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Abstract: A dynamic semiparametric pricing method is proposed for financial

derivatives, including European and American-type options and convertible bonds.

The proposed method is an iterative procedure which uses nonparametric regres-

sion to approximate derivative values, and parametric asset models to derive the

continuation values. Extension to higher-dimensional option pricing is also devel-

oped, in which the dependence structure of financial time series is modeled by

copula functions. In the simulation study, we valuate one-dimensional American

options, convertible bonds, multi-dimensional American geometric average options,

and max options. The considered one-dimensional underlying asset models include

the Black-Scholes, jump-diffusion, and NGARCH models and, for the multivariate

case, we study copula models such as the Gaussian, Clayton, and Gumbel copulae.

Convergence of the method is proved under continuity assumption on the transi-

tion densities of the underlying asset models, and the orders of the supnorm errors

are derived. Both the theoretical findings and the simulation results show the pro-

posed approach to be tractable for numerical implementation and that it provides

a unified and accurate technique for financial derivative pricing.

Key words and phrases: American option, Black-Scholes model, convertible bond,

copula, European option, jump-diffusion model, multi-dimensional option pricing,
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1. Introduction

Over the past 30 years, financial derivative pricing has become an important
issue. Many models have been proposed to describe the processes underlying the
derivatives, for example the binomial tree, Geometric Brownian motion, jump-
diffusion process, stochastic volatility model (SVM), and the GARCH model
(Bollerslev (1986)), etc. A variety of valuation techniques have been proposed
to price European or American-type derivatives under various model assump-
tions. There are closed-form pricing formulae of European options for models
such as the Geometric Brownian motion and the jump-diffusion process, see for
example Black and Scholes (1973), Merton (1976), Kou (2002), Heston (1993),
and Heston and Nandi (2000). options, there are in general no analytic pricing
solutions; researchers or practitioners usually rely on numerical or Monte Carlo
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methods. A common approach is to solve the stochastic differential or integral
equations of the early exercise premium or early exercise boundary of the Ameri-
can option. Among which Barone-Adesi and Whaley (1987), Ju and Rui (1999),
Ju (1998) and Lai and AitSahalia (2001) studied the Black-Scholes Model, and
Bates (1991), Chesney and Jeanblanc (2004), and Chiarella and Ziogas (2005)
developed methods for jump diffusion models. For more complicated varying
volatility models such as the GARCH models, Ritchken and Trevor (1999) pro-
posed a lattice method and Duan and Simonato (2001) used a Markov chain
approximation. For simulation methods of American option pricing, see for ex-
ample Broadie and Glasserman (2004), Glasserman (2004) and Deng and Lee
(2004). In this paper, we propose a dynamic semiparametric derivative pricing
method for parametric asset models. The proposed method is applicable to a
variety of derivatives including European and American-type options and con-
vertible bonds. One major difficulty in American derivative pricing is to derive
the temporal continuation values. Duan and Simonato (2001) used step func-
tions to approximate the option value and compute the continuation values by
multiplying the step functions by a sparse transition matrix. We extend the step
function approximation to quadratic regression functions and modify the transi-
tion matrix to a further sparse moment transition matrix. Generally speaking,
the proposed approach comprises two parts, the first approximates the values of
the derivatives by nonparametric regression functions, and the second computes
the one-step-backward filtration by a parametric transition density. Here the
semiparametric technique provides a flexible alternative to solving the compli-
cated multiple integral involved in derivative pricing. For semiparametric models,
see for example Härdle, Müller, Sperlich and Werwatz (2004).

Multi-dimensional derivative pricing is an important topic in financial mar-
kets (Franke, Härdle and Hafner (2004)), yet its progress is in general hampered
by the curse of dimensionality. It is even more challenging to price American style
derivatives in high-dimensional cases. Techniques including numerical methods
and Monte Carlo simulation have been proposed to handle the problem. De-
terministic numerical methods (see, eg. Barraquand and Martineau (1995) and
Judd (1998)) can provide good approximations in specific cases, yet their con-
vergence properties are unclear in general (Broadie and Glasserman (2004)). For
the Monte Carlo approach, random samples are simulated to approximate the
continuation values (see, eg. Tsitsiklis and Van Roy (1999) and Longstaff and
Schwartz (2001)). As pointed out by Glasserman (2004), many of the simulation
methods are related to the stochastic mesh method (Rust (1997)), and Broadie
and Glasserman (2004) extend the method to multi-dimensional American op-
tion pricing. In the stochastic mesh method, random samples are generated by
importance sampling of mesh density functions, and the continuation values are
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approximated by a weighted sum of the sample. The mesh estimate is shown
to converge under conditions imposed on moments of payoffs, weights and like-
lihood ratios (Broadie and Glasserman (2004)). In this study, we extend the
aforementioned dynamic semiparametric approach to multi-dimensional option
pricing. The multivariate joint distributions of the underlying assets are mod-
eled by copula functions (Nelsen (2006)). Since copula models provide a new
and flexible way to model multivariate dependence, it has recently become a
very popular tool in financial studies (Cherubini, Luciano and Vecchiato (2004)).
At each possible exercise date, we approximate the option values at pre-selected
grid points by step functions of the asset values; the continuation values are eval-
uated by the Riemann-Stieltjes sums of recursively defined distributions, which
are from weighted average densities of the pre-selected grid points. Since we
use the Riemann-Stieltjes integral, the proposed multivariate extension is easily
implemented under the framework of a copula model. Details of the proposed
extension and the stochastic mesh method are given in Section 4. The compu-
tational effort of the proposed semiparametric scheme is linear in the number of
exercise opportunities, and quadratic in the number of partition points. The con-
vergence of the proposed approach is proved under a continuity assumption on
the transition densities of the underlying models; the convergence orders of the
supnorm errors are derived in terms of the the respective partition lengths of the
asset values and maturity time. In the simulation study, one-dimensional deriva-
tive pricing and multi-dimensional American geometric average options and max
options are obtained. Both the theoretical results and simulation studies show
that the proposed approach is tractable for numerical implementation and that
it provides an accurate and unified method for pricing financial derivatives.

