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Abstract: We consider a nonlinear function-on-function additive regression model

with multiple functional predictors. The forms of the nonlinear functions are un-

specified, and offer great flexibility to model various relationships between the re-

sponse curve and predictor curves. We clarify the identifiability issue of the model

and identify the best decompositions of the nonlinear functions in the model in

terms of prediction. To estimate this expansion, we solve a penalized functional

generalized eigenvalue problem followed by a penalized least squares procedure.

With the minimum prediction error of the proposed decomposition, our approach

has good prediction accuracy. Our approach converts the estimation of three-

dimensional nonlinear functions to the estimation of two- and one-dimensional

functions, which considerably reduces computational costs. Asymptotic results are

provided, and simulations and a data application show that the proposed method

has good predictive performance and is efficient in dimension reduction and com-

putation. This method is implemented in the R package FRegSigCom.

Key words and phrases: Additive model, function-on-function regression, general-

ized functional eigenvalue problem, nonlinear functional regression model, signal

function, the Karhunen-Loève expansion.

1. Introduction

As a useful tool in functional data analysis, functional regression has gained

increasing attention in recent years. Much effort has been made for linear re-

gression models with functional predictors, such as Ramsay and Dalzell (1991),

Cardot, Ferraty and Sarda (1999), Brown, Fearn and Vannucci (2001), Ratcliffe,

Leader and Heller (2002), Reiss and Ogden (2007), Goldsmith et al. (2012) and

Delaigle, Hall (2012) for linear scalar-on-function regression models, and Ram-

say and Silverman (2005, Chap. 16), Yao, Müller and Wang (2005), Ivanescu

et al. (2015), Meyer et al. (2015), Chiou, Yang and Chen (2016), Luo and Qi

(2017) and Luo, Qi and Wang (2016) for linear function-on-function regression.

There have also been numerous studies on nonlinear scalar-on-function regres-

sion models. For the functional version of the single-index model (Stoker (1986)),
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y = h
(∫
I X(s)β(s)ds

)
+ ε, the coefficient function β(·) and the unspecified func-

tion h(·) are typically estimated in an iterative way (Ait-Säıdi et al. (2008);

Ferraty, Park and Vieu (2011)). The single-index model has been extended to

a multiple-index model (James and Silverman (2005); Chen, Hall and Müller

(2011); Ferraty et al. (2013)) with multiple linear functionals of the single pre-

dictor y =
∑p

j=1 hj
(∫
I X(s)βj(s)ds

)
+ε. Müller, Wu and Yao (2013) and McLean

et al. (2014) proposed the continuously additive model y = µ+
∫
I F (X(s), s)ds+ε,

where F (·, ·) is a smooth function estimated by penalized tensor product B-

splines.

When both response and predictors are functions, to study their nonlin-

ear relationship, we consider a nonlinear function-on-function additive regression

model

Y (t) = µ(t) +

p∑
j=1

∫
Ij
Fj(Xj(s), s, t)ds+ ε(t), a ≤ t ≤ b, (1.1)

where X1(·), . . . , Xp(·) are functional predictors and F1(x, s, t), . . . , Fp(x, s, t) are

unspecified smooth functions. Without loss of generality, we assume that Ij =

[0, 1]. We allow within-function correlation in the noise function ε(t). Model

(1.1) extends the continuously additive model with scalar response and a single

functional predictor to the model with functional response and multiple func-

tional predictors. This model offers great flexibility in studying the relationship

between the functional predictors and functional response. If each Fj(x, s, t) is

linear with respect to x, (1.1) is the usual linear function-on-function model.

Model (1.1) has been explored by Scheipl, Staicu and Greven (2015) as an exten-

sion of a general frame work for functional additive mixed model. Scheipl, Staicu

and Greven (2015) estimate the model with p = 1 by expanding the nonlinear

function F (x, s, t) (the subscript is omitted) using the tensor product of the ba-

sis for x, s and t. As F (x, s, t) is trivariate, the number of the tensor product

basis functions will be large even if the numbers of marginal basis functions are

small. Scheipl, Staicu and Greven (2015) estimate the coefficients of all the ten-

sor product basis functions simultaneously, which imposes heavy computational

loads and may affect the estimation and prediction accuracy.

In this paper, we provide a novel approach to fit model (1.1). To briefly intro-

duce our idea, we consider the model with one functional predictor: Y (t) = µ(t)+∫ 1
0 F (X(s), s, t)ds + ε(t). We identify the best expansion

∑∞
k=1Gk(x, s)φk(t) of

the nonlinear function F (x, s, t) in terms of prediction among all possible ex-

pansions of the form
∑∞

k=1Hk(x, s)ϕk(t), where Hk(x, s)’s and ϕk(t)’s are ar-
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bitrary functions. Aiming to estimate this best expansion which has the mini-

mum prediction error, our approach has good prediction accuracy. To estimate∑∞
k=1Gk(x, s)φk(t), we first estimate Gk(x, s)’s sequentially by solving a penal-

ized generalized functional eigenvalue problem. With the estimatedGk(x, s)’s, we

transform the original model to a linear function-on-scalar regression model with

scalar predictors, where µ(t) and φk(t)’s are the coefficient functions. Then we

estimate µ(t) and φk(t)’s separately using a penalized least squares method. Our

method breaks down the problem of estimating the trivariate function F (x, s, t)

to the problems of sequentially estimating the bivariate functions Gk(x, s) and

separately estimating the univariate functions µ(t), φk(t)’s, which greatly im-

proves the computational efficiency and can be easily extended to the model

with multiple functional predictors.

The rest of the paper is organized as follows. We introduce our approach

for one functional predictor in Sections 2 and extend it to multiple functional

predictors in Section 3. In Sections 4 and 5, we report on simulation studies

and a data analysis, respectively. We conclude the paper with a discussion in

Section 6. We provide additional figures and tables, technical details and proofs

in the online supplementary materials.

2. Nonlinear Regression with One Functional Predictor

To simplify notation and ease understanding, we introduce our method for

model (1.1) with p = 1 in this section and extend it to p > 1 in Section 3. When

p = 1, the model is

Y (t) = µ(t) +

∫ 1

0
F (X(s), s, t)ds+ ε(t), a ≤ t ≤ b, (2.1)

where X(s) and ε(t) are independent. Without loss of generality, we assume

E {F (X(s), s, t)} = 0, for all 0 ≤ s ≤ 1, a ≤ t ≤ b, (2.2)

for otherwise we can replace F (x, s, t) by F (x, s, t) − E {F (X(s), s, t)} and µ(t)

by µ(t) +
∫ 1
0 E {F (X(s), s, t)} ds. We call S(t) =

∫ 1
0 F (X(s), s, t)ds the signal

function; it is a random function with zero mean and is crucial for predicting

Y (t).

