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Abstract: This paper shows that the commonly encountered volatility persistence

in fitting GARCH models to financial time series can arise if the possibility of

structural changes is not incorporated in the time series model. To avoid spurious

long memory in modeling volatilities of econometric time series, we consider two

time-scales and use the “short” time-scale to define GARCH dynamics and the

“long” time-scale to incorporate parameter jumps. This leads to a Bayesian change-

point ARX-GARCH model, whose unknown parameters can undergo occasional

changes at unspecified times and can be estimated by explicit recursive formulas

when the hyperparameters of the Bayesian model are specified. Efficient estimators

of the hyperparameters of the Bayesian model are developed, yielding empirical

Bayes estimates of the piecewise constant parameters in the stochastic change-

point model. The empirical Bayes approach is applied to the frequentist problem

of partitioning the time series into segments under sparsity assumptions on the

change-points. Simulation and empirical studies of its performance are also given.
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1. Introduction

Volatility modeling is a cornerstone of empirical finance, as portfolio the-

ory, asset pricing, and hedging all involve volatilities. Since the seminal works

of Engle (1982) and Bollerslev (1986), generalized autoregressive conditionally

heteroskedastic (GARCH) models have been widely used to model and forecast

volatilities of financial time series. In many empirical studies of stock returns

and exchange rates, estimation of the parameters ν, a, and b in the GARCH(1,1)

model

yt = σtϵt, σ2t = (1− a− b)ν2 + ay2t−1 + bσ2t−1 (1.1)

reveals high volatility persistence, with the maximum likelihood estimate of a+b

close to 1. To model such persistence, Engle and Bollerslev (1986) considered the

“integrated” GARCH (IGARCH) models, and Baillie, Bollerslev, and Mikkelsen

(1996) introduced fractional integration in their FIGARCH models, with a slow
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hyperbolic rate of decay for the influence of the past innovations, to quantify

the long memory of exchange rate volatilities. However, it has been pointed out

that if the model parameters undergo occasional changes, then the fitted models

that assume time-invariant parameters tend to exhibit long memory; see Diebold

(1986), Perron (1989), Lamoureux and Lastrapes (1990), Mikosch and Starica

(2004), and Hillebrand (2005).

The frequentist approach to incorporating change-points in regression models

without GARCH-type dynamics for the error variances assumes that the change-

points are unknown parameters to be estimated from the data; see Quandt (1958,

1960), Andrews, Lee, and Ploberger (1996), Bai, Lumsdaine, and Stock (1998),

Bai and Perron (1998), Davis, Lee, and Rodriguez-Yam (2006), Qu and Perron

(2007), Spokoiny (2009), Galeano and Tsay (2010), Aue and Lee (2011), and

the references therein. An alternative approach is Bayesian and assumes that

the change-points and the associated regimes are generated by some stochastic

process so that the unknown regression parameters can be estimated from their

posterior distribution via Bayes’ theorem; see Goldfeld and Quandt (1973) and

Hamilton (1989). Albert and Chib (1993) consider ARX models (autoregressive

models with exogenous inputs) whose autoregressive parameters and error vari-

ances are subject to regime changes determined by a two-state Markov chain with

unknown transition probabilities. McCulloch and Tsay (1993) consider AR mod-

els with random shifts in mean and error variance. Wang and Zivot (2000) assume

the number of change-points to be known for random changes in level, trend, and

variance of a time series. Hamilton and Susmel (1994) consider regime switching

in ARCH models, and So, Lam, and Li (1998) consider regime-switching stochas-

tic volatility (SV) models. These are hidden Markov-models (HMMs). Markov

chain Monte Carlo (MCMC) methods, in particular Gibbs samplers, are used to

approximate the optimal smoothers in these HMMs.

In this paper we introduce a new class of change-point ARX-GARCH models

for which there are explicit recursive filters and smoothers, thereby obviating the

reliance on MCMC methods whose convergence properties and performance in

change-point time series models have not been systematically studied because

of their computational complexity. This decoupling of long-run and short-term

volatilities in the GARCH model, so that jumps can be included in the long-

run volatility, is what makes the proposed HMM much easier to handle than

previous ones. The optimal Bayes estimates in our change-point ARX-GARCH

model involve unspecified hyperparameters, which can in principle be estimated

by the EM algorithm. For regime-switching ARCH models, Cai (1994) noted

the “tremendous complication” of the normal equations of the EM algorithm,

making it “extremely difficult” to implement for sample sizes exceeding 50. By

using recursive representations of the summands of the log-likelihood function,
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we have a relatively simple algorithm to evaluate the log-likelihood function and

estimate the hyperparameters of the change-point model. In Section 2 we intro-

duce the change-point ARX-GARCH model and describe the associated filters

for estimating the piecewise constant ARX parameter βn and long-run volatility

νn based on the observations y1, . . . , yn, assuming known hyperparameters that

include the GARCH parameters associated with short-term volatility changes.

We also develop bounded complexity mixture (BCMIX) approximations for effi-

cient computation of these filters and of the likelihood function to estimate the

hyperparameters. We then use these closed-form recursions to develop BCMIX

approximations to the Bayes estimates (smoothers) of βt and νt for 1 ≤ t ≤ n. In

Section 3 we prove volatility persistence of maximum likelihood estimates that

ignore change-points in the stochastic change-point ARX-GARCH model. Previ-

ous works in this direction, which are reviewed in Section 3, have not considered

maximum likelihood estimates that are commonly used to fit GARCH models.

In contrast to our empirical Bayes (EB) approach that assumes a relatively

simple stochastic model for change-points, the frequentist approach, often called

“segmentation”, assumes the change-points and the pre- and post-change regres-

sion coefficients in regression models to be unknown parameters, and uses max-

imum likelihood to estimate them and a model selection criterion to determine

the number of change-ponts. In Section 4, following our previous work in Lai

and Xing (2011) on multiple parameter changes in multiparameter exponential

families, we show how the relative simplicity of the EB smoothers can be used to

resolve difficulties in the frequentist segmentation problem. Asymptotic theory

and simulation studies of the proposed segmentation procedure are presented. In

Section 5 we apply the change-point AR(1)-GARCH(1,1) model to an empirical

analysis of the weekly returns of the SP500 index from 1950 to 2009. We also

evaluate BCMIX predictors and use them for forecasting 1-week ahead returns to

calculate VaR (value at risk). Section 6 gives further discussion and concluding

remarks.

