a different challenge arises. Most existing nonparametric regression imputation
methods focus on the case of a single fully observed covariate. For example,
Cheng| (1994)) studied a single imputation approach that imputes missing values
with kernel estimates of the conditional mean of an outcome variable given a con-
tinuous covariate; [Aerts et al.l (2002) studied an MI approach, which was based on
the nonparametrically estimated distribution of the outcome variable conditional
on the covariate using kernel methods, among others. The main difficulty with
nonparametric imputation methods is that as the number of covariates increases,
it becomes increasingly difficult to estimate either the conditional distribution or
the conditional expectation of the outcome variable given the covariates, due to
the curse of dimensionality. In practice, performance loss for the nonparametric
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imputation methods can be substantial even when only a small number of covari-
ates are used. It is important to have a nonparametric approach that alleviates
the curse of dimensionality in the presence of multiple covariates.

1.3. Doubly robust methods

The earliest doubly robust method for missing data is the calibration estima-
tor (CE), also known as the the generalized regression estimator (Cassel, Sarndal,
and Wretman| (1970)), which extended the inverse probability weighting method
(Horvitz and Thompson| (1952)). The CE uses two working models based on
the observed covariates: one model predicts the missing values, and the other
model predicts the missing probabilities. Specifically, the estimator is a result of
expressing the mean of Y as a sum of prediction and inverse probability-weighted
prediction errors,

Y - E(Y|X))
p=EEY|X)] + E[(STX)]’

where 7(X) = E(§|X). Plugging the estimate of each parameter into the expres-
sion leads to

bhop = nt iﬁ + n~! Zn:&w,(Yz — Yz) =n! iﬁ + n~t i 0;w;€;, (1.1)
=1 =1

i=1 i=1

where Y is the prediction based on a regression model for E(Y|X) which is fit us-
ing the complete cases, w = 1/7(X;) is the inverse of the estimated probabilities
of being observed that is often computed using a regression model for 7(X), and
¢ =Y —Y. On the right hand side (RHS) of (I.T)), the first term is equivalent to
imputing all Y values using a model for F(Y|X), and the second term is a sum
of inverse probability-weighted prediction errors due to the model for E(Y|X)
based on the weights estimated using 7(X). If the model for F(Y|X) is correctly
specified, then the second term converges to 0 and ficp converges to u. If the
model for 7(X) is correctly specified, then one can show that the second term
consistently removes any bias that may be associated with the first term and
hence ficg still converges to p. As a result, ficg is consistent if either of the two
models is correctly specified.

Other doubly robust estimators have been introduced that use a parametric
model to impute missing values and inverse probability-weighted prediction errors
to correct potential bias that is associated with the parametric model for imputa-
tion. In particular, doubly robust methods were extended to regression settings
(Robins, Rotnitzky, and Zhao| (1994))) and repeated measurement data (Robins,
Rotnitzky, and Zhao| (1995)). In the context of estimating a population mean,
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Qin, Shao, and Zhang| (2008)) and [Cao, Tsiatis, and Davidian| (2009) proposed
two elegant approaches to improve the efficiency of the CE when the imputation
model is incorrectly specified, and their methods achieve the semiparametric ef-
ficient lower bound when both models are correctly specified. During the review
process, a recent related work by [Hu, Follmann, and Qin| (2010) was brought to
our attention; they extended the CE estimator through the use of a nonparamet-
ric imputation model, where the dimension of the covariates is reduced through
a parametric working index.

The double-robustness property of the CE and its extensions, though attrac-
tive, has its limitations. If one working model is misspecified, especially if it is
seriously misspecified, a doubly robust estimator, although consistent, can have
increased bias or variance in small samples. When both models are misspecified,
a doubly robust estimator can underperform other estimators that are not doubly
robust (Kang and Schafer (2007)). In addition, the inverse probability weighting
step can be sensitive to missing probabilities that are close to 1. Therefore, it is
desirable to develop an inference procedure, that reduces the impact of the mis-
specification of both working models, allows us to select and rely more heavily
on the working model that is correctly specified, and is less sensitive to missing
probabilities that are close to 1.

1.4. Doubly robust multiple imputation

We propose a new nonparametric MI method, and the method alleviates
the curse of dimensionality, that limits the usefulness of existing nonparametric
imputation methods. The proposed method is doubly robust, and differs from
the CE and its extensions in that it does not use inverse-probability weighting.
Our method has several advantages. First, it is more robust to two misspecified
working models, being nonparametric. Second, it lessens the adverse impact
of extreme missing probabilities. The method avoids the inverse probability
weighting and relies only on imputation based on two working models; since one
imputation creates only one pseudo observation for each observation with missing
values, its impact is considerably less than that of inverse probability weighting in
the presence of extreme missing probabilities. We also propose a new sensitivity
analysis for empirically evaluating the validity of working models through varying
weights that are used to define similarity between observations based on two
working models. We note that for the CE and its related estimators the existing
sensitivity analyses primarily focus on the impact of non-ignorable missingness
(Rotnitzky, Robins, and Scharfstein| (1998); [Scharfstein, Rotnitzky, and Robins
(1999)), and one that is similar to ours is neither available nor obvious. The
proposed sensitivity analysis allows investigators to select optimal weights so that
the resulting estimator relies completely or more heavily on the working model
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that is likely to be correctly specified to achieve improved efficiency. Furthermore,
the use of two weights allows investigators to incorporate their prior beliefs on the
validity of two working models. In summary, our approach is intended to combine
the strengths of nonparametric imputation methods and the CE method, and to
overcome their respective limitations. Our main goal is not to achieve a gain
in efficiency; thus, we primarily focus on comparing our approach with existing
imputation methods and the CE.

The rest of the paper is organized as follows. In Section 2, we present the
doubly robust nonparametric MI approach and its sensitivity analysis. In Section
3, we evaluate finite sample performance in simulation studies. In Section 4, we
illustrate the proposed approach using data from a colorectal adenoma study.
We conclude with some discussion in Section 5.

2. The Methodology

We first introduce the working models, then describe in detail the doubly
robust nonparametric multiple imputation procedures.

2.1. Working models and predictive scores

In order to use the fully observed X to define an imputing set for each
observation with missing Y, we consider two working models. Based on the idea
of predictive mean matching (Rubin| (1987))), the first model is for the outcome
Y?