This article is organized as follows. In Section 2, the proposed approach
for valuing financial derivatives of an univariate underlying asset is introduced
for the jump-diffusion and nonlinear asymmetric GARCH(1, 1), abbreviated by
NGARCH(1, 1), models. In Section 3, the approximation orders of the pro-
posed method and the one-step-backward filtration for the Black-Scholes, jump-
diffusion, and the NGARCH(1,1) models are derived. The valuation of con-
vertible bonds is also discussed. In Section 4, the extension of the proposed
approach to multi-dimensional option valuation is illustrated. Simulation results
are given in Section 5. Conclusions are in Section 6. All the proofs, tables, and
figures can be found in the online supplement (http://www.stat.sinica.edt.
tw/statistica).

2. Methodology

In this section, we describe in detail the proposed approach to valuing Amer-
ican options of an univariate underlying asset with dividend δ, maturity time T ,

http://www.stat.sinica.edt.tw/statistica
http://www.stat.sinica.edt.tw/statistica
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and strike price K. We start by dividing the maturity time period [0, T ] into
n-subintervals with equal length [ti−1, ti], i = 1, . . . , n, where 0 = t0 < t1 <
· · · < tn = T , and denote the partition length by ∆ = ti − ti−1. Throughout, we
consider an n-period model, in which the American option can only be exercised
at time ti, i = 0, . . . , n.

Let Vi denote the time ti value of the American put option and Si be the
corresponding underlying asset value. For a discrete time model, the no-arbitrage
American put option value at time tn is Vn = (K − Sn)+, and at time ti < tn is

Vi−1 = max
{

(K − Si−1)+, e−r∆Ei−1(Vi)
}

, (2.1)

(see Shreve (2004, p.91)) where r > 0 is the riskless interest rate and Ei−1 is
the conditional expectation under a risk-neutral probability measure given the
information up to time ti−1. In (2.1), the term (K−Si−1)+ is called the intrinsic
value, and e−r∆Ei−1(Vi) is the continuation value. The American put option will
be exercised earlier at time ti−1 if (K −Si−1)+ ≥ e−r∆Ei−1(Vi), and will be held
continuously if (K − Si−1)+ < e−r∆Ei−1(Vi).

The main difficulty arises in evaluating the continuation value. In this study,
we propose a new approach to tackle this problem. We illustrate the proposed
schemes for jump-diffusion and NGARCH(1, 1) models in Sections 2.1 and 2.2,
respectively.

2.1. The proposed scheme for the jump-diffusion model

Jump-diffusion processes have been widely used to model financial time series
that reflect the discontinuity of asset returns. The parametric jump-diffusion
process of the asset price St, under the risk neutral measure, can be written as

dSt

St−
= (r − δ − λφ)dt + σdWt + (Yt − 1)dNt, (2.2)

where r is the riskless interest rate, δ is the continuously compounded dividend
yield of St, σ is the instantaneous volatility, Wt is a standard Wiener process, and
Nt is a Poisson process with intensity rate λ. Herein, we consider a log-normal
jump model, in which the lnYt are i.i.d. N(γ − (1/2)ξ2, ξ2) random variables,
where γ = ln(1 + φ) and φ is the expected jump size. The processes Wt, Nt, and
Yt are assumed to be independent. In particular, if the jump size is a constant φ
(i.e., ξ = 0), then it is called a constant jump-diffusion process,

dSt

St−
= (r − δ − λφ)dt + σdWt + φdNt. (2.3)

In the case of no jump (ξ = 0 and φ = 0), it reduces to the Black-Scholes model,

dSt = (r − δ)Stdt + σStdWt. (2.4)
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At time tn−1, if the stock price is Sn−1, then the continuation value of an
American put option is

e−r∆En−1(Vn) = e−r∆En−1[(K − Sn)+]

=
∞∑

ν=0

e−λ∆(λ∆)ν

ν!

[
Ke−r∆Φ

( ln(K/Sn−1) − γν − µ∆
σ
√

∆

)
−eγν−(ξ+λφ)∆Sn−1Φ

(
ln(K/Sn−1) − γν − µ∆ − σ2∆

σ
√

∆

)]
. (2.5)

By comparing the continuation and the intrinsic values, see (2.1), the American
put option value function at time tn−1, Vn−1, can be obtained. Continuing to time
tn−2, to derive the continuation value one faces the difficulty of evaluating the
intractable term En−2(Vn−1). To tackle this problem a new method is proposed,
in which Vn−1 is approximated by the multi-piece polynomials V̂n−1 defined by
(2.6) below. Throughout, we confine the domain of the stock price to the interval
[0, 2K] since the put option values become valueless when the stock prices are
greater than 2K. Let 0 = s0 < s1 < · · · < sN = 2K denote the fixed equidistance
stock values and 0 = A(0) < A(1) < · · · < A(m) = 2K be a partition of the
stock price interval [0, 2K] such that each subinterval [A(j−1), A(j)] contains at
least three si’s. In the following, we use Ṽi to denote an approximate option
value at time ti, i = 0, 1, . . . , n − 1, which is defined recursively in the proposed
procedure. At time tn−1, since the option value function Vn−1 is derivable, we set
Ṽn−1 = Vn−1. The followings are the four main steps of the proposed method.
The procedure starts from i = n − 1, that is time tn−1.