2. A Stochastic Change-point ARX-GARCH Model

To incorporate structural changes in the regression coefficients and the un-

conditional variance of the random disturbances in an autoregressive model with

exogenous inputs (ARX), while allowing the conditional variances to follow a

GARCH model, we consider the change-point ARX-GARCH model

yt = βT
t xt + νt

√
htϵt, (2.1)

in which the parameter vector βt and the unconditional variance ν2t are piecewise

constant, with jumps at times of structural change, the vector xt consists of

exogenous variables and the past observations yt−1, yt−2, . . . , yt−κ, and we use ht
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to represent short-term proportional fluctuations in variance generated by the

GARCH model

ht = (1−
k∑

i=1

ai −
k′∑
l=1

bl) +

k∑
i=1

aiw
2
t−i +

k′∑
l=1

blht−l, with ws =
√
hsϵs. (2.2)

The ϵt are assumed to be i.i.d. standard normal random variables such that ϵt
are independent of xt, and the time-invariant GARCH parameters a1, . . . , ak,

b1, . . . , bk′ are assumed to satisfy ai ≥ 0, bl ≥ 0 and
∑k

i=1 ai +
∑k′

l=1 bl ≤ 1.

Letting τt = 1
/
(2ν2t ), we assume θt = (βT

t , τt)
T to be piecewise constant and

satisfy the following conditions.

(A1) For t > t0 = max(k, k′), the change-times of θt form a renewal process with

i.i.d. inter-arrival times that are geometrically distributed with parameter

p or, equivalently,

It := 1{θt ̸=θt−1} are i.i.d. Bernoulli(p) with P (It = 1) = p,

It0 = 1, and there is no change-point prior to t0.

(A2) θt = (1− It)θt−1 + It(z
T
t , γt)

T , where (zT1 , γ1)
T , (zT2 , γ2)

T , . . . are i.i.d. ran-

dom vectors such that zt|γt ∼ Normal(z,V/(2γt)), γt ∼ χ2
d/ρ, with χ

2
d the

chi-square distribution with d degrees of freedom.

(A3) The processes {It}, {(zTt , γt)}, and {(xt, ϵt)} are independent.

2.1. Closed-form recursive filters

Conditions (A1)−(A3) specify a Markov chain with unobserved states (It,θt).

The observations (xt, yt) are such that (yt − βT
t xt)/νt forms a GARCH process.

This hidden Markov model (HMM) has hyperparameters p, z,V, ρ, d, a1, . . . , ak,

b1, . . . , bk′ . To estimate θt assuming known hyperparameters, we extend the

method of Lai, Liu, and Xing (2005) for the special case xt = (yt−1, . . . , yt−k)
T

and ht ≡ 1, in which the error variances σ2n have jumps but do not undergo

GARCH dynamics. Let Jn = max{t ≤ n : It = 1} and note that n − Jn ≥ k

by (A1). Define Yn = (x1, y1, . . . ,xn, yn) and Yj,n = (xj , yj , . . . ,xn, yn). The

estimates β̂n and ν̂2n based on Yn are weighted averages of β̂n,j and ν̂
2
n,j based on

Yj,n, with the weights pn,j to be specified. The β̂n,j and ν̂2n,j can be computed

recursively (with increasing n and fixed j). Initializing at n = j−1 with β̂n,j = z,

V̂n,j = V, and ν̂2n,j = ρ/(2d), define for n ≥ j,

ĥn,j = (1−
k∑

i=1

ai −
k′∑
l=1

bl) +

k′∑
l=1

blĥn−l,j +

k∑
i=1

ai
(yn−i − β̂T

n−i,jxn−i)
2

ν̂2n−i,j

. (2.3a)
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Vn,j =Vn−1,j −
{Vn−1,jxnx

T
nVn−1,j

ĥn,j + xT
nVn−1,jxn

}
, (2.3b)

β̂n,j = β̂n−1,j +
{Vn−1,jxn

(
yn − β̂T

n−1,jxn

)
ĥn,j + xT

nVn−1,jxn

}
, (2.3c)

ν̂2n,j =
d+ n− j − 2

d+ n− j − 1
ν̂2n−1,j +

1

d+ n− j − 1
·

(yn − β̂T
n−1,jxn

)2
ĥn,j + xT

nVn−1,jxn

, (2.3d)

The weights pn,j are the posterior probabilities P (Jn = j|Yn) and are given

recursively by

pn,j ∝ p∗n,j :=


pfnn

f00
if j = n,

(1−p)pn−1,jfnj

fn−1,j
if j ≤ n− 1,

(2.4)

where, letting zn,j = Vn,j

(
V−1z +

∑n
t=j xtyt

/
ĥt,j

)
and ρn,j = ρ/2 + zTV−1z −

zTn,jV
−1
n,jzn,j +

∑n
t=j y

2
t /ĥt,j , pn,j = p∗n,j

/∑n
j′=1 p

∗
n,j′ and the fnj are given ex-

plicitly by fnj = |Vn,j |1/2Γ((d+n−j+1)/2)ρ
−(d+n−j+1)/2
n,j and f00 = |V|1/2Γ(d/2)

(ρ/2)−d/2.

Note that the preceding extension from the case ht ≡ 1 in Lai, Liu, and Xing

(2005) to more general known ht basically amounts to extending OLS (given the

most recent change-point Jn) to GLS. Although (2.1) has decomposed the coef-

ficient of ϵt into the factor νt that undergoes occasional changes and a GARCH

part
√
ht that involves the time-invariant parameters ai and bl, the potential

change-point j enters not only in (2.3d) for ν̂2n,j , but also in (2.3a) for ĥn,j which

needs ν̂2n−i,j and β̂n−i,j to estimate w2
n−i. Note that given Jn = j, (2.3a) corre-

sponds to replacing hn and w2
n−i in (2.2) by ĥn,j and (yn−i− β̂T

n−i,jxn−i)
2
/
ν̂2n−i,j ,

respectively. The recursion (2.3a) for ĥn,j is a major advance over Section 2 of

Lai, Liu, and Xing (2005) in which GARCH dynamics for short-term volatility

is absent.

