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Abstract: This study proposes a Kolmogorov–Smirnov–type test to assess the spher-

ical symmetry of the first-order intensity function of a spatial point process (SPP).

Spherical symmetry, which is an important assumption in the well known epidemic-

type aftershock sequence (ETAS) model, means that the intensity function of an

SPP is invariant under a spherical transformation in a Euclidean space. An im-

portant property of first-order spherical symmetry is that the expected number of

points within a sector region is proportional to the angle measure of the region.

This provides a way to construct our test statistic. The asymptotic distribution of

the test statistic is obtained under the framework of increasing domain asymptotics,

with weak dependence. We show that the resulting test statistic converges weakly

to the absolute maximum of a zero mean Gaussian process under the null hypoth-

esis, and that it is also consistent under the alternative hypothesis. A simulation

study shows that the type-I error probability of the test is close to the significance

level, and the power increases to one as the magnitude of nonspherical symmetry

increases. An application of the ETAS model to earthquakes in Japan shows that

the first-order spherical symmetry assumption can be approximately accepted.

Key words and phrases: Gaussian processes, intensity functions; Kolmogorov–

Smirnov test, polar transformation; spatial point processes (SPPs); spherical sym-

metry.

1. Introduction

Spatial point processes (SPPs) are widely applied in a variety of scientific

disciplines, including forestry (Stoyan and Stoyan (1994)), epidemiology (Diggle

(2006)), wildfires (Peng, Schoenberg and Woods (2005)), and earthquakes (Ogata

(1988)). In the literature, an SPP is treated as a pattern of points for locations

of random events developed in a complete separable metric space or a bounded

subset of the space. Point distributions and dependence structures are modeled

by intensity functions (Diggle (2003)). The simplifying assumptions of station-

arity and isotropy have been developed to make the analysis of SPPs convenient.

Various well known tools have been proposed, including the K-function (Ripley
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(1976)), L-function (Besag (1977)), and pair correlation function (Stoyan and

Stoyan (1996)). Because of its importance, several methods have been proposed

to assess stationarity (Guan (2008); Zhang and Zhou (2014)). However, a re-

cent interest is to model SPPs under nonstationarity (Møller and Waagepetersen

(2007)). An important concept called second-order intensity-reweighted station-

arity (SOIRS) has been proposed (Baddeley, Møller and Waagepetersen (2000)).

The concept is powerful in the joint analysis of the first-order and second-order

intensity functions under nonstationarity. With the aid of SOIRS, a number of

methods for nonstationary SPPs have been proposed (Guan and Shen (2010);

Henrys and Brown (2009); Waagepetersen (2007)).

SOIRS provides the relationship between the first-order and the second-order

intensity functions, but does not specify any assumptions for the first-order in-

tensity function; therefore, such assumptions can be proposed independently.

This allows us to develop models for the first-order intensity function only, while

simultaneously addressing the second-order properties. Here, relevant methods

include parametric and nonparametric estimation (Diggle (1985)), Bayesian esti-

mation (Myllymäki and Penttinen (2009)), proportionality (Zhang and Zhuang

(2017)), and separability (Zhang (2014, 2017)). Although first-order intensity

functions are useful in practice, an important question about whether they have

a spherically symmetric structure remains unanswered. The purpose of this study

is to develop a formal statistical test to address this problem.

Spherical symmetry is an important assumption of the well known epidemic-

type aftershock sequence (ETAS) model, one of the earliest point process models

created for clustered events. The ETAS is a parametric model defined by a

conditional intensity function for mainshock and aftershock earthquakes. It was

originally developed for earthquakes (Zhuang, Ogata and Vere-Jones (2002)), and

later extended to infectious diseases (Meyer and Held (2014)) and invasive species

(Balderama, et. al (2012)). In the ETAS model, events in each aftershock clus-

ter are independently produced by their corresponding mainshock earthquakes

(ancestors). The size of the aftershock cluster depends on the magnitude of its

ancestor. If there is only one extremely large ancestor, then within a certain

period, the entire earthquake pattern is dominated by the ancestor and its after-

shocks. Therefore, our approach can be used to justify the assumptions of the

ETAS model, although our interest lies beyond this topic.