Algorithm 2.1.

1. In each subinterval [A(j−1), A(j)], fit the approximate option value Ṽi(Si) by
a quadratic regression function to the stock points, denoted by

V̂i(Si) =
m∑

j=1

Q
(j)
i (Si), (2.6)

where Q
(j)
i (Si) =

∑2
k=0 a

(j)
i,kSk

i I(j) with I(j) = I{A(j−1)≤Si<A(j)}, j = 1, . . . ,m.

2. Compute the one-step filtration of V̂i conditional on the stock price Si−1 = sh,
to obtain the continuation value at time ti−1. That is,

E(V̂i|Si−1 = sh) = Phai, h = 1, . . . , N, (2.7)

where ai =
(
a

(1)
i,0 , a

(1)
i,1 , a

(1)
i,2 , . . . , a

(m)
i,2

)′
and Ph is the hth row of the moment

transition matrix P,

Ph =
(
Esh

(I(1)), Esh
(SiI

(1)), Esh
(S2

i I(1)), . . . , Esh
(I(m)),
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Esh
(SiI

(m)), Esh
(S2

i I(m))
)

with Esh
(·) = E(·|Si−1 = sh). The closed-form expressions of the entries of P

are derived in Section 3 for several well-known models. Further note that the
moment transition matrix P remains the same for all times ti, i = 0, . . . , n−1.

3. The approximate option value function at time ti−1, given the stock price
Si−1 = sh, is determined by Ṽi−1(sh) = max{(K − sh)+, e−r∆E(V̂i | Si−1 =
sh)}.

4. If i − 1 = 0, then stop; otherwise set i = i − 1 and return to Step-1.

The option price at the initial time t0 is obtained by following the above
procedure iteratively. To apply Algorithm 2.1 to American call options with
dividend δ, one only needs to replace (2.1) by the American call option value at
(ti, Si),

Ci =

 (Sn − K)+, for i = n

max
{

(Si − K)+, e−(r−δ)∆Ei(Ci+1)
}

, for i < n
.

Remark 2.1. Algorithm 2.1 can also be applied to estimate the early exercise
boundary, for example, at time ti−1, the early exercise boundary of an Ameri-
can put option is obtained by solving the value match equation (K − Si−1)+ =
e−r∆Ei−1(V̂i) for Si−1.

If the quadratic regression functions of (2.6) are changed to the following step
functions, Q

(j)
i (Si) = Ṽi(Si)I(j), j = 1, . . . ,m, with m = N (that is A(0) = s0,

A(j) = (sj + sj+1)/2 for j = 1, . . . , N − 1, and A(N) = sN ), then Algorithm 2.1
is converted to the Markov chain approximation method of Duan and Simonato
(2001). Using the quadratic regression functions in Algorithm 2.1 provides an al-
ternative to the fitted curve of option values, which smoothes the fit and increases
the sparsity of the matrix of the multiplication operation. The regression tech-
nique was introduced by Longstaff and Schwartz (2001) to valuate the American
option by Monte Carlo simulation. But the regression steps in the two approaches
are used differently. In Longstaff and Schwartz, the regression function is fitted
to the discounted cash flows on the possibly early-exercised stock paths, and the
continuation values of the sample paths are estimated by the fitted curve; in
Algorithm 2.1, we use regression functions to approximate the option values and
compute the continuation values by filtration of the regression functions.

The jump-diffusion model is a constant volatility model in which the option
value Vt is a function of the stochastic stock price St. In the case of nonconstant
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volatility, Vt becomes a function of both the stock price and the stochastic volatil-
ity. In the following section, we extend the proposed scheme to the nonconstant
volatility NGARCH model.

2.2. The proposed scheme for the NGARCH(1, 1) model

Consider the heteroscedastic NGARCH(1, 1) model (Duan and Simonato
(2001))

ln
Si

Si−1
= r∆ − 1

2σ2
i + λσi + σiεi,

σ2
i = α0 + α1σ

2
i−1(εi−1 − θ)2 + α2σ

2
i−1,

(2.8)

where the ε′is are i.i.d. N(0, 1) random variables under the dynamic measure, r

is the riskless interest rate, σi is the conditional volatility at time ti, λ ≥ 0 is
the risk-premium, θ ≥ 0 determines the leverage effect, and α0, α1 and α2 are
nonnegative constants. The asset return process under the risk-neutral measure,
see Duan (1995), can be written as

ln
Si

Si−1
= r∆ − 1

2σ2
i + σiεi,

σ2
i = α0 + α1σ

2
i−1(εi−1 − θ − λ)2 + α2σ

2
i−1,

(2.9)

where the ε′is are i.i.d. N(0, 1) random variables under the risk-neutral measure.
The following features of Model (2.9) are to be noted.

(F.1) σi+1 is Fi-measurable, where Fi is the σ-field generated by {(Su, σu+1) :
tu ≤ ti}.