2.1. Decomposition induced by signal compression (DISC)

Given F (x, s, t), the distribution of Y (t) is completely determined by (2.1)

and the distribution of X(s) and ε(t). However, the function F (x, s, t) may be

unidentifiable. There may exist a function F̃ (x, s, t) 6= F (x, s, t) which satisfies
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both (2.2) and
∫ 1
0 F̃ (X(s), s, t)ds =

∫ 1
0 F (X(s), s, t)ds. Based on the distribution

of X(s) and Y (t), or their random samples, we cannot differentiate F̃ (x, s, t)

from F (x, s, t). Let

F =

{
F ∗ :

∫ 1

0
F ∗(X(s), s, t)ds =

∫ 1

0
F (X(s), s, t)ds,

and F ∗ satisfies (2.2) and some regularity conditions

}
(2.3)

be the collection of all functions which lead to the same model as the true

model and have the same regularity properties as possessed by F (x, s, t), such

as smoothness. Insteading of estimating the true function F (x, s, t), we aim to

estimate the signal function and predict the response curve by identifying and

estimating a specific function in F . If F (x, s, t) is identifiable, the set F only

contains the true function F (x, s, t), and the function identified by our method is

the same as the true function. Our approach does not need the identifiability of

F (x, s, t) and we do not assume it. In Section S2 of the supplementary material,

we provide idenfiable conditions for F (x, s, t).

We provide the explicit expression and an optimal prediction property of the

specific function in F that we will estimate. We consider the model (2.1) at the

population level in this section and provide our estimation method in Sections 2.2

and 2.3. Consider the Karhunen-Loève (KL) expansion S(t) =
∑∞

k=1 rkφk(t),

where φk(t)’s are orthogonal (scaled) eigenfunctions of the covariance function of

S(t) corresponding to the eigenvalues σ21 ≥ σ22 . . . with ‖φk‖L2 = σk. The random

variables rk =
∫ b
a S(t)φk(t)dt/σ

2
k, k ≥ 1, are uncorrelated and have mean 0 and

variance 1. For any function G(x, s) of (x, s), let

r(G) =

∫ 1

0
G(X(s), s)ds− E

{∫ 1

0
G(X(s), s)ds

}
, (2.4)

which maps G(x, s) to a random variable with mean zero. Define

Gk(x, s) =

∫ b

a
F (x, s, t)φk(t)dt/σ

2
k, then by (2.2) E

{∫ 1

0
Gk(X(s), s)ds

}
= 0.

As S(t) =
∫ 1
0 F (X(s), s, t)ds and rk =

∫ b
a S(t)φk(t)dt/σ

2
k, we have

rk =

∫ 1

0
Gk(X(s), s)ds = r(Gk). (2.5)

Thus S(t)=
∑∞

k=1 rkφk(t)=
∑∞

k=1 r(Gk)φk(t) which, together with (2.5), leads to
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0
F (X(s), s, t)ds = S(t) =

∞∑
k=1

r(Gk)φk(t) =

∫ 1

0

{ ∞∑
k=1

Gk(X(s), s)φk(t)

}
ds.

(2.6)

Let F (DISC)(x, s, t) =
∑∞

k=1Gk(x, s)φk(t), which we call as the decomposition

induced by the signal compression (Luo and Qi (2017)). By (2.6), F (DISC)(x, s, t)

leads to the same model as the true function F (x, s, t). We will estimate the

signal function and make prediction by estimating F (DISC)(x, s, t). In prac-

tice, we only need to estimate the first few terms in F (DISC). We find that

the partial sum
∑K

k=1Gk(x, s)φk(t), for any K ≥ 1, has the minimum predic-

tion error among all expansions of the form
∑K

k=1Hk(x, s)ϕk(t). The expansion∑K
i=1

∑K
j=1

∑K
k=1 aijkΨi(x)Φj(s)ϕk(t) in Scheipl, Staicu and Greven (2015) by

K3 tensor product basis functions, where Ψi(x)’s, Φj(s)’s and ϕk(t)’s are arbi-

trary marginal basis functions for x, s and t, respectively, has this form with

Hk(x, s) =
∑K

i=1

∑K
j=1 aijkΨi(x)Φj(s).

Theorem 1. Let (Xnew(s), Ynew(t)) be a new observation with the same distri-

bution as (X(s), Y (t)). For any K ≥ 1, the mean squared prediction error for

the partial sum
∑K

k=1Gk(x, s)φk(t) satisfies

E
(
‖ε‖2L2

)
≤ E


∥∥∥∥∥Ynew−µ−

∫ 1

0

K∑
k=1

Gk(Xnew(s), s)φkds

∥∥∥∥∥
2

L2

=

∞∑
k=K+1

σ2k + E
(
‖ε‖2L2

)

= min
Hk(x,s),ϕk(t),

1≤k≤K

E


∥∥∥∥∥Ynew − µ−

∫ 1

0

K∑
k=1

Hk(Xnew(s), s)ϕkds

∥∥∥∥∥
2

L2


 ,

(2.7)

where the minimum is taken over all possible Hk(x, s) satisfying that
∫ 1
0 Hk(X(s),

s)ds has a finite second moment and all possible square integrable functions ϕk(t),

1 ≤ k ≤ K. Under Condition 1 in Section 2.4, we have

C1K
−θ+1 ≤ E


∥∥∥∥∥Ynew − µ−

∫ 1

0

K∑
k=1

Gk(Xnew(s), s)φkds

∥∥∥∥∥
2

L2


− E

(
‖ε‖2L2

)
≤ C2K

−θ+1, (2.8)

where 0 < C1 < C2 are constants not depending on K.

The prediction error of
∑K

k=1Gk(x, s)φk(t) has a lower bound E
(
‖ε‖2L2

)
be-

cause the noise function is independent of the predictor function and is completely

unpredictable only based on predictor curves. So the prediction error due to the
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noise function cannot be reduced. The part,
∑∞

k=K+1 σ
2
k, in the prediction error

is related to the bias caused by the truncation of
∑∞

k=1Gk(X(s), s)φk(t) after the

first K terms. We can reduce this truncation bias by adding more terms in the

partial sum. However, in practice, we have to estimate Gk(x, s) and φk(t), which

leads to additional prediction error. The prediction error due to estimation will

increase with more terms added into the partial sum. A trade-off between the

error due to truncation and the error due to estimation is a balance between bias

and variance, and can be achieved by an appropriate choice of K, which we term

the number of components.

Our estimation procedure consists of two steps. We first sequentially esti-

mate G1(x, s), . . . , GK(x, s). Then we separately estimate µ(t), φ1(t), . . . , φK(t),

by penalized least squares. For any G(x, s) and G̃(x, s), let

Λ(G,G) =

∫ b

a
[E {S(t)r(G)}]2 dt, Σ(G, G̃) = E

{
r(G)r(G̃)

}
, (2.9)

where r(·) is the function defined in (2.4). Σ(G, G̃) is the covariance of r(G) and

r(G̃).

Theorem 2. The Gk(x, s)’s are the solutions to the generalized eigenvalue prob-

lem,

max
G(x,s)

Λ(G,G), (2.10)

subject to Σ(G,G) = 1 and Σ(Gk′ , G) = 0, 1 ≤ k′ ≤ k − 1,

where the maximum is taken over all possible G(x, s) such that
∫ 1
0 G(X(s), s)ds

has a finite second moment. Moreover, the maximum value of (2.10) is σ2k.