Our approach is motivated by the classical tests for spherical symmetry of

multivariate distributions. Spherically symmetric distributions are natural ex-

tensions of the multivariate standard normal distribution. The spherically sym-
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metric multivariate distribution, which can be traced back to Hall, Watson and

Cabrera (1987), is well known in the literature. The focus is either estimation

(Brandwein and Strawderman (1991)) or hypothesis testing (Henze, Hlávka and

Meintanis (2014)), based on an identically and independently distributed (i.i.d.)

sample. Because of the existence of dependence, these approaches cannot be

used to assess the spherical symmetry of SPPs. Therefore, new approaches are

needed.

We propose a Kolmogorov–Smirnov–type statistic to assess spherical sym-

metry. The dependence structure is described by a scale parameter in the test

statistic. The p-value is calculated using its asymptotic null distribution. We

evaluate the properties of our test by means of simulations and applications. In

the simulations, we study type-I error probabilities and power. We conclude that

the type-I error probabilities are always close to the significance level, and that

the power function always increases to one as the magnitude of the nonspherical

symmetry increases. For illustration, we apply our test to an earthquake data set.

We conclude that the spherical symmetry assumption is correct at the beginning

of the occurrence of a great earthquake, in general, indicating that the ETAS

model can capture major characteristics of earthquake aftershock patterns.

To the best of our knowledge, our approach is the first formal test for the

spherical symmetry of SPPs. Because the test statistic is purely nonparametric,

our approach can be easily implemented to study the properties of the spheri-

cal symmetry of an SPP, without needing to specify a model for the intensity

function. Furthermore, because the computation of the test statistic does not

involve estimates of the intensity function, our approach avoids the complicated

nonparametric estimation problem.

The article is organized as follows. In Section 2, we propose our test statistic

and derive its asymptotic null distribution and power functions. In Section 3, we

evaluate the performance of our test statistic using Monte Carlo simulations. We

apply our approach to Japan earthquake data in Section 4. Section 5 concludes

the paper.

2. Methodology

We define SPPs in Section 2.1, discuss the concept of spherical symmetry in

Section 2.2, propose our test for first-order spherical symmetry in Section 2.3,

and derive its asymptotic null distribution in Section 2.4.
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2.1. Spatial point processes

An SPP N (W ) in W ∈ B(Rd) is composed of random points in W . It can

be treated as the restriction of N , the SPP on the entire Rd, with points only ob-

served in W , implying that points of N outside of W are unobserved. Let B and

B(A) be collections of Borel sets of Rd and of a measurable A ⊆ Rd, respectively.

Then, N(A), the number of points in A, is finite if A is bounded. The SPP N can

be defined theoretically using the Janossy measure approach (Janossy (1950)) or

the counting measure approach (Daley and Vere-Jones (2003)). The former is

based on distribution functions. The latter is based on intensity functions. The

two approaches have been shown to be theoretically equivalent in the literature

(Moyal (1962)), and the latter is more popular than the former. Therefore, we

only review the second approach.

The counting measure approach defines the kth-order intensity function

of N as λk(s1, . . . , sk) = limρ(Usi
)→0,i=1,...,k E{

∏k
i=1N(Usi)}/

∏k
i=1 |Usi |, where

s1, . . . , sk ∈ Rd are distinct, Us is a neighbor of s, |Us| is its Lebesgue measure,

and ρ(Us) is the diameter of Us. The SPP N is said to be kth-order stationary

if λl(s1 + h, . . . , sl + h) does not depend on h for any positive l ≤ k with dis-

tinct s1, . . . , sl ∈ Rd. In addition, the SPP is strong stationary if N is kth-order

stationary for any positive integer k.