(F.2) If σ2
i ≥ α0/(1−α2), then σ2

i+1 ≥ α0 +α2σ
2
i ≥ α0(1−α2). Consequently, if

σ1 ≥ [α0/(1 − α2)]0.5, then σi ≥ [α0/(1 − α2)]0.5, ∀ i ≥ 1. The stationary
volatility under the dynamic measure of Model (2.8) is σ

√
∆ = [α0/(1 −

α1(1 + θ2) − α2)]0.5, which is obviously larger than[α0/(1 − α2)]0.5. In
practice, σ1 is estimated by σ

√
∆, and thus we assume σ1 ≥ [α0/(1−α2)]0.5

throughout.

(F.3) Given the stock value and volatility at time ti−1, (Si−1, σi), then by (2.9),
σi+1 can be expressed as a function of Si, σi+1(Si|Si−1, σi) = {α0 +
α1[ln(Si/Si−1) − r∆ + 0.5σ2

i − σi(θ + λ)]2 + α2σ
2
i }0.5.

By (F.3), every future volatility is uniquely determined by a stock price if its
preceding stock price and volatility level are given. Thus the bivariate sys-
tem of (Si, σi+1) is reduced to the univariate case of Si (see also Duan and
Simonato (2001)). In Fig. 1(a), we show two examples of σi+1(Si|Si−1, σi) given
(Si−1, σi) = (49, 0.0105) (solid line) and (50, 0.0105) (dash line), respectively.
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To carry out Algorithm 2.1 for the NGARCH model (called Algorithm 2.2),
we partition the stock and volatility intervals as follows. Let {si}N

i=1 and
{A(j)}m

j=1 denote the fixed equidistance stock values and a partition of the stock
price interval [0, 2K], respectively, as in Section 2.1, and let [α0/(1 − α2)]0.5 =
B(0) < B(1) < · · · < B(`) < B(`+1) = ∞ be a partition of the volatility interval
([α0/(1 − α2)]0.5,∞), with the choice of B(`) given in Remark B.3 in the online
supplement. The partitions are kept fixed at all time points ti, i = 0, . . . , n − 1.
Beginning with the time tn−1 and given (Sn−1, σn), the NGARCH American put
option value is V G

n−1(Sn−1, σn) = max{(K − Sn−1)+, e−r∆En−1[(K − Sn)+]}, in
which the continuation value, e−r∆En−1[(K − Sn)+], follows the Black-Scholes
formula (since Sn has a conditional log-normal distribution given (Sn−1, σn)),
henceforth we assume V G

n−1(Sn−1, σn) is known. We introduce an approximate
NGARCH American option value at each time ti, denoted by Ṽ G

i (Si, σi+1), in
Algorithm 2.2 below. In particular, at time tn−1, we define Ṽ G

n−1(Sn−1, σn) =
V G

n−1(Sn−1, σn) for σn = B(h), h = 1, . . . , `, that is Ṽ G
n−1(Sn−1, σn) takes the

same value as Vn−1 on the volatility partition curves; for σn 6= B(h), h = 1, . . . , `,
we define Ṽ G

n−1(Sn−1, σn) by the interpolationwσn Ṽ G
n−1(Sn−1, B

(h)) + (1−wσn)Ṽ G
n−1(Sn−1, B

(h−1)), if σn ∈ (B(h−1), B(h))

min
{

K,wσn Ṽ G
n−1(Sn−1, B

(`)) + (1−wσn)Ṽ G
n−1(Sn−1, B

(`−1))
}

, if σn > B(`)
,

(2.10)
where wσn = (σn −B(h−1))/(B(h) −B(h−1)) for σn ∈ (B(h−1), B(h)), h = 0, . . . , `,
and wσn = (σn−B(`−1))/(B(`)−B(`−1)) for σn > B(`). To accept Ṽ G

n−1(Sn−1, σn),
abbreviated by Ṽ G

n−1, to compute the option value one-step ahead, we have to
cope with computing the continuation value e−r∆En−2(Ṽ G

n−1) at time tn−2. Recall
from (F.3), given (Sn−2, σn−1) the volatility at time tn−1, σn, is a function of
Sn−1; as a result so is the function Ṽ G

n−1. To make a distinction in the notation, we
use Ṽ G

i (Si|Fi−1) to denote the corresponding curve of Ṽ G
i given Fi−1 = (Si−1, σi).

In Fig. 1(b), we give two examples of Ṽ G
i (Si|Fi−1), given (Si−1, σi) = (49, 0.0105)

(by the symbol “∗”) and (50, 0.0105) (by the symbol “◦”), respectively. Although
the conditional expectation En−2(Ṽ G

n−1) is now reduced to the one-dimensional
integration En−2[Ṽ G

n−1(Sn−1|Fn−2)], the function Ṽ G
n−1(Sn−1|Fn−2) is in general

of a complicated nonlinear form. In Algorithm 2.2, we use a regression technique
to tackle the computation of the continuation value. The following specifies
Algorithm 2.2, with start-up point i = n − 1.

Algorithm 2.2.

1 Let (Si−1, B
(h)) be a point on the volatility partition curve σi = B(h) at time

ti−1, and let Ṽ G
i (Si|Fi−1) denote the corresponding curve of Ṽ G

i given Fi−1 =
(Si−1, B

(h)). In each stock partition interval [A(j−1), A(j)] of Si, fit a quadratic
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regression function to the data {(sh, Ṽ G
i (sh|Fi−1)) : sh ∈ [A(j−1), A(j)], h =

1, . . . , N}, j = 1, . . . ,m. The fitted regression function is denoted by

V̂ G
i (Si|Fi−1) =

m∑
j=1

Q(j)(Si|Fi−1), (2.11)

where Q(j)(Si|Fi−1) =
∑2

k=0 a
(j)
i,kSk

i I(j). The continuation value at (Si−1,

B(h)) is

Ei−1

[
V̂ G

i (Si|Fi−1)
]

=
m∑

j=1

Ei−1

[
Q(j)(Si|Fi−1)

]
, (2.12)

with the closed-form expression given in Proposition 3.4.