Now (2.5) implies that r(Gk)’s are uncorrelated random variables with means

zero and variances one, so Σ(Gk, Gk) = E
{
r(Gk)

2
}

= 1 and Σ(Gk, Gk′) =

E {r(Gk)r(Gk′)} = 0 for any k′ 6= k, which leads to the constraints in (2.10).

To interpret the problem (2.10), we first consider k = 1. Since G1(x, s) is the

first generalized eigenfunction of the problem (2.10), it maximizes the following

Rayleigh quotient,

Λ(G,G)

Σ(G,G)
=

∫ b

a

[E {S(t)r(G)}]2

E {r(G)r(G)}
dt =

∫ b

a

Cov2 (S(t), r(G))

Var(r(G))
dt

=

∫ b

a
Corr2 (S(t), r(G)) Var(S(t))dt.

Solving (2.10) is equivalent to finding a function G(x, s) to maximize the integral

of the squared correlation between S(t) and r(G) multiplied by the variance of
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S(t). When k > 1, we have the additional constraint that r(Gk) is uncorrelated

with r(Gk′) for k′ < k.

2.2. Estimation of Gk(x, s)

Let (X1(s), Y1(t)), . . . , (Xn(s), Yn(t)) denote n independent observations from

the model (2.1). Then we have

Yl(t) = µ(t) +

∫ 1

0
F (Xl(s), s, t)ds+ εl(t), 1 ≤ l ≤ n, (2.11)

where εl(t) denotes the l-th noise function. For any function G(x, s), we define

rl(G) =

∫ 1

0
G(Xl(s), s)ds− E

{∫ 1

0
G(Xl(s), s)ds

}
, and r(G) =

1

n

n∑
l=1

rl(G).

(2.12)

Then r1(G), . . . , rn(G) are i.i.d. samples of r(G), and r(G) is their sample mean.

Given any functions G(x, s) and G̃(x, s), we estimate Λ(G,G) and Σ(G, G̃) by

Λ̂(G,G) =
1

n2

∫ b

a

[
n∑
l=1

{rl(G)− r(G)} {Yl(t)− Y (t)}

]2
dt, (2.13)

Σ̂(G, G̃) =
1

n

[
n∑
l=1

{rl(G)− r(G)}
{
rl(G̃)− r(G̃)

}]
,

where rl(G)− r(G) =
∫ 1
0

{
G(Xl(s), s)−G(s)

}
ds can be calculated from sample

curves, and G(s) =
∑n

l=1G(Xl(s), s)ds/n. To impose the smoothness penalty,

we introduce some notation. For functions G(x, s) and G̃(x, s), let 〈G, G̃〉L2 =∫ ∫
G(x, s)G̃(x, s)dxds and ‖G‖L2 denote the usual L2 inner product and L2

norm, respectively. Let

〈G, G̃〉H2 = 〈G, G̃〉L2 + 〈∂xxG(x, s), ∂xxG̃(x, s)〉L2 + 〈∂xsG(x, s), ∂xsG̃(x, s)〉L2

+ 〈∂ssG(x, s), ∂ssG̃(x, s)〉L2 ,

‖G‖H2 =
√
‖G‖2L2 + ‖∂xxG‖2L2 + ‖∂xsG‖2L2 + ‖∂ssG‖2L2

denote the Sobolev inner product and the Sobolev norm, respectively, where

∂xxG, ∂xsG and ∂ssG are the second order partial derivatives. Our estimate

Ĝk(x, s) of Gk(x, s) is obtained sequentially by solving the penalized optimization

problem

max
G(x,s)

Λ̂(G,G)

Σ̂(G,G) + λ‖G‖2H2

, subject to Σ̂(Ĝk′ , G) + λ〈Ĝk′ , G〉H2 = 0, (2.14)

for all 1 ≤ k′ ≤ k − 1, where λ‖G‖2H2 is the smoothness penalty imposed on



726 QI AND LUO

G(x, s). Because the penalty is imposed on the denominator of the objective

function in (2.14), to maximize this objective function, the solutions Ĝk(x, s)

tend to have small ‖ · ‖H2-norms, especially for a large tuning parameter λ.

Therefore, the proposed penalty encourages the smoothness of the estimated

functions.

In practice, we use tensor product B-spline basis functions to expand G(x, s)

and express (2.14) as an optimization problem of the expansion coefficients.

Without loss of generality, we suppose that the sample predictor curves, Xl(s),

1 ≤ l ≤ n, have been scaled such that their values are between 0 and 1. Let

b(s) = (b1(s), b2(s), . . . , bL(s))> and h(x) = (h1(x), h2(x), . . . , hJ(x))> be the

vectors basis functions for s ∈ [0, 1] and x ∈ [0, 1], respectively. Let Ψ(x, s) =

h(x)⊗b(s) = (h1(x)b1(s), h1(x)b2(s), . . . , hJ(x)bL(s))> denote the vector of ten-

sor product basis functions in the two-dimensional region [0, 1]× [0, 1].

In this paper, we assume that the sample predictor curves Xl(s), 1 ≤ l ≤ n,

are densely observed on a common grid 0 = s1 < · · · < sNx = 1, and the

sample response curves Yl(t), 1 ≤ l ≤ n, are densely observed in a common

grid a = t1 < · · · < tNy = b, where Nx and Ny are the number of observation

points. For any continuous functions g(s) observed at {s1, . . . sNx} and f(t)

observed at {t1, . . . tNy}, we use the approximation
∫ 1
0 g(s)ds ≈

∑Nx
m=1 δ

x
mf(sm)

and
∫ b
a f(t)dt ≈

∑Ny
m=1 δ

y
mf(tm), where {δxm : 1 ≤ m ≤ Nx} and {δym : 1 ≤ m ≤

Ny} are weights. For equally spaced observation points of Xl(s)’s, we choose

δx1 = · · · = δxNx = 1/Nx; for unequally spaced observation points, we choose δx1 =

(s2− s1)/2, δxm = (sm+1− sm−1)/2 for 1 < m < Nx, and δxNx = (sNx − sNx−1)/2,

based on the trapezoidal formula. δym’s are chosen in a similar way.