E(Y‘Xo) = ll(XmB)a (2'1)

where [1 is a specified real-valued smooth function, X, is a set of p; observed
covariates, and 8 = (f,. .. ,ﬁpl)T is a vector of regression coefficients. Here [y is
considered a predictive score of Y, for example, one can use the linear regression
model, 1;(X,,8) = BTX,. When the working model (ZI)) for Y is correctly
specified, an imputing set for each missing Y defined through the predictive score
can lead to an improvement in efficiency when the missing mechanism is MCAR,
ie, E(6|X,Y) = E(J), and a reduction in bias when missing mechanism is MAR,
ie., F(0|X,Y) = E(§|X). If the working regression model for Y is misspecified,
bias may remain even under a MAR mechanism. Hence, based on the idea of
propensity score matching (Rosenbaum and Rubinl (1983])), we take a model for
predicting missingness to be

E(6]Xm) = 12(Xm, @), (2.2)

where [ is a specified real-valued smooth function, X,, is a set of py observed
covariates, and o = (aq, .. .,am)T is a vector of regression coefficients. Here
lo is considered a predictive score of §, for example, one can use the logistic
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regression model, I3(X,,, ) = exp(a’X,,)/(1 + exp(a’X,,)). We note that
more complicated models can be used in (2.1]) and (2.2)). For instance, when p;
and po are large, a Lasso regression (Tibshirani (1996))) can be used for Model
(210, and a generalized boosted model (GBM) (McCaffrey, Ridgewar and Morral
(2004)) can be used for Model (2:2)). The functions [1(X,) and l2(X,,) may
include higher order terms of X. We denote the estimators based on (2.1]) and
22) by f‘i and ¢&; throughout, B and & are assumed to be y/n-consistent M-
estimators or Z-estimators (van der Vaart (I998)). The incorrect specification
of working models can be in the functional forms of {; and Iy or in the set of
covariates included. In practical applications, it is difficult to correctly choose
a model for E(Y|X,) = [1(X,,8) and there is no guarantee that the assumed
model is correct. Our hope is that the proposed method can improve estimation
efficiency if the assumed model is reasonably good, though not perfect.

Let 71 = 11(Xo,8) and Zy = [5(X, ). After (2.I) and ([2.2) are fit us-
ing methods such as the maximum likelihood estimation or estimation equa-
tions that achieve y/n-consistency, the estimated predictive scores are (21, Zg) =
{li(Xo,, B), l2(Xym, &) }. Alternatively, one could take the predictive scores as a
monotonic transformation of (Z1, Z3). For example, if lo(X,,, @) = exp(a’ X,,)
/(1 + exp(a’X,,)), the linear combination a?X,, could be taken as the pre-
dictive score for . The proposed strategy summarizes the multi-dimensional X
with a two-dimensional predictive score, Z = (Z1, Z3). In the presence of only
one predictive covariate, the predictive score is the covariate itself, and there is
no need to fit the two working models.

2.2. Multiple imputation (MI) estimator

To stabilize the imputation, each predictive score is standardized by sub-
tracting its mean and dividing by its standard deviation; the resulting score is
denoted by S = (S1,52). Given S, for each subject with missing Y we create
an imputing set that consists of observed responses from subjects who are simi-
lar. Specifically, S is used to select the imputing set by calculating the distance
between subjects as

(i, ) = {wolS1() = S$1G)? + wnlS2(6) = S22}, (2:3)
where w, and wy, are non-negative weights for the predictive scores from (2.]) and
[22), respectively, satisfying w, + wy, = 1. This choice of the weights (wo,wp,)
can reflect the confidence of investigators on each working model. While the
double-robustness property no longer holds when w, or wy, is 1, such weights are
useful in sensitivity analysis, as will be illustrated in Section 2.5. For each subject
i with missing Y, the distance d(i, j) is used to define a set of a neighborhood,
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denoted by Rx(7), that consists of K subjects who have the smallest K distances
(d) from subject i.

Given the imputing sets, we propose a multiple imputation (MI) estimator
for the parameter of interest, p. In the Ith imputation, given the Ry (i) for each
subject ¢ with missing outcome, a Y;* is randomly drawn with equal probability
from R (i) to replace the missing Y for subject i. We repeat this step for all
subjects with missing Y, and let {Y;(I) = 6;Y; + (1 —6;,)Y;*(1) (i = 1,...,n)} and
(1) = 31, Yi(l) be the I** imputed data set and the associated mean estimator,
respectively. The imputation scheme is independently repeated L times to obtain
L imputed data sets, and the subsequent analysis of multiple imputed data sets
follows well-established rules in [Rubin! (1987) and [Little and Rubin! (2002). The

final MI estimator of p is
L
. 1 .
vt = > (). (2.4)
=1

We refer to this method as M I(K,w,,wm), where K is the number of the nearest
neighbors, and w, and w,, are the weights used to define the distance in ([2.3)).

2.3. Theoretical properties of MI estimator

We set forth the asymptotic properties of the proposed MI estimator as
n — oo and L — oo; a sketch of the proofs is provided in Appendix. Let —,
denote convergence in probability.

Proposition 1. Under Conditions (B1) and (B2) in Appendiz, there exist 3°
and o such that B3 —p B° and & —p al.

Proposition 1 implies that the limits of ,3 and & exist even if both work-
ing models are misspecified. When the working models (ZI) and (22) are
correctly specified, then 8° and a® are the true parameter values. Take the
true predictive scores evaluated at the limits of 3 and & as Z° = (29, 29)) =

{11(Xo,8°%), 12(Xm, a®)}.

Proposition 2. IfY is independent of 0 conditional on X and if either (21I) or
22) is correctly specified, then E(Y|5,Z°) = E(Y|Z°).

Note that the result in Proposition 2 is weaker than the conditional indepen-
dence between Y and ¢ given Z, as (2] is postulated on the mean of Y only,
not on the distribution of Y.