2 The approximate option value of (Si−1, B
(h)) on the volatility partition curve

at time ti−1 is defined by Ṽ G
i−1(Si−1, B

(h)) = max
{

(K − Si−1)+, e−r∆Ei−1[
V̂ G

i (Si|Fi−1)
]}

, h = 1, . . . , `; for σi 6= B(h), define Ṽ G
i−1(Si−1, σi) by interpo-

lation of (2.10), with n replaced by i.

3. If i − 1 = 0, then stop; otherwise set i = i − 1 and return to Step-1.

Remark 2.2. Algorithm 2.2 can be applied to other GARCH models analo-
gously. Similar to the case of the jump diffusion model, if fitting a piecewise
constant regression model to the option value, then the algorithm is converted
to the method of Duan and Simonato (2001). The early exercise boundaries of
the GARCH models can be evaluated by solving the value match equation (see
Remark 2.1) on each volatility partition point σi = B(h), h = 0, . . . , `.

3. Continuation Values and the Orders of Approximation

In this section, we derive the closed-form formulae for the conditional ex-
pectations in (2.7) and (2.12) and the orders of approximation of Algorithm
2.1 and 2.2. In Section 3.1 and 3.2, we derive the continuation values and the
orders of approximation of Algorithm 2.1 and 2.2 for the jump-diffusion and
NGARCH(1,1) models, respectively. The proposed method can be extended to
pricing convertible bonds as well (see Appendix A in the online supplement).

3.1. Jump-diffusion models

In the following proposition, we give the closed-form expression of the con-
tinuation value defined by (2.7) for the jump-diffusion model.

Proposition 3.1. Assume the asset price {St} follows the log-normal jump-
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diffusion model (2.2), and define V̂i by (2.6). Then we have

E(V̂i | Si−1 = s) =
m∑

j=1

2∑
k=0

a
(j)
i,ksk

(
Γ(j)

k − Γ(j−1)
k

)
,

where Γ(j)
k =

∑∞
ν=0[(λ∆)νe−λ∆]/ν! exp{kRν,∆ +1/2k2ρ2

ν,∆}Φ(d(j)
k ), d

(j)
k =(lnA(j)

− ln s − Rν,∆)/(ρν,∆) − kρν,∆, Rν,∆, and the ρν,∆ are defined as in Section 2.1
for j = 1, 2, . . . ,m and k = 0, 1, 2.

A similar approach can be applied to compute the American call options of
the jump-diffusion model. For the special case, ξ = φ = 0, we have the following
result for the Black-Scholes Model.

Corollary 3.2. Assume the asset price {St} follows the Black-Scholes Model
(2.4). Then we have

E(V̂i | Si−1 = s) =
m∑

j=1

2∑
k=0

a
(j)
i,ksk

(
Γ̃(j)

k − Γ̃(j−1)
k

)
,

where Γ̃(j)
k = exp{k(r − δ)∆ + 1/2(k2 − k)σ2∆}Φ(d̃(j)

k ) and d̃
(j)
k = [(lnA(j) −

ln−(r − δ − 1/2σ2)∆)/(σ
√

∆)] − kσ
√

∆, for j = 1, 2, . . . ,m and k = 0, 1, 2.

In the following, we derive the order of approximation, supS0
|V0 − Ṽ0|, of

Algorithm 2.1 for the jump-diffusion model.

Theorem 3.3. Assume the asset price {St} follows the jump diffusion model
(2.2). Then supS0

|V0 − Ṽ0| = O(∆3
A/∆) as ∆ → 0, and ∆A = maxj(A(j) −

A(j−1)) → 0, where A(j)’s are the stock partitions. Thus, if ∆3
A/∆ → 0, then

supS0
|V0 − Ṽ0| → 0.

The key property used in the proof of Theorem 3.3 is the continuity in y of the
one-step transition density f∆(x | y) of lnSi+1 = x given lnSi = y. Generally
speaking, the result of Theorem 3.3 can be extended to include other models
satisfying this continuity condition. In the online supplement, Appendix C, we
give the order of supS0

|C0 − C̃0| for the American call option without dividends
for Model (2.4).

3.2. NGARCH(1, 1) model

In this section, we give the closed-form expression of the continuation value
at (2.12) for the NGARCH(1,1) model, and derive the order of approximation of
Algorithm 2.2.
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Proposition 3.4. Assume the asset price {St} follows the NGARCH(1, 1) model
(2.9), and define V̂ G

i (Si|Fi−1) by (2.11). Given Fi−1 = (Si−1 = s, σi = B(h)), we
have

Ei−1[V̂ G
i (Si|Fi−1)] =

m∑
j=1

2∑
k=0

a
(j,h)
i,k sk

(
Γ(j,h)

k − Γ(j−1,h)
k

)
,

where Γ(j,h)
k = exp

{
kr∆ + 1/2(k2 − k)(B(h))2

}
Φ(d(j,h)

k ) and d
(j,h)
k = [(lnA(j) −

ln s − r∆ + 1)/(2(B(h))2)/B(h)] − kB(h), for h = 0, . . . , `, j = 0, . . . ,m, and
k = 0, 1, 2.