Let G(x, s) = z>Ψ(x, s) be a linear combination of the tensor product basis

functions Ψ(x, s), where z is the JL dimensional coefficient vector. Then the

numerator of the objective function in (3.2) can be expressed as

Λ̂(G,G) =
1

n2

∫ b

a

(
n∑
l=1

[∫ 1

0
z>
{
Ψ(Xl(s), s)−Ψ(s)

}
ds

]
{Yl(t)− Y (t)}

)2

dt

≈ 1

n2

Ny∑
v=1

(
z>

n∑
l=1

[
Nx∑
u=1

δxu
{
Ψ(Xl(su), su)−Ψ(su)

}]
{Yl(tv)−Y (tv)}

)2

δyv

=

n∑
l=1

n∑
l′=1

z>(gl − ḡ)Πll′(gl′ − ḡ)>z = z>Ξz, (2.15)

where Ψ(s) =
∑n

l=1 Ψ(Xl(s), s)/n, gl =
∑Nx

u=1 δ
x
uΨ(Xl(su), su)/

√
n and ḡ =∑n

l=1 gl/n are all JL-dimensional vectors. Π is an n × n matrix with the
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(l, l′)-th entry Πll′ =
∑Ny

v=1 δ
y
v{Yl(tv) − Y (tv)}{Yl′(tv) − Y (tv)}/n and Ξ =∑n

l=1

∑n
l′=1(gl − ḡ)Πll′(gl′ − ḡ)> is a JL × JL matrix. Similarly, the first

term in the denominator of the objective function in (3.2) can be expressed as

Σ̂(G,G) ≈ z>Hz, where H =
∑n

l=1

∑n
l′=1(gl− ḡ)(gl′− ḡ)> is a JL×JL matrix.

The penalty term in (2.14) can be expressed as λ‖G‖2H2 = z>Kz, where K =

λ
∫ 1
0

∫ 1
0

[
Ψ(x, s)Ψ(x, s)>+{∂xxΨ(x, s)}{∂xxΨ(x, s)}>+{∂xsΨ(x, s)}{∂xsΨ(x, s)}>

+{∂ssΨ(x, s)}{∂ssΨ(x, s)}>
]
dxds is a JL× JL matrix.

The optimization problem (2.14) can be expressed as the eigenvalue problem

for the coefficient vector z,

max
z∈RJL

z>Ξz

z>Qz
, subject to ẑ>k′Qz = 0, 1 ≤ k′ ≤ k − 1, (2.16)

where Q = H + K. Let ẑk be the solution to (2.16). Then Gk(x, s) is estimated

by Ĝk(x, s) = ẑ>k Ψ(x, s).

2.3. Estimation of µ(t) and φk(t)

With estimates Ĝk(x, s), 1 ≤ k ≤ K, we next estimate µ(t) and φk(t),

1 ≤ k ≤ K, by a transformation of the model (2.11). Since X1(s), . . . , Xn(s)

have the same distribution as X(s), by (2.6), we have∫ 1

0
F (Xl(s), s, t)ds =

∫ 1

0

{ ∞∑
k=1

Gk(Xl(s), s)φk(t)

}
ds =

∞∑
k=1

rl(Gk)φk(t),

for all 1 ≤ l ≤ n, where rl(·) is defined in (2.12) and we use E
{ ∫ 1

0 Gk(Xl(s), s)ds
}

= 0. Let Y(t) = (Y1(t), . . . , Yn(t))>, E(t) = (ε1(t), . . . , εn(t))> and Rk =

(r1(Gk), . . . , rn(Gk))
>. Then the nonlinear function-on-function additive model

(2.11) can be transformed to a linear function-on-scalar regression model

Y(t) = 1nµ(t) +

∞∑
k=1

Rkφk(t) + E(t),

where Rk’s can be viewed as new scalar predictors and φk(t)’s are the corre-

sponding coefficient functions. Here Rk is not observed, but can be estimated by

R̂k = {r1(Ĝk) − r(Ĝk), . . . , rn(Ĝk) − r(Ĝk)}> for 1 ≤ k ≤ K, where r(·) is de-

fined in (2.12). If the remainder term
∑∞

k=K+1 Rkφk(t) is small enough, we have

Y(t) ≈ 1nµ(t) +
∑K

k=1 R̂kφk(t) + E(t). Thus, to estimate µ(t), φ1(t), . . . , φK(t),

we regress Y(t) on 1n, R̂1, . . . , R̂K using the penalized least squares method in

(Ramsay and Silverman (2005, Chap. 13)), which solves
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min
v0(t),

v1(t),...,vK(t)

1

n

∫ b

a

∥∥∥∥∥Y(t)−v0(t)−
K∑
k=1

R̂kvk(t)

∥∥∥∥∥
2

2

dt

+κ

∫ b

a

{
v′′0(t)2 +

K∑
k=1

v′′k(t)2

}
dt

)
, (2.17)

and the minimum is taken over all possible functions v0(t) and vk(t)’s with square-

integrable second derivatives in [a, b]. The details for solving (2.17) are provided

in Section S.3.1 of the supplementary material. The estimates µ̂(t) and φ̂k(t)’s

of µ(t) and φk(t)’s are the solution to (2.17).

Given a new functional predictor Xnew(s) (which has been scaled in the same

way as the Xl(s)’s), the response function is predicted by

Ypred(t) = µ̂(t) +

∫ 1

0

K∑
k=1

{
Ĝk(Xnew(s), s)− Ĝk(s)

}
φ̂k(t)ds, (2.18)

where Ĝk(s) =
∑n

l=1 Ĝk(Xl(s), s)/n. One practical issue is that Xnew(s) may

take values outside of [0, 1]. In this case, we extend Ĝk(x, s) by letting Ĝk(x, s) =

Ĝk(0, s) if x < 0 and Ĝk(x, s) = Ĝk(1, s) if x > 1, for any 0 ≤ s ≤ 1.

The theoretical choices of the number K of components and the tuning

parameters λ and κ are provided in Section 2.4. Their choices in practice are

given in Section S.3.2 of the supplementary material.

2.4. Asymptotic theory

Let F̂ (x, s, t) =
∑K

k=1

{
Ĝk(x, s) − Ĝk(s)

}
φ̂k(t). We provide a convergence

rate of the estimation errors
∫ 1
0 F̂ (Xl(s), s, t)ds −

∫ 1
0 F (Xl(s), s, t)ds, 1 ≤ l ≤ n,

for the signal functions as n → ∞. For a new observation (Xnew(s), Ynew(t))

independent of X(s) = (X1(s), . . . , Xn(s))> and Y(t) = (Y1(t), . . . , Yn(t))>, we

provide lower and upper bounds for the prediction error Ypred(t)−Ynew(t), where

Ypred(t) is given in (2.18). Here we consider the case where the predictor curve

X(s) is bounded. Recall that σ2k is the kth eigenvalue of the covariance function

of the signal function S(t), and it is also the maximum value of the generalized

eigenvalue problem (2.10) (see Theorem 2). We introduce a regularity condition

on the decay rates of the σ2k’s and (σ2k−σ2k+1)’s, which is similar to the regularity

conditions in Cai and Hall (2006) and Hall and Horowitz (2007) on the decay

rates of the eigenvalues of the covariance function of the predictive curve.