We consider here the multiple imputation estimator computed using Z° in-
stead of Z, denoted by (18- Take u(Z") = E(Y|Z"), n(Z°) = Pr(§ = 1|Z°), and
02(Z°) = var(Y|Z°).
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Theorem 1. Under Conditions (A1)—(A3) in Appendiz, if w, and w, are posi-
tive and either 1)) or [Z2) is correctly specified, \/n(iS;;—p) has an asymptotic
normal distribution with mean 0 and variance

2 2 2 2
oy = 01 + 05+ 03 + 2093,

where
o2 = var[(Z°)], o2 = E [var (5{Y - u(Z%)}/2°)] |
— o (Z0V12
03=FE [HW(Z(OZ)Q)}UW [6{y — M(ZO)}|ZO]] ,
and
— (2
o3 =F [17r(z(()z))var [6{Y — ,u(ZO)}|ZO]] :

Theorem 1 implies that 19,; is doubly robust and achieves a \/n convergence
rate. We note that the results in Theorem 1 hold for all fixed positive weights;
this is analogous to the results using kernel methods (Cheng] (1994); [Aerts et al.
(2002))): the asymptotic results do not depend on the specific form of a kernel
function. In finite samples, the impact of varying weights can be appreciable, as
seen later in simulation studies. In Theorem 1, we do not need to specify the
full conditional distribution of ¥ given X in (2), and Y can be continuous or
discrete. Given additional conditions, one can simplify the asymptotic variance
in Theorem 1.

Corollary 1. If w, and wy, are positive and either (Z1) or (Z2) is correctly
specified, and if Y is independent of § given Z° or E(Y|5,Z°) = E(Y|Z°) and
E(Y?|6,Z°% = E(Y?|Z°%), /n(i8;; — 1) is asymptotically normal with mean 0
and variance o5;; = var[u(Z°)] + E[o?(Z°)/n(Z)].

Two remarks are in order. First, when a monotonic transformation of Z° is
defined as the predictive scores, the asymptotic results in Theorem 1 still hold.
In our numerical examples in Sections 3 and 4, predictive scores are defined as
linear combinations of the covariates (allowing possibly higher order terms of
the covariates to be included) in both the linear and logistic regression models.
Second, since B° and o are unknown in practice, we need to replace them with
their y/n-consistent estimators (B and &) to compute 7 and subsequently the MI
estimator jipsr. Using the influence functions for B and &, and similar arguments
as in the proof of Theorem 1, it is straightforward to show that fi5;; has the same
asymptotic normal distribution as in Theorem 1.

We can rewrite the asymptotic variance of j[ip;; in Corollary 1 as
n~Ywar(Y) +E[{n(Z°) "' —1}0%(Z")]). When both working models are correctly
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specified, the asymptotic variance of jip; reduces to n=t(var(Y) +E[{n(X)~! -
1}02(X)]), which is the same as the asymptotic variance of §cg as shown in
Table 1 of [Hu, Follmann, and Qin| (2010). Furthermore, when (2) is correctly
specified and (3) is incorrectly specified, one can perform sensitivity analysis as
described in Section 2.5, likely leading to a fips; that relies only on the correctly
specified working model for E(Y|X); as shown in [Tsiatis and Davidianl (2007),
this estimator is optimal and the propensity score is not needed.

As shown in Theorem 1 and Corollary 1, the formula for the asymptotic
variance is fairly complicated and involves the density functions of the estimated
predictive scores (Z) In practice, these density functions are often estimated us-
ing nonparametric methods, so the practical usefulness of the asymptotic variance
is limited in small samples, in particular. We propose a more convenient alterna-
tive for estimating the variance of the proposed estimator, the well-established
method (Rubinl (1T987); Little and Rubinl (2002) for estimating the variance of
an MI estimator through combining within-imputation and between-imputation
variances. However, it follows from [Little and Rubin| (2002) that the MI pro-
cedure in Section 2.2 is improper in the sense that it fails to incorporate the
variability of estimating ,3 and &. As a result, the standard method cannot be

directly applied.

2.4. Bootstrap multiple imputation

To overcome the difficulty of estimating the variance of fi5rr, we incorporate
a bootstrap step. In the [th imputation, it consists of the following steps.

1. Draw a random sample of equal size with replacement from the original data

set, fit models (21 and (2.2)) using this bootstrap sample, and compute S =
) o
(517,557)-

2. Compute the distance between a subject with a missing outcome, say subject 4,
and all other subjects that have an observed outcome, in the bootstrap sample
as defined above. The imputing set for subject ¢ is the nearest neighborhood
Rgl{) () consisting of K subjects in the bootstrap sample with the K smallest
distances from subject i. Draw a value Y}, (l) for subject ¢ from R;? (7).

3. Take Ypi(l) = 6,Y;i + (1 — 6;)Y3, (1), = 1,...,n, and ap(l) = >/, YBi(l)
be the I bootstrap imputed data set and the associated mean estimator,
respectively.

Repeating the bootstrap imputation L times, the final bootstrap MI estimator is

finvrs = (1/L) Y1, ip(l), which is referred to as MIB(K,we,wym). The boot-

strap MI is a proper imputation (Little and Rubin| (2002)) and hence its variance
can be readily estimated using the sum of a between-imputation and a within-
imputation component. The addition of a bootstrap step has been shown to
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allow the estimation of the variance of MI estimators in other settings (Heitjan:
and Littlel (1991))); Rubin and Schenker| (1991))). In our experience, L = 5 impu-
tations suffice to achieve good performances in finite samples. We note that the
bootstrap MI method in[Aerts et al.l (2002) uses a different bootstrap scheme that
only resamples the complete observations, whereas our bootstrap scheme allows a
resampling of the observations with missing values. In practice, non-convergence
may arise when repeatedly fitting working models, say the logistic regression
model, in bootstrap samples; when this happens, the bootstrap samples with the
non-convergence issue are discarded.