The mean structure of N is

µ(A) = E{N (A)} =

∫
A
λ(s)ds, (2.1)

where λ(s) = λ1(s) is the first-order intensity function. If N is first-order station-

ary, then λ(s) = c and µ(A) = c|A|, where c is a positive constant. The covariance

structure of N is cov{N (A1),N (A2)} =
∫
A1

∫
A2
{g(s1, s2)−1}λ(s1)λ(s2)ds2ds1+

µ(A1∩A2), where g(s1, s2) = λ2(s1, s2)/{λ(s1)λ(s2)} is the pair correlation func-

tion. The variance structure of N is

V{N (A)} =

∫
A

{∫
A

[g(s1, s2)− 1]λ(s2)ds2 + 1

}
λ(s1)ds1. (2.2)

If g(s1, s2) depends only on s1− s2 or ‖s1− s2‖, such that it can be expressed as

g(s1 − s2) or g(‖s1 − s2‖), then N is called a second-order intensity-reweighted

stationary SPP or a second-order intensity-reweighted isotropic SPP. This is an

important concept for nonstationary SPPs (Baddeley, Møller and Waagepetersen

(2000)).
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2.2. Spherical symmetry

We provide the concept of spherical symmetry for N on the entire Rd, with

d ≥ 2, based on the counting measure approach. The concept means that in-

tensity functions of N are invariant under a spherical transformation about a

certain point in Rd. It can be extended to a bounded region W ⊆ Rd if we treat

N (W ) as the set of observations.

Assume that λk(s1, . . . , sk) is well defined for any k ≤ n. We say N is

nth-order spherically symmetric if there exists an s0 ∈ Rd, such that

λk(s1, . . . , sk) = λk(s0 + U(s1 − s0), . . . , s0 + U(sk − s0)), (2.3)

for any k ≤ n and any orthogonal matrix U on Rd. We say that N is strongly

spherically symmetric if there exists an s0 ∈ Rd, such that (2.3) holds for any

n ∈ N. An SPP N (W ) is nth-order spherically symmetric or strongly spherically

symmetric in a measurable W ⊆ Rd if it can be restricted by an nth-order

spherically symmetric or strongly spherically symmetric N in Rd.

Example 1. Poisson SPPs. The kth-order intensity function of a Poisson SPP

N is λk(s1, . . . , sk) =
∏k
i=1 λ(si). If N follows a Poisson distribution with mean

κ, then λ(s) = κf(s), implying that N is strongly spherically symmetric if f(s)

is spherically symmetric about some s0.

Example 2. Poisson cluster SPPs. A Poisson cluster SPP N is derived by first

generating parent points from a Poisson SPP with intensity ϕ(c). Then, from

each parent point, we generate Poisson(η) number of offspring points, identically

and independently, with density ψ(s − c), where c and s represent parent and

offspring points, respectively. By Campbell’s theorem, we have λ(s) =
∫
Rd ηψ(s−

c)ϕ(c)dc and λ2(s1, s2) =
∫
Rd η

2ψ(s1− c)ψ(s2− c)ϕ(c)dc+λ(s1)λ(s2). Thus, N
is strongly spherically symmetric about s0 if ψ is spherically symmetric about 0

and ϕ is spherically symmetric about s0.

Example 3. Second-order intensity-reweighted isotropic (SOIRI) SPPs. The

second-order intensity function of a SOIRI SPPN can be expressed as λ2(s1, s2) =

[g(‖s1 − s2‖) − 1]λ(s1)λ(s2). If N is first-order spherically symmetric, then

there exists an s0 ∈ Rd, such that for any orthogonal matrix U, we have

λ2(s0 + U(s1 − s0), s0 + U(s2 − s0)) = [g(‖(s0 + U(s1 − s0)) − (s0 + U(s2 −
s0))‖) − 1]λ(s0 + U(s1 − s0))λ(s0 + U(s2 − s0)) = [g(‖s1 − s2‖) − 1]λ(s1)λ(s2),

implying that N is also second-order spherically symmetric.