Condition 1. There exist constants θ > 1 and C > 1 such that for any k ≥ 1,

we have C−1k−θ ≤ σ2k ≤ Ck−θ and σ2k − σ2k+1 ≥ C−1k−(θ+1).
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Theorem 3. Suppose that Condition 1 holds and F (x, s, t) has continuous second

partial derivatives. Suppose that 0 ≤ X(s) ≤ 1 for all 0 ≤ s ≤ 1 and E(‖ε‖4L2) <

∞. If the tuning parameters are chosen to satisfy λ = Cλn
−1/2 and κ = Cκn

−1/2

and the number of components satisfies K = CKn
1/{2(3θ+2)}, where Cλ, Cκ and

CK are constants not depending on n, for any n and ε > 0, there exists an event

Ωn,ε with P (Ωn,ε) ≥ 1− ε such that in Ωn,ε, we have

1

n

n∑
l=1

∥∥∥∥∫ 1

0
F̂ (Xl(s), s, ·)ds−

∫ 1

0
F (Xl(s), s, ·)ds

∥∥∥∥2
L2

≤ D1n
−(θ−1)/2(3θ+2), (2.19)

E
(
‖ε‖2L2

)
≤ E

{
‖Ypred − Ynew‖2L2

∣∣∣X(s),Y(t)
}
≤ E

(
‖ε‖2L2

)
+D2n

−(θ−1)/2(3θ+2),

(2.20)

where D1 and D2 are constants which depend on ε, Cλ, Cκ, m and δ, but not

on n.

The inequalities in (2.20) show that a lower bound of the prediction error

is E
(
‖ε‖2L2

)
that is due to the noise function. As n → 0, the prediction error

converges to the lower bound E
(
‖ε‖2L2

)
at the same rate as that of the estimation

error in (2.19). In our method, we do not make specific assumptions on the

correlation structure of the error function ε(t). In Theorem 3, we only require that

E(‖ε‖4L2) < ∞. Therefore, various structures of the within-function correlation

Corr(ε(t), ε(t′)) are allowed for t 6= t′ and the variance Var(ε(t)) can vary with t,

which is one aspect of the flexibility of our method.

3. Nonlinear Regression with Multiple Functional Predictors

We extend the method in Section 2 to the model (1.1) with multiple func-

tional predictors. Without loss of generality, we assume that E {Fj(X(s), s, t)} =

0, for all 0 ≤ s ≤ 1, a ≤ t ≤ b and 1 ≤ j ≤ p. Let S(t) =
∫ 1
0

∑p
j=1 Fj(Xj(s), s, t)ds

be the signal function with KL expansion S(t) =
∑∞

k=1 rkφk(t), where the random

variables rk’s are uncorrelated with zero mean and unit variance, and ‖φk‖L2 =

σk. Let X(s) = (X1(s), . . . , Xp(s)) be the vector of p functional predictors (at

the population level). As an analogue to Gk(x, s) when p = 1, we define the p-

dimensional vector Gk(x, s) = (Gk1(x1, s), . . . , Gkp(xp, s))
>, where Gkj(xj , s) =∫ b

a Fj(xj , s, t)φk(t)dt/σ
2
k for k ≥ 1 and 1 ≤ j ≤ p, and x = (x1, . . . , xp). For any

G(x, s) = (G1(x1, s), . . . , Gp(xp, s))
>, we extend the definition of r(G) in (2.4)

to r(G) =
∑p

j=1

[∫ 1
0 Gj(Xj(s), s)ds− E{

∫ 1
0 Gj(Xj(s), s)ds}

]
. Then as E{

∫ 1
0 Gkj

(Xj(s), s)ds} = 0, rk =
∫ b
a S(t)φk(t)dt/σ

2
k =

∑p
j=1

∫ 1
0 Gkj(Xj(s), s)ds = r(Gk) .

To estimate Gk(x, s), let Yl(t) and Xl(s) = (Xl1(s), . . . , Xlp(s)), 1 ≤ l ≤ n,
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be the i.i.d samples. For any G(x, s) = (G1(x1, s), . . . , Gp(xp, s))
> and G̃(x, s) =

(G̃1(x1, s), . . . , G̃p(xp, s))
>, let

Λ̂(G,G) =
1

n2

∫ b

a

(
n∑
l=1

[
p∑
j=1

∫ 1

0

{
Gj(Xlj(s), s)−Gj(s)

}]{
Yl(t)− Y (t)

})2

dt,

(3.1)

Σ̂(G, G̃) =
1

n

n∑
l=1

[
p∑
j=1

∫ 1

0

{
Gj(Xlj(s), s)−Gj(s)

}][ p∑
j=1

∫ 1

0

{
G̃j(Xlj(s), s)−G̃j(s)

}]
,

where Gj(s) =
∑n

l=1Gj(Xlj(s), s)/n and G̃j(s) =
∑n

l=1 G̃j(Xlj(s), s)/n. We get

the estimate Ĝk(x, s) = (Ĝk1(x1, s), . . . , Ĝkp(xp, s)) of Gk(x, s) by solving

max
G=(G1,...,Gp)>

Λ̂(G,G)

Σ̂(G,G) + λ
∑p

j=1 ‖Gj‖2H2

, subject to

Σ̂(Gk′ ,G) + λ

p∑
j=1

〈Gj , Ĝk′j〉H2 = 0, (3.2)

for all 1 ≤ k′ ≤ k − 1. Using the tensor product basis functions, we can express

(3.2) as a multivariate generalized eigenvalue problem in the same way as in

Section 2.2. The estimates µ̂(t) and φ̂k(t) of µ(t) and φk(t) are obtained as

in Section 2.3. Given a new observed functional predictor vector Xnew(s) =

(Xnew,1(s), . . . , Xnew,p(s)), the predicted response function is Ypred(t) = µ̂(t) +∑K
k=1

∫ 1
0

∑p
j=1

{
Ĝkj(Xnew,j(s), s)− Ĝkj(s)

}
φ̂k(t)ds.

4. Simulation Studies

We evaluated the predictive performance of the proposed method in three

sets of simulation studies. In the first study, there was only one functional pre-

dictor and we considered both linear (in x) and nonlinear forms of F (x, s, t).

When F (x, s, t) was linear in x, we compared our method (denoted by Sig-

Comp.nonlinear) with the nonlinear method in Scheipl, Staicu and Greven (2015)

which is based on simultaneous basis expansion on x, s, and t (denoted by

pffr.nonlinear), and three methods for linear function-on-function regression mod-

els: the linear regression based on signal compression (SigComp.linear) in Luo

and Qi (2017), the penalized function-on-function regression (pffr) in Ivanescu

et al. (2015) and the pffr with eigenbasis (pffr.pc) in Scheipl, Staicu and Greven

(2015). When F (x, s, t) was nonlinear, the three linear methods served as bench-

marks. In the last two studies, we considered multiple functional predictors.
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To solve the optimization problems (2.14) and (3.2), we used 30 cubic spline

basis functions in [0, 1] as b(s), and 30 cubic spline basis functions in [0, 1]

as h(x), both with equally spaced knots. To solve (2.17), we used 30 cubic

spline basis functions for 0 ≤ t ≤ 1 with equally spaced knots. The tuning pa-

rameters λ in (2.14) and (3.2) and κ in (2.17) were both chosen from the set

{10−10, 10−8, 10−6, 10−4, 10−2, 1} using the cross-validation method described in

Section S.2.2 in the supplementary material. The SigComp.linear was imple-

mented in R and we used 30 cubic B-spline basis functions for both s and t, and

chose both smoothness parameters λ and κ from {10−10, 10−8, 10−6, 10−4, 10−2, 1}
by five-fold cross-validation. For pffr.nonlinear, pffr and pffr.pc, we used the R

package refund. For pffr and pffr.pc, we used their default settings except that

we used 30 basis functions. Due to the computational cost of the pffr.nonlinear,

it was impossible to use 30 basis functions for each of x, s and t, and the R

function for the pffr.nonlinear does not provide options for changing the num-

ber of basis functions. Hence, we used its default setting. In all studies, both

the functional predictors and the response curves were observed at 100 equally

spaced time points in [0,1]. We ran 100 simulations for each setting with the

sample size fixed at 100 for training data and 500 for test data in each run.