2.2. Estimation of hyperparameters

Another advance of the present paper over Lai, Liu, and Xing (2005) is

related to estimation of hyperparameters. The above Bayesian filter involves

z,V, ρ, d, p, and η = (a1, . . . , ak, b1, . . . , bk′). In particular, the parameter vector

η is pivotal to GARCH dynamics for short-term volatility and has to be well

estimated. Note that z is the prior mean of βt and ρ/(d − 2) is the prior mean

of 2ν2 at time t when parameter changes occur. As noted in Lai and Xing

(2008, p.107), it is more convenient to represent the χ2
d/ρ prior distribution

for (2ν2t )
−1 as a Gamma(d/2, ρ/2) distribution so that d does not need to be
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an integer. The recursions (2.3b) and (2.3c) are basically recursions for ridge

regression which shrinks the GLS estimate (generalized least squares using the

weights ĥt,j) towards z, with V−1 and
∑n

t=j xtx
T
t being the matrix weights for

the shrinkage target and the GLS estimator, respectively. The shrinkage target

z and its associated weight matrix V−1 are relevant when n − j is small, but

become increasingly negligible with increasing n − j. We can estimate z, V, ρ,

and d by applying the method of moments to the stationary distribution of the

Markov chain (It,θt, ϵt) that is partially observed via (xt, yt). Details are given

below. With z, V, ρ, and d replaced by these estimates, we then estimate η and

p by maximum likelihood. The log-likelihood function ℓn based on y1, . . . , yn has

the representation

log ℓn(η, p) =

n∑
t=1

log f(yt|Yt−1,xt) =

n∑
t=1

log
[ t∑
j=1

p∗t,j(η, p)
]
, (2.5)

where f(·|·) denotes conditional density and p∗t,j is given by (2.4); see Section 2.3

of Lai and Xing (2011). Further simplifications for implementation are given in

the next section. The hyperparameter estimates in Section 5 of Lai, Liu, and Xing

(2005) use a coarser accumulated prediction error criterion or sequential Monte

Carlo, which becomes much harder to implement when the GARCH parameter

η is also present and has to be estimated well.

We now describe the method-of-moments estimates of z, V, ρ, and d based

on (xt, yt), 1 ≤ t ≤ n. From (A2) and (A3), it follows that E(βt) = z, Cov(βt) =

(Eν2t )V, and E(xtyt) = E(xtx
T
t )z. From n − L moving windows {(xt, yt) :

s ≤ t ≤ s + L} of these data, compute the least squares estimate and denote

it as β̂(s). Each β̂(s) is a method-of-moments estimate of z, and so is β =

(n − L)−1
∑n−L

s=1 β̂(s). If an oracle would reveal the change-times up to time n,

then one would segment the time series accordingly and use the least squares

estimate for each segment to estimate the regression parameter for that segment.

The average of these least squares estimates over the segment would provide

a method-of-moments estimate of z. Similarly, the average squared residual in

each segment is a method-of-moments estimate of E(ν2t ) = ρ/[2(d − 2)] and so

is the average of these values over the segments; see Engle and Mezrich (1996).

In ignorance of the change-points, we replace the segments by moving windows

of length L + 1 in β̂(s) and estimate z by the average β of the β̂(s). Likewise

we estimate ρ and d by equating the mean and variance of the inverted gamma

distribution for ν2t to their sample counterparts for the average squared residuals.

And similarly we can estimate V. By the Ergodic Theorem, the averages over s

in β and these sample counterparts converge to their means under the stationary

distribution of the Markov chain (It,θt, ϵt,xt), with probability 1 as n → ∞,
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assuming that xt is also an ergodic Markov chain. Moreover, if L is chosen much

smaller than 1/p, then most of the moving windows do not have change-points,

and therefore the method-of-moments estimates differ from the preceding oracle

estimates by op(1) as pL→ 0.

2.3. Bounded complexity mixture approximations

Although (2.4) provides closed-form recursions for updating the weights pt,i,

1 ≤ i ≤ t, the number of weights increases with t, resulting in rapidly increas-

ing computational complexity and memory requirements for estimating θn as

n increases. A natural idea to reduce the complexity and to facilitate the use

of parallel algorithms for the recursions is to keep only a fixed number M of

weights at every stage n (which is tantamount to setting the other weights to

be 0). Following Lai, Liu, and Xing (2005), we keep the most recent m weights

pn,i (with n − m < i ≤ n) and the largest M − m of the remaining weights,

where 1 ≤ m < M . Specifically, let Kn−1 denote the set of indices i for which

pn−1,i is kept at stage n − 1; thus Kn−1 ⊃ {n − 1, , · · · , n − m}. At stage n,

define p∗n,i by (2.4) for i ∈ {n} ∪ Kn−1, and let in be the index not belong-

ing to {n, n − 1, · · · , n − m + 1} such that p∗n,in = min{p∗n,i : j ∈ Kn−1 and

j ≤ n − m}, choosing in to be the one farthest from n if the minimizing set

in p∗n,in has more than one element. Define Kn = {n} ∪ (Kn−1 − {in}) and let

pn,i = p∗n,i

/∑
j∈Kn

p∗n,j .

We use these BCMIX not only to approximate the filters (βt, νt)|Yt but

also to approximate the likelihood function (2.5), in which we replace
∑t

j=1 by∑
j∈Kt

. Letting λ = (p,η), the maximizer λ of ℓn−1(λ) is used to replace λ in the

recursions (2.3) and (2.4). For reasons explained in Lai and Xing (2011, p.548),

we use a grid of the form {2j/n : j0 ≤ j ≤ j1}, where j0 < 0 < j1 are integers, to

search for the maximum of ℓn(p; η̂n). The update η̂n of the GARCH parameters

after observing (xn, yn) uses a single iteration of the Newton-Raphson iteration

procedure to maximize ℓn(p̂n−1,η) when n ≥ n0, and uses more iterations until

convergence for small n. Therefore relatively fast updates of the hyperparameters

estimates can be used to implement the adaptive BCMIX filters.