2.5. Sensitivity analysis

The choice of (wy, wy,) plays an important role in computing M 1B (K, ws, wm ),
and multiple estimates can be obtained using different weights. As a natural ex-
tension, a sensitivity analysis can be performed to evaluate the validity of (2.1])
and ([2.2)). Specifically, since MIB(K, w,,w,,) with nonzero weights are doubly
robust and the MIB(K, 1,0) and MIB(K, 0, 1) estimators are not, the differences
between MIB(K, w,, wy,) with nonzero weights, MIB(K, 1,0), and MIB(K,0, 1)
can inform on the validity of both working models, and hence provide a justi-
fication for a sensitivity analysis. For example, if the working model (21 is
correctly specified and (2.2)) is not, then one can expect a MIB(K,w,,wn,) es-
timator with nonzero weights to be similar to the MIB(K, 1,0) estimator, with
both estimators different from the MIB(K, 0, 1) estimator due to its bias. In this
case, the MIB(K, 1,0) estimator may be preferred to a MIB(K, w,, wy,) estima-
tor with nonzero weights, as the use of a misspecified working model (Z2) may
introduce extra noise to estimation. If the MIB estimates do not vary consid-
erably when changing the values of weights from one extreme (w, = 1,w,, = 0)
to another (w, = 0,w,, = 1), one might have more confidence in the results and
choose the optimal weight (w, = 1,wy,, = 0). In addition, the specification of
(wo, wm,) provides a natural way to incorporate prior beliefs on the validity of the
two working models.

3. Simulation Studies

We conducted simulations to evaluate the finite sample performance and, in
particular, the impact of incorrect specification of one or both working models
and the choice of weights (w,,ws,). The following estimators are compared:
the sample mean of observed Y values (CC); the calibration estimator (CE)
proposed by [Cassel, Sarndal, and Wretman| (1976); a parametric MI estimator
(PMI), where a regression model with the fully observed covariates is fit and
then used to draw imputes for each missing observation; the proposed bootstrap
nonparametric MI estimator (MIB) fiasrp. The CE, PMI, and MIB estimators
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involve fitting a regression model for Y, and the CE and MIB estimators also
involve fitting a regression model for 6. In our simulation studies and data
example, working models were fit using the method of maximum likelihood.

Five fully observed covariates (X = (Xi,...,X5)) were generated from in-
dependent uniform distributions on (—1,1). For the outcome of interest (Y),
two true models were considered: Model (O1) where, conditional on X, Y was
generated from a normal distribution with a mean E(Y|X) = 10 +2X; —2X5 +
3X3 — 3X4 + 1.5X5 and a variance of 9; Model (O2) where, conditional on X,
log(Y) was normal with a mean of 0.5 + 0.5X; — X9 + 1.5X3 — 2X4 + 0.5X5
and a variance of 3. For the missingness indicator (¢), two true models were
considered: Model (M1) where § was generated from a logit model, logit[Pr(§ =
11X)] = 0.5X1 — Xo + X3 — X4 + X5; Model (M2) where § was generated from
another logit model, logit[Pr(d = 1|1X)] = 0.5 +2X; —4Xs + 2X3 — 2X4 + 2X5.
Model (M1) generates missing probabilities that are mostly bounded away from
1, whereas Model (M2) generates more missing probabilities that are close to
1; specifically, the probability of being missing is greater than 0.95 in 0.5% of
observations under Model (M1) and in 15.5% of observations under Model (M2).
Simulations were conducted for combinations of the true models for Y and 4,
and the following incorrect working models were used: only three predictors, X1,
X5, and X3, were included in the working models for Y and d, denoted by Model
(O1W), (02W), (M1W), and (M2W), respectively; when the true model for Y
is Model (02), Model (O1) was also used as an incorrect working model (2.1]).
For each simulation scenario, the following measures were evaluated using 1,000
Monte Carlo data sets: the average relative bias (RB) computed using the ratio
of the bias to the absolute value of the nonzero true value; the average standard
error (SE) computed using a bootstrap method for CE and by combining the
within and between variances for PMI and MIB; the mean squared error (MSE);
the coverage rate of 95% Wald confidence intervals (CI).

The MIB estimators were computed using five different sets of values for
(Wo, wm): (1,0), (0.8,0.2), (0.5,0.5), (0.2,0.8) and (0,1). Note that MIB(K, 1,0)
is similar to the local multiple imputation estimator (LMI) (Aerts et al. (2002));
they both use only the outcome prediction model. Still, as the number of covari-
ates increases, LMI is subject to the curse of dimensionality, and MIB(K, 1,0) is
not.

The simulation results for n = 400 are reported in Tables 1—3 in which K = 3
is used for the MIB estimators. Note that the CC estimator exhibits substantial
bias in all cases. In Table 1, the true models for Y and ¢ are Models (O1)
and (M1), respectively, and the missing probabilities are moderate. When both
working models are correctly specified, the bias is negligible for all estimators
including the MIB estimators with different weighting schemes; among them, the
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Table 1. Simulation results when true models are Model (O1) for Y and (M1)
for 0 with p = 10 and n = 400. MIB(K ,w,,w;,) denotes the bootstrap MI
method using K-nearest neighbors and weights w, and w,,; L = 5 imputed
datasets were used.

Method RB(%) SD SE MSE CR(%)

cC 13.81  0.290 0.287 1.99 0.2
Correct Working Models for Both Y and §

CE -0.03  0.305 0.300 0.090 94.5

PMI 0.01 0.291 0.243 0.059 89.2

MIB(3,1.0,0.0 0.60  0.307 0.307 0.098 94.7

)

MIB(3,0.8,0.2) 0.60 0.317 0.305 0.097 93.3
MIB(3,0.5,0.5) 0.64 0.311 0.307 0.098 94.3
MIB(3,0.2,0.8) 0.68 0.314 0.310 0.101 93.6
MIB(3,0.0,1.0) 1.0 0.319 0.331 0.121 94.9

Wrong Working Model for Y only (O1W)

CE 0.02 0.343 0.362 0.131 96.2
PMI 6.68 0.295 0.245 0.506 29.2
MIB(3,1.0,0.0 6.94 0.307 0.303 0.573 44.8

)

MIB(3,0.8,0.2) 1.86 0.306 0.298 0.123 914

MIB(3, 0.5,0.5) 1.39  0.311 0.303 0.111  93.0

MIB(3,0.2,0.8)  1.10  0.311 0.310 0.108  94.7

MIB(3,0.0,1.0) 1.07 0.321 0.328 0.119 94.1
Wrong Working Model for ¢ only (M1W)

CE -0.01  0.289 0.275 0.076  93.5

MIB(3,1.0,0.0) 0.60 0.305 0.307 0.098 94.5
MIB(3,0.8,0.2) 0.84 0.308 0.297 0.095 93.1
MIB(3,0.5,0.5) 1.15 0.303 0.295 0.100 94.2
MIB(3,0.2,0.8) 1.70 0.304 0.294 0.115 90.7
MIB(3,0.0,1.0) 7.06 0.313 0.309 0.594 43.3