4.1. The case of single functional predictor

Simulation 1: We generated the single predictor X(s) from the Gaussian process

with mean zero and covariance function ΣX(s, s′) = e−{10|s−s
′|}2 . We considered

four models with different µ(t) and F (x, s, t), as follows

(1). µ(t) = 3(t+ 1)2, F (x, s, t) = 3x{s sin(6πt) + 3 cos(πst2)},

(2). µ(t) = sin(πt), F (x, s, t) = 27 cos
(

(x+ s2)
√
t
)
,

(3). µ(t) = log(1 + t), F (x, s, t) =
32(xs+ t)

1 + (x2 + s2)e−t
,

(4). µ(t) = e−t, F (x, s, t) = 12 log
(

1 + 5x2set + 3e−(x+s) cos2(t)
)
.

The first F (x, s, t) is linear in x and leads to a linear function-on-function model.

The other three F (x, s, t)’s are fully nonlinear functions for all arguments x, s, t.

The noise function ε(t) was generated from a Gaussian process with covariance

function Σε(t1, t2) = σ2ρ{30(t1−t2)}
2

for 0 ≤ t1, t2 ≤ 1, where σ2 is the variance

of ε(t), and ρ controls the correlation between ε(t1) and ε(t2), 0 ≤ t1 6= t2 ≤ 1.

We considered noise levels σ2 = 0.1, 10 and correlation levels ρ = 0, 0.7. When

σ2 = 10, the signal to noise ratio is about one for all four models. The sample



732 QI AND LUO

Table 1. The averages (standard deviations) of MSMEs of 100 replicates for Simulation 1.

Model σ2 ρ SigComp.nonlin pffr.nonlin SigComp.lin pffr.pc pffr
Estimation Error (MSME)

1
0.1

0 0.003(0.001) 0.206(0.014) 0.001(0) 0.003(0) 0.004(0)
0.7 0.010(0.002) 0.212(0.013) 0.006(0.001) 0.016(0.002) 0.017(0.002)

10
0 0.052(0.010) 0.228(0.017) 0.048(0.012) 0.113(0.016) 0.055(0.009)
0.7 0.266(0.073) 1.208(0.375) 0.271(0.068) 1.196(0.165) 1.250(0.198)

2
0.1

0 0.009(0.004) 0.022(0.018) 7.111(0.711) 7.961(0.791) 8.913(1.020)
0.7 0.026(0.008) 0.036(0.018) 6.956(0.694) 7.777(0.752) 8.785(1.019)

10
0 0.084(0.023) 0.078(0.023) 7.015(0.721) 7.778(0.809) 8.213(1.083)
0.7 0.317(0.106) 1.075(0.372) 7.106(0.801) 8.876(1.024) 9.283(1.156)

3
0.1

0 0.004(0.001) 0.265(0.134) 1.972(0.172) 2.224(0.223) 2.496(0.303)
0.7 0.014(0.005) 0.283(0.132) 2.012(0.196) 2.288(0.232) 2.596(0.329)

10
0 0.087(0.019) 0.222(0.077) 2.010(0.182) 2.278(0.215) 2.286(0.250)
0.7 0.430(0.125) 1.290(0.448) 2.094(0.187) 3.395(0.338) 3.588(0.402)

4
0.1

0 0.010(0.002) 0.527(0.329) 9.217(0.956) 10.349(1.008) 12.337(1.461)
0.7 0.029(0.006) 0.568(0.433) 9.088(0.783) 10.166(0.927) 12.197(1.365)

10
0 0.172(0.040) 0.459(0.264) 9.289(0.885) 10.495(0.966) 11.685(1.669)
0.7 0.586(0.121) 1.693(0.717) 9.176(0.712) 11.072(1.009) 12.185(1.579)

curves of X(s) and Y (t) are plotted in Figures S.1 and S.2 in the supplementary

material, respectively.

We considered 16 combinations of the four models, two σ2 values and two

ρ values. For each method, applying the final model obtained from the training

data to the predictive curves Xtest
l (t), 1 ≤ l ≤ 500 in the test data, we obtained

500 predicted response curves Y predict
l (t), 1 ≤ l ≤ 500. We calculated the mean

squared prediction error (MSPE) MSPE = (1/500)
∑500

l=1

[
(1/100)

∑100
m=1

{
Y predict
l

(tm) − Y test
l (tm)

}2]
, and the mean squared model estimation error (MSME)

MSME = (1/500)
∑500

l=1

[
(1/100)

∑100
m=1

{
Y predict
l (tm)−µ(t)−

∫ 1
0 F (Xtest

l (s), s, tm)

(s)ds
}2]

= (1/500)
∑500

l=1

[
(1/100)

∑100
m=1

{
Y predict
l (tm) − Y test

l (tm) + εtestl (tm)
}2]

,

where tm, 1 ≤ m ≤ 100, were 100 equally spaced observation points for Y (t).

We report the averages and standard deviations of the MSMEs and MSPEs

in 100 iterations in Tables 1 and 2, respectively. For model 1, a linear function-

on-function regression model, when ρ = 0, SigComp.nonlinear and all the lin-

ear methods have very close prediction and estimation errors that are less than

pffr.nonlin. The pffr.pc and pffr are sensitive to the within function correlation

in ε(t) and have larger prediction and estimation errors than SigComp.linear and

SigComp.nonlinear when ρ = 0.7. When F (x, s, t) is nonlinear with respect to

x as in Models 2 ∼ 4, it is not surprising that the three linear methods have



NONLINEAR FUNCTION-ON-FUNCTION REGRESSION 733

Table 2. The averages (standard deviations) of MSPEs of 100 replicates for Simulation 1.