2.4. BCMIX smoothers

We begin by deriving the Bayes estimate (smoother) of θt = (βT
t , τt)

T given

Yn for 1 ≤ t ≤ n in the “oracle” setting in which the ht are specified exactly (by

the oracle) so that there are explicit recursive representations of the posterior

mean of θt given Yn for 1 ≤ t ≤ n. To obtain the optimal smoother E(θt|Yn) for

1 ≤ t ≤ n, we use Bayes’ theorem to combine the forward filter θt|Yt with the

backward filter θt|Yt+1,n; see Section 2.2 of Lai and Xing (2011). Because the
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ht are assumed known in (yt − βT
t xt)

/√
ht = νtϵt and the ϵt are i.i.d. standard

normal, the backward filter has the same form as the forward filter. Note that

assumptions (A1)−(A3) define a reversible Markov chain of jump times and

jump magnitudes, assuming In−t0+1 = 1 and no change-points afterwards. Let

π denote the density function of the stationary distribution. Letting J̃t+1 =

min{s ≥ t + 1 : Is = 1} and qt+1,j = P (J̃t+1 = j|Yt+1,n) for j ≥ t + 1, we can

reverse time and obtain a backward filter that is similar to the forward filter:

f(θt|Yt+1,n) = pπ(θt) + (1− p)

n∑
j=t+1

qt+1,jf(θt+1|Yt+1,n, J̃t+1 = j),

in which

qt+1,j ∝ q∗t+1,j =


pfjj
f00

if j = t+ 1,

(1−p)qt+2,jft+1,j

ft+2,j
if j ≥ t+ 2.

Application of Bayes’ theorem then yields

f(θt|Yn) =
∑

1≤i≤t≤j≤n

αijtf(θt|Yn, Cij), (2.6)

where Cij = {Ii = 1, Ii+1 = · · · = Ij = 0, Ij+1 = 1} and the αijt are determined

recursively by

αijt =
α∗
ijt

At
, At =

∑
1≤i≤t≤j≤n

α∗
ijt,

α∗
ijt =

ppi,t, i ≤ t, j = t,

api,tqt+1,jf00fij
fitft+1,j

, i ≤ t, j > t.

(2.7)

The next step is to approximate αijt by α̂ijt that replaces the ht, which is

actually unknown, by the estimates ĥj,i defined recursively for j ≥ i by (2.3a).

As in Section 2.1, we assume known hyperparameters p and η for the time be-

ing. Using the BCMIX approximation to the forward and backward filters, we

approximate the sum in (2.6) and that defining At in (2.7) by

βt|τn,Yn ∼
∑

i∈Kt,j∈{t}∪K̃t+1

αijtN(zj,i,
Vj,i

(2τj,i)
), τj,i|Yn ∼

χ2
d+j−i+1

ρj,i
, (2.8)

where Kt is the same as that in Section 2.3 for the forward filter and K̃t+1 is the

corresponding set for the backward filter; see Section 4.2 of Lai and Xing (2011).

Assuming known η and p, the BCMIX estimates for βt and νt given Yn are

β̂t|n =
∑

i∈Kt,j∈{t}∪K̃t+1

αijtzj,i, ν̂2t|n =
∑

i∈Kt,j∈{t}∪K̃t+1

αijt
ρj,i

d+ j − i− 1
.

(2.9)
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Moreover, the conditional probability of a change point at time t given Yn is

estimated by

P̂ (It+1 = 1|Yn) =
∑
1≤i≤t

P̂ (Cit|Yn) =
p

At
. (2.10)

Without assuming p and η to be known, we can use the BCMIX approxima-

tion in the log-likelihood function (2.5) based on Yn, and evaluate its maximizer

(p̂, η̂). Replacing (p,η) by (p̂, η̂) in (2.8) yields the BCMIX empirical Bayes

smoother.

3. Long-range Dependence in GARCH Models Ignoring Change-points

Mikosch and Starica (2004) pointed out that although the “integrated

GARCH effect” had been related to structural changes in the financial econo-

metrics literature dating back to Diebold (1986), the studies to date made use

of “either simulations or indirect approaches to substantiate their claims.” They

showed that the sample autocorrelation function of the squared log-returns of

a piecewise stationary GARCH sequence approaches a positive constant as the

lag approaches ∞ and that the spectral density estimates at arbitrarily small

frequencies can become arbitrarily large. They also showed that the maximiz-

ers of the Whittle likelihood of a fitted GARCH(1,1) model converges to that

of a nonrandom function −∆ as the sample size approaches ∞, and noted that

although “it is not possible to obtain an explicit form of the minimizer” of ∆,

one can minimize ∆ “numerically” to show that the sum â+ b̂ of the estimated

parameters converges to 1 when the underlying GARCH model is piecewise sta-

tionary. Hillebrand (2005) considered the ideal case in which ϵt and its coefficient

σt =
√
htνt are completely observable so that method-of-moments estimation of

an assumed GARCH(1,1) model can be based on (σt, ϵt). Assuming that “the

influence of a single realization” of (σt, ϵt) on the estimator of the GARCH pa-

rameters “vanishes with growing sample size,” he showed that â + b̂ converges

to 1 when the underlying model is piecewise stationary. He called this “spu-

rious almost-integration” and conjectured that “if spurious almost-integration

occurs when σt and ϵt are observable, it will also occur when there is less perfect

information about the volatility condition of the market.”

In this section we prove that this spurious almost-integration property holds

for maximum likelihood estimates in the proposed stochastic change-point ARX-

GARCH model satisfying (A1)−(A3), and such that xt is an ergodic Markov

chain with stationary transition probabilities. We begin by considering the

GARCH(1,1) model without the ARX component, which can be written as

(1− λ∗B)y2t = ωt + ζt − b∗ζt−1, (3.1)
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where λ∗ = a∗ + b∗, a∗ and b∗ denote the true values of a and b, ζt = y2t − σ2t ,

σ2t = htνt, ωt = (1 − λ∗)ν2t , and B denotes the back-shift operator. Note that

(yt, σ
2
t , ωt) is an ergodic Markov chain with stationary distribution π and that

yt is a component of this chain. As shown below, fitting the GARCH model

(1.1) by maximum likelihood is asymptotically equivalent to choosing a, b, and

ω = (1 − a − b)ν2 in (1.1) to yield the smallest Kullback-Leibler divergence (or

relative entropy) of the fitted Markov chain (yt, σ
2
t (ω, a, b)) to the actual chain.

The relative entropy, which is of basic importance in information theory, is a

measure of the discrepancy of an approximating distribution Q from the actual

distribution P . If P is the distribution of a sequence of random variables, one

would like Q to capture the time series properties of P , and the better Q is able

to do so, the less is the relative entropy.