PMI estimator has the worst coverage rate. While the bias is negligible for all
MIB estimators with non-zero weights, the MIB method leads to an even smaller
bias when a larger weight is assigned to the working model for Y (w,). When
only the working model for Y is misspecified as Model (O1W), the PMI and
MIB(3,1,0) estimators exhibit considerable bias, both of which rely solely on the
correct specification of the working model for Y. The other four MIB estimators
and CE estimator show negligible bias. In this case, as the weight increases from
0.2 to 1 for the correct working model for J, the bias of MIB estimator decreases
slightly; these MIB estimators also have slightly lower MSE compared to the CE
estimator. Similarly, when only the working model for § is misspecified as Model
(M1W), the MIB(3,0,1) exhibits considerable bias due to its sole reliance on the
working model for §, whereas the other four MIB estimators and CE estimators
exhibit negligible bias. In this case, the CE estimator has slightly lower MSE
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Table 2. Simulation results when true models are Model (O1) for Y and
Model (M2) for §, with p = 10, and n = 400.

Method RB(%) SD SE MSE CR(%)

cC 17.47  0.256 0.259 3.119 0.0
Correct Working Models for Both

CE -0.6 1.640 0.515 0.269 91.7

PMI 0.04 0.323 0.241 0.058 87.0

MIB(3,1.0,0.0 1.80  0.365 0.375 0.173 90.0

(
MIB(3,0.5,0.5 2.04 0.420 0.396 0.198  89.3
MIB(3,0.2,0.8 2.40 0.439 0.420 0.234 88.8
MIB(3,0.0,1.0) 2.99 0.462 0.487 0.327 90.3
Wrong Working Model for Y only (O1W)

)

MIB(3,0.8,0.2)  1.83  0.396 0.375 0.174 88.6
)
)

CE -0.57  3.659 0.759 0.579 79.9
PMI 9.15 0.302 0.234 0.892 7.1
MIB(3,1.0,0.0 9.92 0.314 0.327 1.091 24.5

)
MIB(3,0.8,0.2) 430 0366 0.354 0.310 77.8
MIB(3,0.5,0.5) 3.61 0404 0.382 0.276  82.6
MIB(3,0.2,0.8) 3.13 0430 0408 0.264  86.3
MIB(3,0.0,1.0) 2.97 0.463 0.488 0.328 90.6
Wrong Working Model for § only (M2W)

CE 0.02 0377 0.334 0.112 926
MIB(3,1.0,0.0) 1.78 0.366 0.374 0.172 91.9
MIB(3,0.8,0.2) 2.30 0.381 0.355 0.179 87.8
MIB(3,0.5,0.5) 3.09 0392 0.359 0.224  84.7

( )
( )

MIB(3,0.2,0.8 4.23 0.387 0.362 0.310 78.6
MIB(3,0.0,1.0 10.72 0373 0.373 1.288 31.5

compared to the MIB estimators. A similar pattern regarding the impact of
weights on bias is also observed in Tables 2—3, which indicates that a sensitivity
analysis using different weights is useful in choosing better weighting schemes. In
addition, the impact of weights on SE is minimal for MIB estimators with nonzero
weights when the missing probabilities are moderate. In all cases considered in
Table 1, the doubly robust MIB estimators achieve similar performance in terms
of MSE when compared to the CE estimator. In addition, the doubly robust
MIB estimators show slightly larger bias and MSE when the working model for
Y is misspecified compared to when the working model for § is misspecified.

In Table 2, the true models for Y and ¢ are Models (O1) and (M2), re-
spectively. The true outcome model is the same as in Table 1, but the missing
probabilities are more extreme. Since the estimated missing probabilities are un-
stable, the performance of all estimators degrades, though to different degrees.
When both working models are correctly specified, or only the working model
for Y is misspecified, the CE estimator has considerably larger MSE than the
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MIB estimators with nonzero weights, and its SE substantially underestimates
the sampling standard deviation (SD) indicating that the CE estimate is not
stable. When only the working model for § is misspecified, the weights for CE
are stabilized while the correct working model for Y protects CE from being
inconsistent; as a result, its performance is slightly better than that of MIB es-
timators. Also in this case, the impact of weights on SE is appreciable for MIB
estimators with nonzero weights due to unstable estimated missing probabilities;
specifically, a larger weight for the predictive score for § tends to result in larger
SD. The results regarding PMI and the impact of weighting on bias are similar
to what are observed in Table 1.

Table 3 presents the simulation results when Y was generated from Model
(02), and ¢ was generated from Model (M1). When both working models are
correctly specified, the results are similar to those in Tables 1 and 2 and hence are
not included in Table 3. Two incorrect working models were used for Y: Model
(O2W) which used a wrong set of covariates, and Model (O1) which used the
correct set of covariates but assumed an incorrect mean function. In addition, we
considered a case where both working models were misspecified. Since Y does not
follow a normal distribution, we also computed the sample mean of all Y values,
which is regarded as the gold standard (GS), and the coverage rate for GS is
shown to be somewhat below the nominal level. When the working model for Y
is misspecified as Model (O2W), CE achieves satisfactory performance; when the
working model for Y is misspecified as Model (O1), CE shows appreciable bias
and larger MSE compared to the MIB estimators with nonzero weights. In both
cases, the MIB estimators with nonzero weights achieve satisfactory performance
and PMI shows substantial bias. Interestingly, the MIB(3,1,0) estimator exhibits
substantial bias when the incorrect working model (O2W) is used, whereas it
shows negligible bias when the incorrect working model (O1) is used; this suggests
that the MIB(3,1,0) estimator is robust to the misspecification of the working
model for Y if the correct set of covariates are included. As discussed previously,
the MIB method is nonparametric and only uses the predictive scores to evaluate
the similarity between subjects, hence its dependence on two working models is
weaker than that of the CE estimator. As long as the estimated predictive scores
(Z) are highly correlated with the true scores, the MIB method, say, MIB(3,1,0),
is expected to work. Similarly, when using the two incorrect working models (O1)
and (M1W), the MIB estimators with nonzero weights still achieve performances
that are comparable to GS, whereas the CE estimator shows substantial bias
and coverage well below the nominal level. When the working model for ¢ is
misspecified as Model (M1W), the CE estimator also exhibits appreciable and
greater bias compared to the results in Tables 1 and 2. We note that the coverage
rates of the CE estimator can be misleading in this case, since it usually exhibits
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Table 3. Simulation results with true model (02) for Y and (M1) for § with
@ = 8.932, and n = 400.