Model σ2 ρ SigComp.nonlin pffr.nonlin SigComp.lin pffr.pc pffr
Prediction Error (MSPE)

1
0.1

0 0.103(0.001) 0.306(0.014) 0.101(0.001) 0.103(0.001) 0.104(0.001)
0.7 0.110(0.002) 0.312(0.013) 0.105(0.002) 0.116(0.002) 0.117(0.003)

10
0 10.047(0.062) 10.224(0.06) 10.043(0.063) 10.108(0.065) 10.049(0.063)
0.7 10.279(0.167) 11.212(0.383) 10.281(0.158) 11.217(0.251) 11.271(0.266)

2
0.1

0 0.109(0.005) 0.123(0.018) 7.211(0.712) 8.061(0.791) 9.013(1.02)
0.7 0.126(0.008) 0.136(0.018) 7.056(0.699) 7.877(0.755) 8.885(1.021)

10
0 10.093(0.067) 10.086(0.064) 17.033(0.755) 17.796(0.84) 18.231(1.105)
0.7 10.324(0.185) 11.091(0.397) 17.121(0.862) 18.888(1.064) 19.299(1.173)

3
0.1

0 0.104(0.001) 0.365(0.134) 2.072(0.171) 2.324(0.223) 2.596(0.303)
0.7 0.114(0.005) 0.384(0.132) 2.11 (0.199) 2.387(0.234) 2.694(0.332)

10
0 10.086(0.068) 10.22(0.108) 12.012(0.198) 12.282(0.228) 12.289(0.27)
0.7 10.410(0.227) 11.284(0.501) 12.065(0.287) 13.373(0.404) 13.566(0.459)

4
0.1

0 0.110(0.002) 0.628(0.329) 9.318(0.957) 10.449(1.009) 12.438(1.462)
0.7 0.129(0.007) 0.668(0.432) 9.195(0.784) 10.272(0.925) 12.304(1.369)

10
0 10.172(0.077) 10.461(0.274) 19.288(0.875) 20.496(0.96) 21.681(1.667)
0.7 10.558(0.209) 11.658(0.706) 19.204(0.766) 21.117(1.051) 22.225(1.61)

much larger mean MSPE and MSME than the nonlinear methods. Our method

is not very sensitive to the form of the function F (x, s, t) and has the smallest

mean MSPE and MSME in all settings of Models 2 ∼ 4, except in the setting

of σ2 = 10 and ρ = 0 for Model 2, where pffr.nonlin is slightly better than Sig-

Comp.nonlinear. A larger noise level or a stronger within-function correlation in

ε(t) leads to larger MSPEs and MSMEs of our method for all the four models.

We also compared the estimated function F̂ (x, s, t) of the function F (x, s, t)

for different methods. Due to the identifiability problem of F (x, s, t) and other

technical issues, we provide the details of calculating the estimation error for

F (x, s, t) and present the results in Section S4 of the supplementary material.

We summarize the numbers of selected components and running time (in

seconds) in Table S.1, and draw the boxplots of selected tuning parameters λ

and κ by our method in Figures S.3∼S.6 in the supplementary material. For all

the four models, with the increase of the noise level and correlation in ε(t), our

method tends to choose larger λ and κ.

4.2. The case of multiple functional predictors

To model the correlation between functional predictors, we took Vj(s), 1 ≤
j ≤ p, to be identical and independent Gaussian processes with covariance func-

tion ΣX(s, s′) = e−{10|s−s
′|}γ , where γ = 1.5 or 2. The corresponding Gaussian
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Table 3. The averages (standard deviations) of MSPEs of 100 replicates for Simulations 2
and 3.

γ = 2 γ = 1.5
ρcurve σ2 ρ SigComp.nonlinear SigComp.linear SigComp.nonlinear SigComp.linear

Simulation 2

0
0.1

0 0.136(0.019) 4.359(0.508) 0.128(0.012) 3.985(0.469)
0.7 0.170(0.029) 4.467(0.496) 0.160(0.029) 3.928(0.433)

10
0 10.205(0.075) 14.369(0.418) 10.188(0.068) 13.887(0.418)
0.7 10.687(0.224) 14.578(0.471) 10.696(0.271) 14.201(0.544)

0.7
0.1

0 0.139(0.022) 5.012(0.589) 0.129(0.015) 4.551(0.525)
0.7 0.169(0.023) 4.965(0.511) 0.162(0.022) 4.450(0.441)

10
0 10.206(0.079) 14.946(0.689) 10.190(0.078) 14.381(0.492)
0.7 10.801(0.267) 15.026(0.640) 10.882(0.276) 14.744(0.532)

Simulation 3

0
0.1

0 0.203(0.023) 2.805(0.319) 0.184(0.015) 2.575(0.327)
0.7 0.238(0.027) 2.788(0.277) 0.224(0.019) 2.515(0.239)

10
0 10.368(0.088) 12.744(0.298) 10.357(0.085) 12.486(0.232)
0.7 11.424(0.465) 13.120(0.341) 11.345(0.426) 12.903(0.379)

0.7
0.1

0 0.195(0.026) 3.074(0.319) 0.180(0.019) 2.801(0.304)
0.7 0.228(0.024) 3.084(0.338) 0.218(0.021) 2.817(0.329)

10
0 10.327(0.087) 13.063(0.364) 10.323(0.075) 12.766(0.297)
0.7 11.235(0.386) 13.265(0.426) 11.234(0.277) 13.018(0.435)

process with γ = 2 has smoother sample curves than those with γ = 1.5. Let

S be the p × p matrix with diagonal entries equal to 1 and off-diagonal entries

equal to ρcurve ∈ (0, 1) to control the correlation between functional predictors.

We decompose S = ∆∆>, where ∆ is a p × p matrix. Then the predictor

curves were obtained as (X1(s), X2(s), . . . , Xp(s)) = (V1(s), V2(s), . . . , Vp(s))∆
>.

Given any s, (X1(s), X2(s), . . . , Xp(s)) has a multivariate normal distribution

with covariance matrix S. Moreover, each Xj(s) is a Gaussian process with co-

variance function ΣX(s, s′). We considered correlation levels: ρcurve = 0 and 0.7.

Because the function for pffr.nonlinear in the R package refund does not pro-

vide the options for multiple functional predictors, we only include the method

SigComp.linear as a benchmark. We conducted two simulations for this case.

Simulation 2: We took p = 3 and with F1(x, s, t) = 4(2s−x−2
√
t)2, F2(x, s, t) =

2
√

(s+ x2t)/{1 + sin2(x+ st)} and F3(x, s, t) = 2 log(1 + (xt)2
√
s).

Simulation 3: We considered p = 6 and took the nonlinear functions

F1(x, s, t) = 2.7(s+ x− 3t)2, F2(x, s, t) = 2.7 cos(2xs) + 2.7 sin(x
√
t),

F3(x, s, t) =
2.7

1 + x2 + st
, F4(x, s, t) = 2.7e− cos(x+s−2t2),

F5(x, s, t) = 2.7(s2 + xt2)(sx+ t3), F6(x, s, t) = 2.7 log(1 + s2 + 0.5x2 + t2).
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The noise functions ε(t) in both simulations were the same as in Simula-

tion 1, with σ2 = 0.1 or 10, ρ = 0 or 0.7. The signal to noise ratio is about

one when σ2 = 10. We report the MSPEs in Table 3. It is unsurprising that

the linear method fails in both simulations. The increase of σ2 or ρ leads to

the increase of MSPE of SigComp.nonlinear. For Simulation 2, the correlation

between functional predictors ρcurve has little effect on MSPE. For Simulation

3, the correlation between functional predictors slightly decreases the MSPE,

and smaller prediction errors are observed for less smooth functional predictors

(γ = 1.5). We summarize the numbers of selected components K and running

time in Table S.2 in the supplementary material. The means of K are almost

the same for all settings in Simulation 2 except the case of σ2 = 10 and ρ = 0.7,

where more components are chosen. For Simulation 3, more components are also

chosen for σ2 = 10 and ρ = 0.7.