Similar closed-form expressions can be obtained for NGARCH(1, 1) Amer-
ican call options. In the following, we derive the order of approximation for
Algorithm 2.2 at the initial time t0, that is, supΘ0

|V G
0 − Ṽ G

0 |, where Θ0 =
{(S0, σ1) : 0 ≤ S0 ≤ 2K and

√
[alpha0/(1 − α2) ≤ σ1 ≤ B0} and B0 = 3σ

√
∆,

where σ
√

∆ is the stationary volatility under the dynamic measure. Note that
the NGARCH(1, 1) is a discrete-time model, consequentially the time partition
length ∆ is determined by the sampling frequency of the data, for example, ∆ is
1/365 (or 1/52) for daily (or weekly) returns. Accordingly, based on the model
one can only price the option for a fixed time length. Therefore, in the following
theorem, we derive the order of approximation of Algorithm 2.2 for fixed ∆.

Theorem 3.5. Assume the asset price {St} follows the NGARCH(1, 1) model
(2.9). Then supΘ0

|V G
0 −Ṽ G

0 | = (n−1)O(∆3
A)+nO(∆B), where ∆A = max0≤j≤m

(A(j) − A(j−1)), ∆B = max1≤h≤`(B(h) − B(h−1)), and n = T/∆.

4. Multi-Dimensional Options

Valuing multi-dimensional derivative securities recently became an impor-
tant topic in financial studies. In this section, we extend Algorithm 2.1 to high-
dimensional derivative pricing.

Consider a derivative of the d-dimensional underlying assets, St = (S1,t, . . .,
Sd,t), with each asset satisfying the risk-neutral geometric Brownian process

dS`,t

S`,t
= rdt + σ`dW`,t, ` = 1, . . . , d, (4.1)

where r is the risk-free interest rate, σ` is the instantaneous volatility of the `th
asset and W`,t’s are Brownian motions. Let G(St) denote the payoff function of
the derivative, for examples, G(St)(K − (

∏d
`=1 S`,t)1/d)+ for the put option on a

geometric average with strike price K, and G(St) = (K − max{S1,t, . . . , Sd,t}
)+

for the max-put option. If Xt = (X1,t, . . . , Xd,t)′ = lnSt denotes the logarithm
of the asset prices, then the (conditional) marginal distribution of X`,t given
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X`,0 is N(X`,0 + (r − 1/2σ2
` )t, σ

2
` t) for ` = 1, . . . , d. Owing to the flexibility of

copula functions in modeling multivariate dependence (Sklar (1959), Cherubini
et al. (2004) and Nelsen (2006)), it has recently become a significant new tool
to model multivariate dependence in financial markets. In this work, we also
adopt copula models to describe the conditional joint distribution of Xt given
Xt−1. Let C(F1(X1,t|X1,t−1), . . . , Fd(Xd,t|Xd,t−1)) denote the copula function
connecting the conditional univariate marginal distributions, F`(·|·), of X`,t given
X`,t−1 to their multivariate distribution. In the case of the Gaussian copula,
since the marginal F`’s of (4.1) are Gaussian, the joint distribution of Xt is the
multivariate normal distribution.

Huang and Guo (2008) extend Algorithm 2.1 directly to multidimensional
Bermudan option pricing using grids of constant size throughout the time period.
One major problem encountered is the exponentially increasing numbers of the
grid points. For example, consider the multivariate geometric Brownian motion
model (4.1); since the conditional standard deviation of X`,t given X`,0 is propor-
tional to

√
t, the volume of the d-dimensional region within 3 standard deviation

of the mean is proportional to td/2. Thus if we expect to cover the ±3 standard
deviation regions of a given initial point X0 by constant size grids, the number
of partition grids will increase exponentially with time. Thus, if we choose N

constant size grids at time t1, then we need 2d/2N grids of the same size at time
t2 and nd/2N grids to cover the considered regions at time tn. This exponentially
increasing rate hinders the extension of Algorithm 2.1 to the high-dimensional
case when the dimension d, or the time length t, is large. To overcome this diffi-
culty, we apply the importance sampling idea to re-weight the grid probabilities,
and consider only fixed number of grids through time. Details are explained be-
low. Let I

(j)
i denote the j-th grid at time ti and x(j)

i be an interior point in I
(j)
i ,

i = 1, . . . , n, j = 1, . . . , N . Approximate the continuation value of the hth grid
point, x(h)

i−1, at time ti−1 by

E(Vi|x(h)
i−1) =

∫
Vi(u)f(u|x(h)

i−1)du =
∫

Ui(u|x(h)
i−1)gi(u)du

≈
∫

Ûi(u|x(h)
i−1)gi(u)du =

N∑
j=1

Vi(x
(j)
i )

f(x(j)
i |x(h)

i−1)

gi(x
(j)
i )

Pgi(I
(j)
i ), (4.2)

where Ui(u|x(h)
i−1)=Vi(u)[(f(u|x(h)

i−1))/(gi(u))] and Ûi(u|x(h)
i−1)=

∑N
j=1 Ui(x

(j)
i |x(h)

i−1)

I(u ∈ I
(j)
i ), Vi(·) is the option value function at time ti, u is a d-dimensional

vector, and I(·) denotes the indicator function. In (4.2), we approximate the
integral by treating [(Vi(x