Example 4. The epidemic-type aftershock sequence (ETAS) model. The ETAS
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model is one of the most important models in the analysis of earthquake clus-

ters. It is defined by a conditional intensity function only affected by ancestors

(i.e., mainshocks), but not offspring (i.e., aftershocks). If an extremely large

mainshock earthquake occurs, then within a short period, the ETAS model is

dominated by its aftershock patterns. Let the magnitude and the spatiotempo-

ral location of the extremely large mainshock earthquake be denoted by M∗ and

(s∗, t∗), respectively. The conditional intensity function can be approximated by

λ∗(s, t,M) = j(M)ν(M∗)u(t− t∗)v(s− s∗|M∗), (2.4)

where v(·|M∗) is modeled by a spherically symmetric function at the beginning

(Zhuang, Ogata and Vere-Jones (2002)), and later by an elliptically symmet-

ric function (Ogata and Zhuang (2006)). If a spherically symmetric v(·|M∗) is

adopted, then the aftershock pattern of earthquake locations can be roughly rep-

resented by a spherically symmetric Poisson SPP, indicating that it is strongly

spherically symmetric.

Motivated by the above examples, we find that it is important to justify

the first-order spherical symmetry, in practice. If an SPP is first-order spheri-

cally symmetric, then with a few weak assumptions, it may also be second-order

spherically symmetric, and even strongly spherically symmetric. Therefore, we

propose a testing method to assess the first-order spherically symmetry.

2.3. A test for spherical symmetry

We propose a Kolmogorov–Smirnov test to assess spherical symmetry. The

test is conveniently modified from the classical Kolmogorov–Smirnov test for mul-

tivariate distributions. Let y be a continuous random vector on Rp, with a joint

CDF F . To test a null hypothesis H0 : F = F0, the Kolmogorov–Smirnov statis-

tic for multivariate distributions is given by Kn = supy∈Rp
√
n|F̂ (y) − F̂0(y)|,

where n is the sample size, F̂ is the sample CDF, and F̂0 is the sample CDF

under H0. If data are collected identically and independently, then Kn converges

weakly to the absolute value of a certain functional Brownian sheet, the distribu-

tion of which may depend on F0. Because neither the exact nor the approximate

ways are available, a simulation method is often used to compute the p-value of

the test.

Without loss of generality, we assume that κ =
∫
Rd λ(s)ds <∞ and s0 = 0.

We can restrict our method in {s : ‖s‖ ≤ η} for a certain η ∈ R+ if κ =∞. We

can make a location shift of coordinates of points if s0 6= 0. Then, N is first-order
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spherically symmetric if and only if λ(s) = λ0(r), where λ0(r) is the mean of λ(s)

on the sphere {s : ‖s‖ = r}. We study a hypothesis testing problem for

H0 : λ(s) = λ0(‖s‖),∀ s ∈ Rd (2.5)

against

H1 : ∃ s ∈ Rd, s.t. λ(s) 6= λ0(‖s‖). (2.6)

Let (zs,βs) be the polar coordinates of s, where zs ∈ R+ is the length and

βs = (β1, . . . , β(d−1))
> ∈ Θ = [0, π]d−2 × [0, 2π] is the angle vector of s. Let

f(s) = λ(s)/κ, f0(s) = λ0(zs)/κ, F (r,θ) =
∫
zs≤r,βs�θ f(s)ds, and F0(r,θ) =∫

zs≤r,βs�θ f0(s)ds, for r ∈ R+ and θ = (θ1, . . . , θd−1)> ∈ Θ, where β � θ means

that β precedes θ, which holds if and only if βj ≤ θj , for all j = 1, . . . , d. Then,

f(r,θ) and f0(r,θ) are probability density functions (PDFs) and F (r,θ) and

F0(r,θ) are cumulative distribution functions (CDFs) of r and θ.