5. Application to a Daily Air Quality Dataset

The Air Quality dataset, available in UCI Machine Learning Repository

(Lichman (2013)), was recorded by an array of five metal oxide chemical sensors

embedded in an air quality chemical multisensor device located in a significantly

polluted area, at road level, within an Italian city (De Vito et al. (2008)). This

dataset contains the hourly averages of the concentration values of five different

atmospheric pollutants in each day. The five pollutants are the nitrogen diox-

ide (NO2), carbon monoxide (CO), non-methane hydrocarbons (NMHC), total

nitrogen oxides (NOx), and benzene (C6H6). In addition, the temperature (in

Celsius) and relative humidity (in percentage) were also recorded hourly in each

day. Therefore, we have seven functional variables with sample curves observed

at 24 discrete time points. Removing missing values, we have 355 sample curves

for each of the seven functional variables. We plot all sample curves in Figure S.7

in the supplementary material.

NO2 is a gaseous pollutant commonly used in health effects assessments.

Researchers are interested in the relationship between NO2 and other traffic

pollutants (Beckerman et al. (2008)). We investigated to what extent we can

predict the daily curve of NO2 by the daily curves of the other four pollutants

together with the temperature and relative humidity. We first considered some

evidence on nonlinear relationship between the NO2 curves and the six predictor

curves. Due to the lack of hypothesis testing method on nonlinearity for function-

on-function regression in the literature, we cannot test the nonlinearity as in
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model (1.1) directly. However, if the true relationship between the response and

predictor curves is linear, the value of the response function at each individual

observation point is also linearly related to the predictor curves. Based on this

fact, we performed a restricted likelihood ratio test (Crainiceanu and Ruppert

(2004)) on the linear relationship between each individual value of NO2 and

the predictor curves. The restricted likelihood ratio test was implemented in

the R package RLRsim (Scheipl, Greven and Kuechenhoff (2008)). The p-values

of these tests for 24 individual observations of NO2 were all very close to zero

(< 2.2 × 10−16), which provides strong evidence to reject the null hypothesis of

linearity and indicates nonlinear relationship between NO2 and other curves.

In addition to the nonlinear additive model with six predictor curves, we also

fit the linear function-on-function model using SigComp.linear. To evaluate the

importance of each individual functional predictor, we removed one predictor

at a time and fit a reduced nonlinear model using the other five predictors.

To evaluate the predictive performance of these models, we randomly split the

data into the training set of size 250 and the test set of size 105, and repeated

this 100 times. The average MSPE in 100 repeats was 4.9 × 10−3 (standard

deviation 0.66 × 10−3) for the full nonlinear model, 5.1 × 10−3 (0.84 × 10−3)

for the linear model, 5.3 × 10−3 (0.56 × 10−3) for the reduced nonlinear model

without CO, 6.4× 10−3 (0.78× 10−3) without NMHC, 6.7× 10−3 (0.56× 10−3)

without NOx, 5.1× 10−3 (0.64× 10−3) without C6H6, 11.3× 10−3 (1.55× 10−3)

without temperature, and 7.34 × 10−3 (0.83 × 10−4) without relative humidity.

The full nonlinear model had the smallest mean MSPE and was chosen as the

final model. For the full nonlinear model, in each of the 100 repeats, we calculated

the averaged functional R2 (Meyer et al. (2015))

R2
ave =

∫ 1

0
R2(t)dt ≈ 1

24

24∑
m=1

[
1−

∑250
i=1{Ytrain,i(tm)− Ŷi(tm)}2∑250

i=1{Ytrain,i(tm)− Y train(tm)}2

]
,

where Ytrain,i(t) is the i-th response curve in the training set, Ŷi(t) is the corre-

sponding fitted curve, Y train(t) is the sample mean of the response curves in the

training set and 0 = t1 < · · · < t24 = 1 are 24 equally spaced observation time

points. The average and standard deviation of the R2
ave over 100 repeats were

94.8% and 0.4%, respectively.

For the full nonlinear model, our method chose λ = κ = 10−6 in all 100

replicates, and six components in 90 replicates. So we used all the data to build

the final model with λ = κ = 10−6 and 6 components. Due to the possible

unidentifiable problem of Fj , we used F̂
(DISC)
j to emphasize that we estimate
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F
(DISC)
j (Section 2.1) which may differ from the true nonlinear function. We plot

the estimated µ̂(t) in Figure S.8, and the estimated F̂
(DISC)
j (x, s, 12), 1 ≤ j ≤ 6,

with t = 12, in Figure S.9 of the supplementary material, which shows the

nonlinear patterns of these estimated functions with respect to (x, s). To take

a closer look at the nonlinear relationship between NO2 and other pollutants,

we considered NOx (X3) and studied the nonlinear pattern of F̂
(DISC)
3 (x, s, t)

with respect to x. We draw the curves of F̂
(DISC)
3 (x, s, t) versus x for different

values of s and t in Figure S.10 of the supplementary material. Most of these

curves increase for relatively smaller x (lower concentration of NOx), reach a

maximum at a value between 7 and 7.5 and then decrease for higher concentration

of NOx. These nonlinear patterns may reflect the change of the relationship

between NO2 and NOx for different concentration levels of NOx. To see this,

we pooled all the pairs of hourly concentration values of NO2 and NOx, and

calculated the correlation coefficient using all the pairs with the concentration

value of NO2 less than 7 and the correlation coefficient using all the pairs with

the concentration value of NO2 greater than or equal to 7, respectively. The two

correlation coefficients were -0.49 and -0.26, respectively, implying a great change

of the correlation between NO2 and NOx with the increase of concentration level

of NOx.

6. Discussion

We consider an additive nonlinear function-on-function regression model

with multiple functional predictors. The unspecified forms of the nonlinear func-

tions offer great flexibility to model various relationships between the functional

response and predictors. Without an identifiability assumption, we introduce

specific nonlinear functions which lead to the same model as the true model and

possess a minimum prediction error property. We focus on estimating these spe-

cific nonlinear functions, which leads to high accuracy in estimating the signal

function and predicting the response function.

Our two-step estimation procedure consists of a penalized functional gener-

alized eigenvalue problem and a penalized least squares procedure. Our approach

breaks down the estimation of the trivariate nonlinear functions into problems

of estimating bivariate functions and univariate functions separately, which con-

siderably reduces computational costs in each step and allows multiple predictor

curves. This generalizes the signal compression method in Luo and Qi (2017)

from linear function-on-function regression to nonlinear function-on-function re-
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gression.

As mentioned by a referee, an important issue is to test whether there is a

significant nonlinear relationship between the response curve and the predictor

curves. This has not been studied in the literature and deserves investigation.

Supplementary Materials

The supplementary material includes additional figures, tables and proofs.
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