(j)
i )f(x(j)

i |x(h)
i−1))/(gi(x

(j)
i ))] as piecewise constant on

the partition grid I
(j)
i , j = 1, . . . , N , and use gi(·) as a new density of Xi at time
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ti, i = 1, . . . , n. Here we use step function instead of the quadratic regression
function (see Algorithm 2.1) to approximate the option value function. The
main consideration is to improve computational efficiency of the algorithm. In
(4.2), f(x(j)

i |x(h)
i−1) denotes the conditional density function of Xi = x(j)

i given

Xi−1 = x(h)
i−1,

f(x(j)
i |x(h)

i−1) = c
(
F1(x

(j)
1,i |x

(h)
1,i−1), . . . , Fd(x

(j)
d,i |x

(h)
d,i−1)

) d∏
`=1

f`(x
(j)
`,i |x

(h)
`,i−1),

where c(·) is the copula density of Xi given Xi−1, and f`(·|·) is the univariate
conditional density of X`,i given X`,i−1. The density functions gi(·) are defined
recursively by setting

g1(u) = f(u|x0) and gi(u) =
N∑

h=1

f(u|x(h)
i−1)Pgi−1(I

(h)
i−1) for i > 1, (4.3)

where

Pg1(I
(j)
1 ) =

∫
I
(j)
1

f(u|x0)du =
2∑

i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1i1 , . . . , udid) (4.4)

is the distribution function of gi, with I
(j)
1 =

∏d
`=1[a`, b`], u`1 = F`(a`|x`,0), and

u`2 = F`(b`|x`,0) for ` = 1, . . . , d (McNeil, Frey and Embrechts (2005, p.185)).
For i > 1,

Pgi(I
(j)
i ) =

N∑
h=1

Pf (I(j)
i |x(h)

i−1)Pgi−1(I
(h)
i−1),

where Pf (I(j)
i |x(h)

i−1) =
∫
I
(j)
i

f(u|x(h)
i−1)du is obtained by (4.4) analogously. Under

these settings, the European option at the initial time t0 is

V0 = e−r∆E(V1|X0) ≈ e−r∆
N∑

j1=1

V1(x
(j1)
1 )Pg1(I

(j1)
1 )

≈ e−2r∆
N∑

j1=1

Pg1(I
(j1)
1 )

N∑
j2=1

V2(x
(j2)
2 )

f(x(j2)
2 |x(j1)

1 )

g2(x
(j2)
2 )

Pg2(I
(j2)
2 )

≈ e−2r∆
N∑

j2=1

V2(x
(j2)
2 )Pg2(I

(j2)
2 ) ≈ · · · ≈ e−nr∆

N∑
jn=1

Vn(x(jn)
n )Pgn(I(jn)

n ). (4.5)

In Algorithm 4.1, we give the procedure for pricing a d-dimensional Ameri-
can option with payoff function G(·). With the initial log stock price of x0 =
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(x1,0, . . . , xd,0), the procedure starts backward from i = n and takes the approx-
imate option value function at the time of expiration, tn, to be Ṽn(u) = Vn(u) =
G(u).

Algorithm 4.1.

1. At time ti, i = 1, . . . , n, take the grid points, x(j)
i = (x(j)

1,i , . . . , x
(j)
d,i )

′, j =

1, . . . , N , to be x
(1)
`,i = x`,0 − 3

√
tiσ` and x

(j`)
`,i = x

(1)
`,i + (j` − 1)∆x`,i

, where
∆x`,i

= [(6
√

tiσ`)/(N` − 1)] for j` = 2, . . . , N` − 1, ` = 1, . . . , d, and N =∏d
`=1 N` is the total number of grid points. Let {A(j)

`,i }
N`
j=0 be a partition of the

`th stock price interval satisfying A
(0)
`,i = x`,0 − 5

√
tiσ`, A

(N`)
`,i = x`,0 + 5

√
tiσ`,

and A
(j`)
`,i = x

(j`)
`,i +κ∆x`,i

for j` = 1, . . . , N`−1 and 0 ≤ κ ≤ 1, where κ is chosen
to satisfy the condition imposed in Remark 4.6. Further denote the jth grid
at time ti by I

(j)
i =

∏d
`=1[A

(j`−1)
`,i , A

(j`)
`,i ] for j = 1, . . . , N and j` = 1, . . . , N`.

Compute the continuation value at time ti−1 given Xi−1 = x(h)
i−1, denoted

Ê(Ṽi|x(h)
i−1), by (4.2) in which the step function Ûi is defined on the above

grids {I(j)
i } and Vi is replaced by Ṽi.

2. The approximate option value at time ti−1 given Xi−1 = x(h)
i−1 is given by

Ṽi−1(x
(h)
i−1) = max{G(x(h)

i−1), e
−r∆Ê(Ṽi|x(h)

i−1)}.
3. If i − 1 = 0, then stop; otherwise set i = i − 1 and return to Step 1.