In the actual Markov chain (3.1), ωt has occasional jumps at random times

generated by a geometric renewal process. We can express ωt as ω
∗ + δt, where

ω∗ = (1−λ∗)Eπ(y
2
t ), Eπ(δt) = 0, δt is piecewise constant with expected duration

1/p between consecutive jumps, and Eπ denotes expectation when the initial

distribution of the Markov chain is the stationary distribution π. The fitted

GARCH(1,1) model ignores the component δt in

(1− λ∗B)y2t = ω∗ + δt + ζt − b∗ζt−1, (3.2)

and considers only the moving average ζt− b∗ζt−1 of uncorrelated innovations ζi,

which are in fact martingale differences. Choosing λ = a+ b not sufficiently close

to 1 in (1.1) would miss the time-scale of 1/p for the average jump time of δt,

and time series of length n generated from the fitted model would have too short

memory in comparison with the observed y1, . . . , yn. The smallest Kullback-

Leibler divergence of the fitted GARCH(1,1) model is attained by choosing λ =

λ(p), with λ(p) → 1 as p→ 0 to capture the long time-scale.

Mikosch and Starica (2004) have shown that the sample autocorrelation func-

tion of y2t approaches a positive constant as the lag approaches ∞, suggesting

long-range dependence, when the underlying GARCH(1,1) model is piecewise

stationary. Their piecewise stationarity means that the GARCH(1,1) model has

r change-points for its parameters (ω, a, b) so that the parameters between suc-

cessive change-points are time-invariant. They assume that r is fixed and that

the number of observations between two successive change-points becomes in-

finite as n → ∞. In this general framework they “cannot provide a (theoreti-

cal) result for the asymptotic behavior” of the maximum likelihood estimator.

By using the proposed stochastic change-point model to embed the piecewise

constant stationary GARCH(1,1) model into an ergodic Markov chain with sta-

tionary transition probabilities, we can use the stationary distribution to derive

the Kullback-Leibler divergence of a fitted GARCH model from the true one
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that has change-points. Technical details are given below and rely on a repre-

sentation of the likelihood function provided by Berkes, Horváth, and Kokoszka

(2003), abbreviated BHK. Letting n → ∞ and then p → 0 establishes the spu-

rious almost-integration property in fitting a GARCH(1,1) model by maximum

likelihood to the stochastic change-point model (3.2).

The preceding argument can clearly be extended to stochastic change-point

GARCH(k, k′) models. In fact, BHK considers general k and k′ and writes the

log-likelihood function, based on y1, . . . , yn, of an assumed GARCH(k, k′) model

(without change-points), as

Ln(θ) = −1

2

n∑
t=1

{
log ut(θ) +

y2t
ut(θ)

}
, (3.3)

where θ = (ω, a1, . . . , ak, b1, . . . , bk′), ut(θ) = c0(θ) +
∑t−1

i=1 ci(θ)y
2
t−i, and ci(θ)

are defined by explicit recursions; see p.216 and Section 3 of BHK. The sequence

c1(θ), c2(θ), . . . “decays exponentially fast,” uniformly in Θϵ,ϵ′,ϵ′′ :=
{
θ : b1 +

· · · + bk′ ≤ ϵ,min(θ) ≥ ϵ′,max(θ) ≥ ϵ′′
}

for any 0 < ϵ < 1, 0 < ϵ′ < ϵ/k′

and ϵ′′ > ϵ′, where min(θ) and max(θ) denote the minimum and maximum of

the components of θ, respectively (BHK, pp.205 and 211). Since the Markov

chain (yt, σ
2
t , ωt) is ergodic, it follows from the Ergodic Theorem that n−1Ln(θ)

converges a.s. to

ℓ(θ) := −1

2
Eπ

{
log

[
c0(θ) +

∞∑
i=1

ci(θ)y
2
−i

]
+

y20[
c0(θ) +

∑∞
i=1 ci(θ)y

2
−i

]} (3.4)

uniformly over Θϵ,ϵ′,ϵ′′ , where we extend the stationary sequence {yt, t ≥ 1} (un-

der π) to {yt,−∞ < t < ∞}; see p.214 of BHK and the second paragraph

of Section 2.2. The log-likelihood, based on y1, . . . , yn, under the true model

is ℓ(η∗, p∗) given by (2.5), with η∗ and p∗ denoting the actual hyperparameter

values in the change-point GARCH(k, k′) model and with the other hyperparam-

eters also replaced by their actual values. A similar argument using the Ergodic

Theorem shows that n−1ℓn converges a.s. to

ℓ∗ := lim
t→∞

Eπ

{
log f(yt|Yt−1)

}
.

The Kullback-Leibler divergence of the GARCH model with parameter vector θ

from the actual stochastic change-point model is ℓ∗− ℓ(θ). Therefore choosing θ

to maximize the log-likelihood (3.3) is asymptotically equivalent to finding the θ

that minimizes the Kullback-Leibler divergence ℓ∗−ℓ(θ). The best approximating

GARCH(k, k′) model to the stochastic change-point model in terms of Kullback-

Leibler divergence would choose the GARCH parameters to capture the time-

scale of 1/p for the average jump time of ωt, explaining the volatility persistence
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of the fitted model when p is small. This argument can be readily extended to
the ARX-GARCH model with contemporaneous jumps in the ARX and GARCH
parameters if xt in (2.1) is also assumed to be an ergodic Markov chain.

The piecewise stationary GARCH model of Mikosch and Starica (2004) cor-
responds to the case n → ∞ and p → 0 such that np → r > 0 if we embed it in
the stochastic change-point GARCH(1,1) model. Although this does not fall in
the asymptotic regime n→ ∞ and then p→ 0 of the preceding argument, we can
use a more direct argument to show that n−1Ln(θ) still converges in this case;
in fact, the limit is a convex combination of the limits over different stationary
pieces. The maximizing θ again exhibits spurious almost-integration because of
the time-scale of 1/p for the average jump time of ωt.

As noted by BHK (p.202), the GARCH(k, k′) model can be defined recur-
sively by

Yt+1 = AtYt + (ω, 0, . . . , 0)T , (3.5)

where Yt = (σ2t , . . . , σ
2
t−k′+1, y

2
t−1, . . . , y

2
n−k+1)

T ∈ R
k+k′−1 and At is a (k +

k′ − 1) × (k + k′ − 1) matrix whose entries involve a1, . . . , ak, b1, . . . , bk′ , and
ϵ2n. Our change-point GARCH(k, k′) model also has this representation with ω
replaced by ωt+1 in (3.5). Siegmund (2001) has considered such recursions in the
univariate case, Yt+1 = AtYt +Wt, and derived an asymptotic recursion in the
univariate case for the tail behavior of the stationary distribution of Yt. He says
that “one motive for studying (the recursion) is to obtain information about the
ARCH(1) process,” which is a special case of the recursion.