Method RB(%) SD SE MSE CR(%)

GS 0.87 1560 1.418 2.017 89.4
CcC 54.69  2.988 2.610 30.676 58.0
Wrong Working Model for Y only (O2W)
CE -0.98  1.638 1.523  2.327 90.2
PMI 2443 2.034 2.176  9.497 94.0
MIB(3,1.0,0.0) 19.75  2.024 1.819 6.421 93.6
MIB(3,0.8,0.2) 0.94 1.686 1.527  2.339 91.9
MIB(3,0.5,0.5) 0.23 1.660 1.510 2.281 90.5
)

(

(
MIB(3,0.2,0.8 -0.16 1.656 1.504 2.262 90.1
MIB(3,0.0,1.0)  0.01 1.658 1.530 2.341 90.9
Wrong Working Model for Y only (O1)

CE -2.99  1.947 2.102 4.490 91.3

PMI 38.61  1.605 2.267 17.034 65.1

MIB(3,1.0,0.0) -0.20 1.661 1.495 2.235 89.6

MIB(3,0.8,0.2) -1.14 1.629 1.472 2.177 89.7

MIB(3,0.5,0.5) -1.22  1.648 1.475 2.187 89.9
)

(
(

MIB(3,0.2,0.8 -1.60 1.633 1.469 2.178 88.6
MIB(3,0.0,1.0) 0.10 1.663 1.525 2.326 90.4
Wrong Working Model for 6 only (M1W)

CE 14.88 1.958 1.843 5.163 96.3
MIB(3,1.0,0.0) -0.30 1.664 1.493 2.230 90.3
MIB(3,0.8,0.2) -0.36  1.677 1.486 2.209 89.6
MIB(3,0.5,0.5) -0.21 1.658 1.482  2.197 90.2

( )
(

MIB(3,0.2,0.8 -0.09 1.653 1.483 2.199 89.6
MIB(3,0.0,1.0) 19.92  2.027 1.849 6.584 93.8
Wrong Working Models for both (O1) and (M1W)

CE 29.62 1.380 1.933 10.737 65.5

MIB(3,1.0,0.0) -0.20 1.665 1.493 2.229 90.5
MIB(3,0.8,0.2) -047 1.664 1.478 2.186 90.1
MIB(3,0.5,0.5) -0.31 1.662 1.480 2.191 89.7
MIB(3,0.2,0.8) 0.02 1.670 1.480 2.190 90.1
MIB(3,0.0,1.0) 19.78 2.035 2.035 6.530 94.1

large sample variation in addition to its appreciable bias. In this setting, the
impact of extreme missing probabilities was also examined; it is similar to what
is observed in Tables 1 and 2.

We conducted additional simulations to investigate the impact of the number
of the nearest neighbors (K) and the sample size (n). As K increases, the bias
of the MIB estimator increases and its SE decreases slightly (results not shown).
The MSE is comparable for different K’s, though K = 3 in general leads to
slightly lower MSEs. As the sample size increases, the performances of MIB and
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CE methods improve, whereas the performances of CC and PMI methods remain
unsatisfactory when the mean model for Y is misspecified.

To summarize, the proposed MIB estimators achieve similar or better perfor-
mance in all settings compared with other estimators considered in our simulation
studies. Our results suggest that it is more important to correctly specify the
working model for Y, and larger weight for the predictive score for § can lead
to larger SD for MIB estimators. Thus, it is recommended to choose larger w,
value (say, > 0.5) in the absence of prior knowledge on the working models.

4. Data Example

We illustrate the proposed method using a colorectal adenoma data set. A
colorectal polyp prevention trial was conducted at the Arizona Cancer Center,
in which data were collected from 1,192 patients who underwent removal of a
colorectal adenoma. Demographic information such as age, gender, body mass
index (BMI), and dietary information (e.g. vitamin D), based on the Arizona
Food Frequency Questionnaire (AFFQ) (Martnez et al.l (1999))), were collected
for all participants. The dietary intake based on the AFFQ is known to be subject
to measurement error. To have a more accurate measurement, an assay based on
blood /tissue samples was performed to measure the dietary intake at serum level
for a subpopulation of the 1,192 participants. In particular, 598 participants
were selected to have their serum vitamin D levels (Y) measured. For those
participants who were not selected, their serum vitamin D levels were regarded as
missing data (§ = 0). We were interested in estimating the mean serum vitamin D
level in the overall study population. While the selection for performing the assay
was not explicitly based on demographics or disease characteristics, practical
constraints in the implementation of the selection procedure may well have led
to an imbalance between those who were selected and who were not. To account
for a potential MAR mechanism, we applied the proposed method to estimating
the overall mean serum vitamin D level.

We first constructed working models for Y and §. Based on linear regression
analyses, the serum vitamin D level was shown to be significantly associated
with gender and the BMI of a patient, the number of baseline adenomas, and the
vitamin D intake derived from the AFFQ. Based on logistic regression analyses for
the missingness, its association with the number of baseline adenomas achieves
statistical significance with an estimated odds ratio (OR) 1.18 and a 95% CI
(1.04, 1.34), and its association with the gender of a patient achieves marginal
statistical significance with an estimated OR 1.27 and a 95% CI (0.99, 1.61).
Consequently, to compute the CE and MI estimators, we included the gender
and BMI of a patient, the number of baseline adenomas, and the vitamin D
intake from the AFFQ as covariates to fit a linear regression model for predicting
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Table 4. Estimation of the overall mean level of serum vitamin D for a colon
cancer study.