In Algorithm 4.1, if the I
(j)
i ’s are chosen to satisfy Pgi(I

(j)
i ) = 1/N , then the

densities in (4.3) are

g1(u) = f(u|x0) and gi(u) =
1
N

N∑
h=1

f(u|x(h)
i−1), for i > 1, (4.6)

and (4.2) becomes

E(Vi|x(h)
i−1) ∼=

N∑
j=1

Vi(x
(j)
i )

f(x(j)
i |x(h)

i−1)

Ngi(x
(j)
i )

, for i = 1, . . . , n. (4.7)

In this case, the densities gi(·) and the conditional expectation E(Vi|x(h)
i−1) have

the same form as those of the stochastic mesh method of Broadie and Glasserman
(2004) (Eq.(17), (18) and (6)). The stochastic mesh method was proposed by
Rust (1997) and successfully extended to high-dimensional option pricing by
Broadie and Glasserman (2004). The stochastic mesh method is based on random
paths simulated from the mesh densities (4.6), and uses (4.7) to approximate the
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conditional expectation at time ti given x(h)
i−1 as

E(Vi|x(h)
i−1) =

∫
Vi(u)

f(u|x(h)
i−1)

gi(u)
gi(u)du. (4.8)

The mesh density, gi(·) in (4.6), is interpreted as an average density, which is
useful in reducing the variance of the estimator. As aforementioned, if the grids
are chosen to satisfy Pgi(I

(j)
i ) = 1/N , then the densities gi’s at (4.3), and the

approximate formula of the conditional expectation in our approach, (4.2), are
the same as the ones, (4.6) and (4.7), in the stochastic mesh method. That is
the weighted average density reduces to the equal-weighted average when par-
ticular partition grids are chosen. However, since choosing the grids satisfying
Pgi(I

(j)
i ) = 1/N requires more computational effort on our part we consider the

equidistance partition points as described in Step 1 of Algorithm 4.1 and use a
weighted average to define the distributions recursively.

There are still several differences between the proposed approach and the
stochastic mesh methods. One major difference is that the stochastic mesh
method is based on simulated random paths and the proposed method adopts pre-
selected grid points. The stochastic mesh method uses the means of the random
samples to approximate the conditional expectation integrals of the continuation
values; the proposed method uses closed-form formulae for the conditional expec-
tation integrals of approximate option value functions (eg. piecewise quadratic
regression functions in one-dimensional case and step functions for multidimen-
sional case). For the high-dimensional case, we use the Riemann-Stieltjes sum of
the recursively defined distributions Pgi(·) to compute the multiple integrals of
the continuation values, which is easily implemented when the multivariate de-
pendence of the underlying assets is modeled by copula functions. The stochastic
mesh method is a consistent but biased-high estimator; Broadie and Glasserman
(2004) use the average of the mesh estimator and another biased-low estimator
(called a path estimator) to improve the estimation. In the proposed approach,
we use function approximation (regression functions or step functions) and in-
tegral evaluation at pre-selected grid points to calculate the option prices. The
convergence of our method for one dimensional case is derived under continuity
assumptions on the transition densities of the underlying asset models, and the
orders of the sup-norm errors are also derived as functions of partition lengths.
Furthermore, since the approximate option value function Ṽi derived from Algo-
rithm 4.1 is a continuous function of xi, the convergence proof for the multivariate
case is similar to the one-dimensional case, see Theorem 4.7.

Remark 4.6. The European option can be valuated using Algorithm 4.1 by
setting Ṽi−1(x

(h)
i−1) = e−r∆Ê(Ṽi|x(h)

i−1) in Step 2. The constant κ in Step 1 is chosen
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such that the European option values computed from Algorithm 4.1 meet the
benchmark values, which can either be obtained analytically or by Monte Carlo
simulation. For the European option on a geometric average for multivariate
normal underlying assets, the benchmark values can be obtained via the Black-
Scholes formula since it can be reduced to a one-dimensional problem.

In the following, we derive the order of the supnorm error, supX0
|V0 − Ṽ0|,

of using Algorithm 4.1 to approximate the option values for Model (4.1).

Theorem 4.7. Assume the d-dimensional asset prices St = {S1,t, . . . , Sd,t} fol-
low Model (4.1). Let Ṽ0 denote the approximate d-dimensional American option
value obtained from Algorithm 4.1, and let V0 denote the no-arbitrage price. Then
we have supX0

|V0 − Ṽ0| = O(‖ hn ‖ /∆) as ∆ → 0 and ‖ hn ‖= (
∑d

`=1 ∆2
x`,n

)1/2,
where ∆x`,n

is defined in Step 1 of Algorithm 4.1 and X0 = log S0. Thus, if
(‖ hn ‖ /∆) → 0, then supX0

|V0 − Ṽ0| → 0.

5. Numerical Results

In this section, we report on the simulation of pricing European and Ameri-
can options by Algorithm 2.1, 2.2 and 4.1 for several well-known models. For the
high-dimensional case, multi-dimensional American geometric average options
and max options are included, in which the multivariate joint distributions are
modeled by Gaussian, Clayton, and Gumbel copulae. All codes are implemented
using MatLab 7.0 running on a computer with a Pentium M processor 750, and
1GB of RAM. All the simulation results are given in Table 1−Table 5 in the
supplementary part (see Appendix D and E).

6. Conclusion

We propose a semiparametric approach to value financial derivatives when
the one-step transition probability function of the underlying process is given.
Valuation problems of various financial derivatives including European options,
American options, and convertible bonds can be solved by the proposed method.
The extension to multi-dimensional derivative pricing is also obtained by in-
corporating copula functions. Both the theoretical findings and the simulation
results show that the proposed approach is very tractable for numerical imple-
mentation, and provides an accurate and unified method for pricing financial
derivatives. Possible extensions of the proposed method include derivative pric-
ing with path-dependent American options and credit risk derivatives.
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Franke, J., Härdle, W. and Hafner, C. M. (2004). Statistics of Financial Markets. Springer,

Berlin.

Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Springer-Verlag, New

York.
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