4. Application to the Segmentation Problem

In principle, the frequentist approach to multiple change-point problems for
regression models reviewed in Section 1 can be extended to ARX-GARCH models
by maximizing the log-likelihood over the locations of the change-points and
the piecewise constant parameters when it is assumed that there are k change-
points. This optimization problem, however, is much more difficult than that for
regression models and only constitutes an inner loop of an algorithm whose outer
loop is another minimization, over k, of a suitably chosen model selection criterion
to determine k. One such selection criterion is Siegmund’s (2004) modified BIC
for non-smooth (such as change-point) models. In this section, we use the relative
simplicity of the BCMIX smoothers in the empirical Bayes approach in Section
2 to circumvent the computational complexity of the segmentation problem.

For computational and analytic tractability, the frequentist approach typi-
cally assumes that k is small relative to n and that adjacent change-points are
sufficiently far apart so that the segments are identifiable except for relatively
small neighborhoods of change-points; see e.g., Bai and Perron (1998), Mikosch
and Starica (2004), Galeano and Tsay (2010). Lai and Xing (2011) formulate
these assumptions for the piecewise constant parameter vectors θt as follows.
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(B1) The true change-points occur at t
(n)
1 < · · · < t

(n)
k such that lim infn→∞ n−1

(t
(n)
i − t

(n)
i−1) > 0 for 1 ≤ i ≤ k + 1, with t

(n)
0 = 0 and t

(n)
k+1 = n.

(B2) There exists δ > 0, which does not depend on n, such that min1≤i≤k ||θt(n)
i

−
θ
t
(n)
i−1

|| ≥ δ for all large n.

In addition, we also assume that the stochastic regressors satisfy a stability con-

dition.

(B3) max1≤t≤n ||xt||2/n
P−→ 0 and

∑n
t=1 xtx

T
t

/
n converge a.s. to a positive defi-

nite non- random matrix.

In the case of an AR(κ) model for which xt = (yt−1, . . . , yt−κ)
T , the stationary

assumption that 1− βt,1z − · · · − βt,κz
κ has roots inside and uniformly bounded

away from the unit circle for t ∈ {1, t(n)1 , . . . , t
(n)
k }, as in Lai, Liu, and Xing (2005),

ensures (B3). For an ARX model, besides this stationarity assumption on the

coefficients of yt−j , we also require that the subvector consisting of the other

components of xt (representing the exogenous inputs) satisfies (B3). Making use

of (B1)−(B3) and an argument similar to that used in the proof of Theorem 2

in Lai and Xing (2011, pp.563-567), we can prove the following.

Theorem 1. Assume (B1)−(B3) and that m ∼ | logn|1+ϵ and M −m = O(1)

as n→ ∞, for some ϵ > 0. Then the BCMIX smoother θ̂t|n satisfies

max
1≤t≤n:min1≤i≤k |t−t

(n)
i |≥m

||θ̂t|n − θt|| → 0, as n→ ∞

uniformly in a1/n ≤ p ≤ a2/n.

The proof of Theorem 1 proceeds by first assuming the GARCH parameter

vector η to be known and showing that the BCMIX smoother θ̂t|n(p) has the

desired convergence property uniformly in a1/n ≤ p ≤ a2/n. It then proves

consistency of η̂ and thereby establishes the desired result for θ̂t|n. Following

Lai and Xing (2011), we can apply Theorem 1 to estimate the change-times

t
(n)
1 , . . . , t

(n)
k in (B1). Let

∆t = ||θ̂t+m − θ̂t−m||2, (4.1)

and let τ̂1 be the maximizer of ∆t over m < t < n −m. After τ̂1, . . . , τ̂j−1 have

been defined, take

τ̂j = arg max
t:m<t<n−m,min1≤i≤j−1 |t−τ̂i|≥m

∆t. (4.2)
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Note that the estimates τ̂j of the change-times are unordered and do not de-

pend on the number k of change-points. Assuming that there are k change-

points, we can order τ̂1, . . . , τ̂k as t̂(1),k < · · · < t̂(k),k to provide estimates of

t
(n)
1 < · · · < t

(n)
k . Let θ(j) be the common value of θt in the interval t

(n)
j−1 ≤ t <

t
(n)
j . Assuming t

(n)
1 , . . . , t

(n)
k to be known, we can estimate the parameter vectors

θ(1),θ(2), . . . ,θ(k+1), which are the parameter values prior to t
(n)
1 , between t

(n)
1

and t
(n)
2 , . . ., and after t

(n)
k , respectively, by maximum likelihood. Replacing the

t
(n)
1 , . . . , t

(n)
k by the estimates t̂(1),k < · · · < t̂(k),k in these MLE’s leads to the

quasi-likelihood estimators θ̃(1), . . . , θ̃(k+1), η̃ and the quasi-likelihood Λn(k) =∑k+1
j=1

∑t̂(j),k−1

t=t̂(j−1),k
log f(yt;θ

(j),η), in which f(·;θ,η) is the density function of yt

given the piecewise constant parameter values, noting that (yt − βT
t xt)

/
(νt

√
ht)

is standard normal. Assuming a known upper bound K on the number k of

change-points in (B1), Lai and Xing (2011) propose to estimate k by k̂n =

argmax1≤k≤K{Λn(k) − (k + 1)Cn}, where Cn is a penalty term that satisfies

Cn → ∞ and Cn/n→ 0 as n→ ∞. (4.3)

Examples of (4.3) are the BIC and Siegmund’s (2004) modified BIC. Making use

of Theorem 1, we prove in the Appendix the following result on the consistency

of k̂n and η̃ and θ̃(j).

Theorem 2. Under the assumptions of Theorem 1, k̂n
P−→ k, and η̃

P−→ η and

θ̃(j) P−→ θ(j) for 1 ≤ j ≤ k + 1.

To compare the true parameter process {θt} and an estimated process {θ̂t},
we consider their relative entropy (Kullback-Leibler information) KL = n−1

∑n
t=1

KLt, where in our change-point stochastic regression model with standard normal

ϵt, the relative entropy KLt is given by

2KLt =

[
xT
t (βt − β̂t)

]2
v̂2t ĥt

+
v2t ht

v̂2t ĥt
− log

v2t ht

v̂2t ĥt
− 1.