Method Estimate  SE 95% CI
CC 26.262 0.385 (25.508, 27.016)
CE 26.267 0.364 (25.554, 26.981)
MIB(3,1.0, 0.0) 26.133 0.315 (25.516, 26.751)
MIB(3,0.8, 0.2) 26.364 0.309 (25.759, 26.969)
MIB(3,0.5, 0.5) 26.249 0.500 (25.269, 27.229)
MIB(3,0.2, 0.8)  26.558  0.330 (25.911, 27.206)
MIB(3,0.0, 1.0) 26438  1.642 (23.220, 29.656)

serum vitamin D level, and included the patient’s gender and the number of
baseline adenomas as covariates to fit a logistic regression model for predicting
the missing probability. To compute MIB estimators with different weighting
schemes, we chose K =3 and L = 5.

The results are reported in Table 4 for CC, CE, and MIB. All methods pro-
duce a similar point estimate of the mean serum vitamin D level. The CE method
produces a lower estimate (5.4% lower) of standard error (SE) compared to the
CC analysis. The MIB method produces a lower SE (19.8% lower) compared to
the CC analysis when a small weight (e.g. 0.2) is used for the predictive score
for the missing probability. When building the working model for J, one sees
that the association between missingness and other covariates is in general weak,
i.e., ORs close to 1. Thus, it is likely that the missing data mechanism is close
to MCAR in this dataset. In addition, our results seem to indicate that the
working model for Y is approximately correct. Consequently, a larger weight for
the predictive score of the missing probability may introduce extra noise to the
estimation in a single data set, which can manifest itself in the form of higher SE,
larger bias, or both. In summary, the working model for the missing probability
is likely incorrect, whereas the working model for the outcome is likely close to
the truth. As a result, either MIB(3,0.8,0.2) or MIB(3,1,0) could be chosen as
the estimate of the overall mean serum vitamin D level.

5. Discussion

Under MAR, we have investigated a nonparametric multiple imputation ap-
proach to estimating the marginal mean of a continuous or discrete random
variable that is missing for some subjects. Working models are used to achieve
two main goals: dimension reduction and double-robustness. Compared to CE
and its related estimators, our approach has weak reliance on both working mod-
els in the sense that it only uses the estimated predictive scores to evaluate the
similarity between subjects; along the lines of [Hu, Follmann, and Qinl (2010) (in
particular, DEFINITION 1, p. 306), as long as our predictive scores Z; and Z,
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are an atom of E(Y|X) and E(d]|X), respectively, the results in Section 2 still
hold. Our approach also incorporates a bootstrap step, which provides a conve-
nient way to estimate the variance of the estimator. In addition, our proposed
sensitivity analysis allows investigators to incorporate prior beliefs on the validity
of the working models, and, more importantly, evaluate the validity of the work-
ing models, which in turn enables investigators to choose an optimal estimator.
For CE and its related estimators, a similar sensitivity analysis is lacking and it
is not obvious how to develop such a sensitivity analysis. The proposed approach
can be extended to other settings such as regression analysis in the presence of
missing data. Based on our numerical results, we recommend that investigators
always perform the sensitivity analysis and set w, to a larger value in the absence
of strong prior knowledge.

In the context of surveys, [Haziza and Beaumont/ (2007) proposed imputation
methods based on two scores that are similar to our Z. They proposed to use
a classification algorithm to partition the sample into disjoint classes and then
to impute the missing values within each class; this differs from our approach in
that our method allows the K-nearest neighbors to overlap. Their approach may
encounter difficulty when no obvious clusters exist in the data, and its theoretical
properties are unknown. We have used a K-nearest neighbor method to allow
for adaptation to the local density of the data and missing probabilities. It is a
future interest to study principled approaches for selecting K as well as additional
adaptations.
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Appendix: Proofs

Let h1(Z°) be the density function of Z°. The following regularity conditions
are stated for Theorem 1 and Corollary 1.

(A1) Y has finite first and second moments, and o, 02, 02, and o93 as defined
in Theorem 1 are finite.
(A2) K/n — 0 and K/log(n) — oc.

(A3) hi(Z") and 7(Z°) are continuous and bounded away from 0 in the compact
support of ZY.
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A.1. Proof of Proposition 1

We prove Proposition 1 for B only, since the arguments for & are similar.
The following conditions are assumed to hold for 3.

(B1) B3 is the maximizer of a strictly concave objective function, ¢,(3), or the
unique solution to a set of estimation equations, U, (3) = 0.

(B2) £,(B) (or Uy,(B)) converges almost surely to ¢(3) = E{¢,,(B3)} (or U(B) =
E{U,(B)}), uniformly in 3; ¢(3) is strictly concave with a unique maxi-
mizer 3° (or U(B) has a unique solution 8Y).

Note that Conditions (B1) and (B2) are satisfied for most regression models
including linear and generalized linear models and for many estimation equations.
In either case, it follows from arguments similar to those in Section 5.2 of lvan der
Vaart] (T998) that 3 —, 3°. As discussed in Section 5.2 of van der Vaarfl (T998),
Conditions (B1) and (B2) can be relaxed and Proposition 1 holds for most, if
not all, potential working models for Y.

A.2. Proof of Proposition 2

If (22) is correctly specified, Z9 = I5(X,,, @) is the propensity score de-
fined in [Rosenbaum and Rubinl (T983) and Proposition 2 follows from arguments
similar to theirs. If 1)) is correctly specified, then Z¥ = 1;(X,, 3°) = B(Y|X,)
and

E(Y|5,2°) = E{E(Y,2°,X)|s,Z°} = E{E(Y|Z°,X)|s, Z°}
=FE(2916,2°) = Z) = E (Y|Z"),

where the second equality is due to MAR. The proof is complete.

A.3. Proof of Theorem 1

Under MAR, if the weights (w,,wy,) are positive and either of the working
models (21)) and (22) is correctly specified, then it follows from Proposition 2
that B(Y|Z°,6) = E(Y|Z°); this implies that we can use E(Y|Z° 6 = 1) based
on observed data to impute E(Y|Z° & = 0) for observations with missing Y.
This result is used implicitly throughout the proof.

To derive the asymptotic distribution of ,&?\4 ; with positive weights, we first
consider another estimator, the K-nearest-neighbor plug-in estimator

n

,:L:%Z[(smﬂl—&) > %Ya]

i=1 JERK (1)
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where Ry (i) is the set of K nearest observed neighbors of Y; defined using the
distance in (Z3]). We note that the K nearest neighbors are chosen from the
subjects with observed outcomes, i.e., § = 1.

