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S1 Filtering and smoothing algorithms

Filtering Steps. Define aj+1 = E{x (tj+1) |y1, · · · , yj}, Pj+1 = var{x (tj+1) |y1, · · · , yj},
for j = 1, · · · , n, the filtering equations are

vj = yj − Zaj ,

Vj = ZPjZ
′ + σ2,

Kj = Hj,j−1PjZ
′V −1

j ,

Lj = Hj,j−1 −KjZ,

aj+1 = Hj,j−1aj + Kjvj ,

Pj+1 = Hj,j−1PjL
′
j + Ωj,j−1.

The log-likelihood can be calculated through the filtering step as

l (θ | y) = p (y1, · · · , yn) =
n∑

j=1

log p (yj | y0, · · · , yj−1)

= −n

2
log 2π − 1

2

n∑

j=1

(
log | Vj | +v′jV

−1
j vj

)
.

Smoothing Steps. Define sj = E{x (tj) |y1, · · · , yn}, Wj = var{x (tj) |y1, · · · , yn}, for
j = n, · · · , 1, initialized with rn = 0 and Nn = 0, the smoothing equations are

rj−1 = Z ′V −1
j vj + L′jrj ,

Nj−1 = Z ′V −1
j Z + L′jNjLj ,

sj = aj + Pjrj−1,

Wj = Pj − PjNj−1Pj .



S2 Ziyue Liu and Wensheng Guo

S2 Proofs

Proof of the Lemma. Observe

Σλ (i, j) = λ−1
min

∫ 1

0

Gm (ti, u) Gm (tj , u) du

−
∫ 1

0

{λ−1
min − λ−1 (u)}Gm (ti, u) Gm (tj , u) du

= λ−1
minΣ (i, j)− Σ∆

λ (i, j) ,

where Σ∆
λ is nonnegative definite. Recall a result in linear algebra (e.g. Fulton(2000)):

let A and B be two real symmetric matrices, let C = A + B, denote the eigenvalues of
A by

α : α1 ≥ · · · ≥ αn,

and similarly β for B and γ for C, then the ith largest eigenvalue of C satisfies the
following inequality

max
j+k=n+i

αj + βk ≤ γi ≤ min
j+k=i+1

αj + βk.

Let j = i, apply the inequality, we have

δin ≤ λ−1
minδ∗in.

Similarly by factoring λmax out we get the other part of the inequality.

Proof of the Theorem As in classical smoothing spline (Eubank (1988), Wahba
(1990)), we can decompose IR into the bias part and the variance part.

IRn (λ) =
∫ 1

0

[f (t)− E{fλ (t)}]2 p (t) dt +
∫ 1

0

var{fλ (t)}p (t) dt

= B2
n (λ) + Vn (λ) .

According to the weighted calculus theory (Grossman, Grossman and Katz (2006)),
the design points t1, · · · , tn form a weighted arithmetic partition of [0, 1], which means

∫ tj+1

tj

p (t) dt =
1
n

.

Therefore, as n →∞,

B2
n (λ) =

∫ 1

0

[f (t)− E{fλ (t)}]2 p (t) dt

= lim
n→∞


 1

n

n∑

j=1

{f (t)− E (fλ (t))}2


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≤ lim
n→∞


 1

n

n∑

j=1

{f (t)− (g (t))}2 +
∫ 1

0

λ (t) {g(m) (t)}2dt




≤
∫ 1

0

λ (t) {g(m)
∗ (t)}2dt

≤ λmax

∫ 1

0

{g(m)
∗ (t)}2dt

= O (λmax) .

The third line follows because E{fλ(t)} minimizes the r.h.s. of the third line. The fourth
line follows by choosing g∗(t) that interpolates f(t).

Similarly, as n →∞,

Vn (λ) =
∫ 1

0

var{fλ (t)}p (t) dt

= lim
n→∞

[
σ2

n
trace{A2 (λ (t))}

]
,

an increasing function of the individual eigenvalues of Q′
2ΣλQ2 (Wahba 1990, page 55-

56), which in turn can be approximated by the eigenvalues of Σλ because of Cauchy
interlacing theorem. Applying the lemma, the variance is less than or equal to the
corresponding variance of classical smoothing spline with smoothing parameter λmin,
which means as n →∞

Vn (λ) ≤ O
(
λ
−1/2m
min n−1

)
.

Combine the bias and the variance part, let λmin and λmax as O
(
n−2m/(2m+1)

)
,

then IR decays at the same rate of n−2m/(2m+1) as classical smoothing splines.
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