A simulation study of the performance of the preceding segmentation procedure

considered the mean-shift GARCH(1,1) model (which is a special case of (2.1)

with xt ≡ 1):

yt = µt + νt
√
htϵt, 1 ≤ t ≤ n = 1, 000,

in which ht = 1 − a − b + aw2
t−1 + bht−1, with seven choices of the GARCH

parameters: (a, b) = (0.1, 0.3), (0.1, 0.5), (0.1, 0.7), (0.3, 0.3), (0.3, 0.5), (0.5, 0.3),

(0.5, 0.4), and five scenarios of the number of change-points and the piecewise

constant (µt, νt):
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Table 1. Kullback-Leibler information KL (with standard error in parenthe-

ses) and relative frequency of k̂.

a 0.1 0.1 0.1 0.3 0.3 0.5 0.5
b 0.3 0.5 0.7 0.3 0.5 0.3 0.4

(a)
KL 0.0015 0.0021 0.0047 0.0065 0.0181 0.0233 0.0352

(4.5e-5) (5.6e-5) (9.4e-5) (1.1e-4) (2.0e-4) (2.3e-4) (2.7e-4)

k̂ = 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(b)

KL 0.0033 0.0038 0.0060 0.0074 0.0256 0.0234 0.091
(7.3e-5) (8.2e-5) (1.1e-4) (1.5e-4) (7.0e-4) (6.4e-4) (2.4e-3)

k̂ = 1 0.977 0.968 0.923 0.912 0.735 0.759 0.510

k̂ = 2 0.023 0.031 0.073 0.078 0.192 0.180 0.286

k̂ ≥ 3 0 0.001 0.004 0.010 0.073 0.061 0.204

(c)

KL 0.0060 0.0067 0.0098 0.0111 0.0238 0.0246 0.0499
(9.9e-5) (1.1e-4) (1.6e-4) (1.7e-4) (4.6e-4) (4.5e-4) (1.1e-3)

k̂ = 2 0.960 0.943 0.878 0.882 0.724 0.726 0.596

k̂ = 3 0.038 0.056 0.109 0.107 0.200 0.203 0.244

k̂ ≥ 4 0.002 0.002 0.013 0.011 0.076 0.071 0.160

(d)

KL 0.0080 0.0105 0.0213 0.0199 0.0477 0.0418 0.1152
(1.2e-4) (1.7e-4) (3.2e-4) (2.9e-4) (7.5e-4) (7.2e-4) (2.1e-3)

k̂ = 2 0 0 0.016 0.002 0.002 0 0

k̂ = 3 0.929 0.878 0.637 0.689 0.430 0.507 0.221

k̂ = 4 0.069 0.116 0.237 0.207 0.318 0.270 0.239

k̂ ≥ 5 0.002 0.006 0.110 0.102 0.250 0.223 0.540

(e)

KL 0.0206 0.0207 0.0256 0.0333 0.1649 0.1813 0.1927
(5.5e-4) (5.6e-4) (8.4e-4) (1.2e-3) (3.7e-3) (4.2e-3) (4.3e-4)

k̂ − k 0.182 0.196 0.240 0.310 1.286 1.291 3.451

se(k̂ − k) 0.016 0.015 0.017 0.022 0.042 0.042 0.113

(a) no change-point and (µt, νt) ≡ (0, 1);

(b) one change-point and (µt, νt) = (−0.5, 0.5)1{t≤n/2} + (0.5, 0.75)1{t>n/2};

(c) two change-points and (µt, νt) = (−0.5, 0.5)1{t≤n/4} +(0.5, 0.75)1{n/4<t≤3n/4}
+(0, 0.6)1{t>3n/4};

(d) three change-points and (µt, νt)=(−0.5, 0.5)1{t≤n/4} +(0.5, 0.75)1{n/4<t≤n/2}
+(0, 0.6)1{n/2<t≤3n/4}+(−0.5, 0.8)1{t>3n/4};

(e) the number of change-points and (µt, νt) follow (A1)−(A3) with p = 0.01,

z = 0, V = 1, d = 5 and ρ = 1.

The results on KL and the distribution of k̂, based on 1,000 simulations, are sum-

marized in Table 1; it shows that the proposed segmentation procedure performs

well in the frequentist and Bayesian scenarios.



1588 TZE LEUNG LAI AND HAIPENG XING

5. An Empirical Study

Figure 1, top panel, plots the weekly returns rt of the SP500 index, from

the week starting on January 2, 1990 to the week starting on August 24, 2009.

The dataset consists of n = 1024 closing prices Pt on the last day of the week

from which the returns yt = Pt/Pt−1 − 1 are computed. The mean, variance,

skewness, and kurtosis of the return series are 1.327×10−3, 5.570×10−4, −0.477,

and 8.992, respectively. We fit the change-point AR(1)-GARCH(1,1) model

yt = µt+αtyt−1+νtwt, wt =
√
htϵt, ht = 1−a−b+aw2

t−1+bht−1 (5.1)

to these data, assuming (A1)−(A3) for the stochastic dynamics of (µt, αt, νt).

The bottom panel of Figure 1 plots the posterior probability P (It = 1|Yn) of a

change-point at time t given by the fitted model via (2.10). For comparison, we

also use garchfit in MATLAB to fit the AR(1)-GARCH(1,1) model

yt = µ+ αyt−1 + wt, wt = σtϵt, σ2t = ω + ψw2
t−1 + ϕσ2t−1, (5.2)

with time-invariant parameters, to these data. In both (5.1) and (5.2), ϵt are

assumed to be i.i.d. standard normal. The maximum likelihood estimates of the

parameters of (5.2), based on the entire time series yt, 1 ≤ t ≤ n, are

µ̂ = 2.046× 10−3, α̂ = −0.110, ω̂ = 1.1340× 10−5, ψ̂ = 0.841, ϕ̂ = 0.147.

(5.3)

Note that ψ̂+ ϕ̂ = 0.988 is very near 1, suggesting high volatility persistence. In

comparison, for the change-point AR(1)-GARCH(1,1) model (5.1), â+ b̂ = 0.02.

We use the method in Sections 2.2 and 2.3 with L = 30 and m = 10, M = 20

to estimate (µt, αt, νt) in model (5.1) based on observations up to time t. Figure

2 plots the time-varying estimates of µ̂t (top) α̂t (middle), and unconditional

volatilities ν̂t (bottom), respectively.