A.3.1. Asymptotic Distribution of v/n(i — u)

Consider a more general case where

ﬂ—ii[(SY"f' zn: W“é ]

po Widy

and W;; = W(Z?,Zg) are consistent probability weights as defined in [Stone
(1977). Then we write

fo—p="T +To+ T35+ 1Ty,

where Ty = (1/n) Y0, [W(Z9) —p], Tn = (1/n)2 6 [V — w2z, Ty =
(1/m) 325, (1=60) 35— 1(Ww5 /Zk Wikdr) [Y; — w(Z3)], and Ty = (1/n) 22 (1=
0i) 321 (Wi /3 Windi) ((Z5) — u(Z)].

It is straightforward to show that \/nTy —4 N(0,0%) and \/nTy —4 N(0,03),
where o7 = var[u(Z°)]) and 0% = E [var (6{Y — u(Z°)}|Z°)]. Let

1 "1 Wiids
Ty==3"(1-6) =LY — u(z9),
3 nz ;nh(zg) iT#

=1
,_1g ~ 1 Wiidi o 0
S S_py - Z0) — u(Z9)],
T ”;:1(1 5)?_1”}1(2?) [1(Z5) — W(Z7)]

where h(Z9) = 7(Z9)hi(Z?); h(ZY) can be estimated by h(Z9) = 3, Wixdy/n.
Next, we show that /nT5 — /nT5 —, 0 and /nTy — /nT} —, 0. Since proofs
are similar, we only focus on 73. Appealing to previous work on the uniform
convergency of nearest neighbor density estimates (Devroye and Wagner| (1977)))
and kernel density estimates (Silverman! (I978))), it is straightforward to show
the strong uniform convergency of h(Z°) to h(Z°) under Conditions (A2) and
(A3). Note that

n

2 gt _ 1 Wijd; 0 MZY) 12
B(Ty - T5) —E[n;u m;nh(z {v; - u(Z])}{h(Zg) 1

Following the proof of the asymptotic distribution of T3 that is discussed later,
it can be shown that E(y/nT§)? = 03 + o(1), the RHS of which is bounded.
Then, given the uniform integrability of (v/nT§)? and the uniform convergence
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of B(ZO), one can establish the asymptotic mean square equivalence of \/nT3
and \/nT3. It follows that \/nT3 — /nT5 —, 0. Similarly one can prove that

VnTy —/nTy —, 0.
We now show that /nTi —4 N(0,02). Take R; = &[Y; — u(Z?)], we can
reexpress 15 as

QZZ ’ U)R

=1 j=1
Wl] Wi
Ri+(1-0;)—2L1R;
nQ;; ( 0 h(Zj)
nQZH (Z;.Z)),
i#]

where ZF = (Y;,Z],0:), H(Z},Z;) = (1/2)[(1 = 6) (Wi /W(Z]))R; + (1 = )
(Wji/h(Zg) R;]. Now, U=[n(n—1)]7! >izi H(Z], Z7) is a standard U-Statistic
and Ty = [(n — 1)/n]U. It is straightforward to show that \/nT5 — /nU —, 0

Applying standard U-statistic theory, let the projection of U be U and then
U=(2/n)>, Hi(Z}) where

0 0
1,(2) = B [H(Z]. Z)\ %) = JRiE Wffz’o)zi)a — (Z)/Z0
1 1—m(ZY) K

It can be readily shown that Var [H(Z*)] = 03/4 + O(K/n) with o3 = E[{[1-
7(Z°)]? /7 (Z°)? }var[d{Y 1(Z°)}|Z°]]. Since the Hy(Z})’s are mutually indepen-
dent, it follows that \/nU —4 N(0,02) and hence /nT3 —4 N(0,03). Similarly,
one can show that /nTy —, 0.
Finally, it is straightforward to show that 7y L Ty, Ty L U, and Cov(y/nTs,
VnlU) — oa3, where 093 = E [[(1 = m(Z%)/m(Z%)]var [6{Y — u(Z°)}|Z°]]. It
then follows that \/n(2 — p) —q N (0,0%), where 02 = 07 + 03 + 03 + 2023.

A.3.2. Asymptotic Distribution of \/n(4%,;; — p)

After rearranging terms, we have

n

= e a-s) 3 7).

i=1 JERK(7)

where /;; is the number of imputed data sets in which Y; is used to impute Y;,
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and ) l;; = L. Then we have

;0 _A_fE — 5 E YR :
Hur—# n (1=0) <L K)YJ’

i=1 jERK (i)

where E(ll]/L‘K) = 1/K, Var(ll]/L) = (K — 1)/(L X K2), and COV(ZU/L,
lie/L|K) = (L x K*)71. One can then show that E[y/n(i2%,; — 4)]? < (L)71C,
where C = EY? and is finite under Condition (A1). If 1/L — 0, then v/n(i8,; —
) converges to 0 in Ly, and hence in probability. The asymptotic distribution
of /n(id,; — u) is therefore N(0,03,,) where 03,; = 0% + 03 + 03 + 2023. The
proof of Theorem 1 is now complete.

Two remarks are in order. First, X may include both categorical or contin-
uous variables; when X are all categorical in one or both working models, one
or both components of Z° are discrete, and continuity and compactness are then
defined given the usual topology for a discrete space. It is well known that a
compact discrete space is finite; as a result, it is straightforward to show that the
results of Theorem 1 still hold. Secondly, the main result in Theorem 1 is proved
under Condition (A3); this can be relaxed using a trimming technique similar to
that in [Hardle, Janssen, and Serfling (1988)).

A.4. Proof of Corollary 1

If Y is independent of § given Z°, or E(Y'|§,Z°) = E(Y|Z°) and E(Y?|5, Z°) =
E(Y?|Z%), then it is straightforward to show that o3 = E[FE(6|Z°)var{Y —
w(Z0|Z%Y] = E[r(Z°)0?(Z°)]. Similarly, one can show that o3 = E[o?(Z%)[1 —
m(Z°)?/m(Z")] and o235 = E[{1—m(Z°)}0%(Z°)]. It follows that o3, =
var[u(Z%)] + E[o?(Z°)/7(Z°)]. The proof is complete.
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