We use the segmentation procedure in Section 3 to locate structural breaks

in a frequentist framework of change-points. The procedure yields six change-

points and segments the time series into seven segments given in the first column

of Table 2. As noted in Section 1, the high persistence in GARCH models might

be spurious in the presence of structural changes. The second column in Table

2 shows that the fitted value of ϕ+ ψ for model (5.2) in each segmented period

is markedly less than 1. Table 2 also compares the average of the estimated

unconditional volatilities ν̂t over t in model (5.1) with ν̃ =
{
ω̃/(1 − ψ̃ − ϕ̃)

}1/2

for model (5.2) in different segments; we use (ω̃, ψ̃, ϕ̃, α̃, µ̃) to denote the MLE

for a segment to distinguish it from the estimate (5.3) for the entire time series.

The estimated average volatility in (5.1) is quite similar to its counterpart ν̃

in (5.2) for each segment, and has the same pattern as that shown in Figure
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Figure 1. Weekly returns of SP500 index (top) and the posterior probability
(bottom).

Figure 2. Estimates of time-varying intercepts µt (top), AR coefficients αt

(middle) and unconditional volatilities νt (bottom).

3. In particular, the periods Jan 1991 – Jan 1996 and June 2003 – June 2007

have very low weekly volatilities (≤ 1.4%), while the weekly volatilities of the
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Table 2. Unconditional volatilities in segmented periods.

Period ϕ̂+ ψ̂ Ave. ν̂t in (4.1) ν̃ in (4.2)

Aug/04/90–Dec/30/91 0.5992 0.0204 0.0208
Jan/06/91–Jan/02/96 0.5611 0.0115 0.0115
Jan/08/96–Jul/06/98 0.8242 0.0191 0.0190
Jul/13/98–Jun/09/03 0.1434 0.0287 0.0289
Jun/16/03–Jun/18/07 0.7112 0.0140 0.0140
Jun/25/07–Sep/29/08 0.6445 0.0291 0.0344
Oct/06/08–Aug/24/09 0.8211 0.0454 0.0537

other periods are substantially higher, ranging between 2% and 5%. The high-

volatility segments are associated with tumultuous economic events in the U.S.

economy. For example, during the period July 1998 – June 2003, the Russian

default occurred in the summer of 1998, Brazil currency depreciation occurred

in late 1998, the internet bubble burst occurred in 2001, and the 9/11 terrorist

attacks and the March 2003 Iraq war caused great anxiety in the U.S. stock

market. The period June 2007 – Sept 2008 witnessed the subprime mortgage

meltdown and the collapse of Bear Stearns and Lehman-Brothers, and Oct 2008

– Aug 2009 witnessed the Great Recession.

6. Discussion

The idea of representing the GARCH model by νt
√
htϵt, in which ν2t is

the unconditional variance and ht follows the GARCH dynamics in (2.2), has

also been used by Engle and Rangel (2008) in their spline-GARCH model that

uses a deterministic function of time and exogenous variables to model νt by

log νt = βTxt + ϕ0t+
∑I

i=1 ϕi(t− ti)
2
+. We use a piecewise constant function to

model νt instead, and relate the exogenous variables xt to yt via the regression

model (2.1), allowing contemporaneous jumps in the regression coefficients and

the unconditional variances. As in Lai, Liu, and Xing (2005) who consider the

special case ht ≡ 1 and xt = (yt−1, . . . , yt−κ)
T , our stochastic model for jumps in

(βt, νt) involves linear Bayes methods and conjugate priors, yielding BCMIX ap-

proximations to the Bayes estimate of (βt, ν
2
t ). The BCMIX approximations also

provide estimates of the hyperparameters in the Bayesian model with relatively

low computational complexity, yielding EB estimates of the piecewise constant

parameters that are efficient from both computational and statistical viewpoints.

We have shown in Section 4 how the computationally attractive EB estimates

can be used to address the challenging frequentist problem of segmentation. The

empirical study in Section 4 shows that segmenting the data can remove the spu-

rious long memory in volatility exhibited by fitting the AR-GARCH model to

the entire time series without incorporating possible parameter changes during a
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long period that undergoes several structural changes. The apparent long mem-

ory arises from the (long) time-scale for parameter changes. The segments are

more general than the “regimes” in regime-switching volatility models (which are

HMMs) reviewed in Section 1, in which difficulties in estimating the hyperparam-

eters are noted. To address these difficulties, Gray (1996, pp.35-36) modifies the

usual regime-switching GARCH model by aggregating the conditional variances

from different regimes at each time step. In our segmentation approach, the

GARCH parameters are separately estimated for different segments, as in Table

2. However, to determine the segments using the EB estimates, the Bayesian

model assumes changes only in the unconditional variance ν2t but not in the

GARCH parameters a1, . . . , ak, b1, . . . , bk′ . Not only does this model circum-

vent the computational difficulties of regime-switching GARCH (or even ARCH)

models noted by Cai (1994) and Gray (1996), but it also captures the short-run

dynamics of the conditional variance and the structural changes of the long-run

volatility. Although not allowing the GARCH parameters to change over time

may appear too restrictive, we can in fact estimate them and the other hyper-

parameter p from moving windows of current and past data, instead of from the

entire past history as in (2.5), thereby implicitly allowing these hyperparameters

to change slowly over time.

To estimate the magnitude and assess the significance of volatility dynamics

and jump risk premia in option pricing, contemporaneous jumps in prices and

in volatility have been incorporated into dynamic models of asset prices in the

finance literature; see Broadie, Chernov, and Johannes (2007) for a review and

discussion in support of contemporaneous jumps in both price and volatility.

In particular, Duffie, Pan, and Singleton (2000) introduced a continuous-time

stochastic volatility (SV) model that incorporates contemporaneous jumps (CJ)

in returns and volatility, and developed analytic methods for pricing under this

SVCJ model, which has since become very popular in the finance literature.

However, parameter estimation and empirical analysis of the SVCJ model has

been a challenging problem. Eraker, Johannes, and Polson (2003) developed a

simulation-based Bayes estimator, using MCMC methods to estimate both the

hidden states and the model parameters after discretizing the continuous-time

bivariate process of returns and their volatilities into an HMM. In contrast, the

stochastic change-point AR-GARCH model proposed herein is much simpler to

implement, and offers a promising alternative to the SVCJ model. Moreover,

it can easily incorporate exogenous covariates, as we have shown in the more

general ARX setting.
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