Let Ar = {s : zs ≤ r} and Bθ = {s : βs � θ}. Then, Ar ∩ Bθ = {s :

zs ≤ r,βs � θ} is a bounded sector region in Rd. For any θ ∈ Θ, F (r,θ) and

F0(r,θ) are the expected proportions of points in Ar∩Bθ under H0∪H1 and H0,

respectively, given that they are in Ar. Our Kolmogorov–Smirnov–type statistic

is constructed based on the maximum absolute difference between the estimators

of F (r,θ) and F0(r,θ).

Let ad(θ) be the Lebesgue measure of {θ′ ∈ Θ : θ′ � θ} proportional to the

Lebesgue measure of Θ. Then, ad(θ) is the CDF of the uniform distribution on

Θ. With a few steps of integral calculations, we have ad(θ) = |Θ|−1
∏d−2
j=1 cj(θj),

where |Θ| = 2πd/2/Γ(d/2),

cj(t) =

Beta
(

sin2 t; d−j+1
2 , 1

2

)
/2, 0 ≤ t ≤ π

2 ,

Beta
(
d−j+1

2 , 1
2

)
− Beta

(
sin2 t; d−j+1

2 , 1
2

)
/2, π

2 < t ≤ π,

for j = 1, . . . , d− 2, cd−1(t) = t for t ∈ [0, 2π], Beta(u, v) = Γ(u)Γ(v)/Γ(u+ v) is

the Beta function, and Beta(t;u, v) =
∫ t

0 z
u−1(1−z)v−1dz is the incomplete Beta

function. Thus, we have the following theorem; the proof is given in the online

Supplementary Material.

Theorem 1. Suppose that F (r,θ) is absolutely continuous with respect to the

Lebesgue measure. The necessary and sufficient condition for (2.5) to hold is

that there exists a function u(r) of r, such that

F (r,θ) = ad(θ)u(r) (2.7)
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holds, for all r ∈ R+ and θ ∈ Θ.

Theorem 1 suggests a convenient way for us to propose our test. If we

can successfully estimate F (r,θ) and u(r), then we can assess H0 by testing

(2.7). Because E[N(Ar ∩Bθ)]/κ = F (r,θ) and E[N(Ar)]/κ = u(r), H0 becomes

E[N(Ar ∩ Bθ)] = ad(θ)E[N(Ar)], for all r ∈ R+ and θ ∈ Θ. Our test statistic

has the form

Td,ξ =
1

ξ
√
N

sup
r∈R+,θ∈Θ

|N(Ar ∩Bθ)− ad(θ)N(Ar)|, (2.8)

where ξ is an appropriate scaling term that ensures that the test statistic has a

standard asymptotic null distribution. Our asymptotic results provide an esti-

mator of ξ2 as

ξ̂2 =
1

K − 1

K∑
i=1

[N(BΘi
)− N̂(BΘi

)]2

N̂(BΘi
)

, (2.9)

where BΘi
= {(r,θ) : θ ∈ Θi}, N(BΘi

) is the observed number of points in

BΘi
, N̂(BΘi

) = (|Θi|/|Θ|)N is the estimated number of points in BΘi
, and

{Θ1, . . . ,ΘK} is a partition of Θ. Replacing ξ with ξ̂, we obtain

Td = Td,ξ̂ =
1

ξ̂
√
N

sup
r∈R+,θ∈Θ

|N(Ar ∩Bθ)− ad(θ)N(Ar)|. (2.10)

We show in Section 2.4 (i.e., Theorem 3) that the null distribution of Td can

be approximated by the distribution of ‖Gd‖∞ = sup(r,θ)∈[0,1]×Θ |Gd(r,θ)|, where

Gd is a zero mean Gaussian process on [0, 1]×Θ, with a covariance function given

by

E{Gd[(r,θ)]Gd[(r
′,θ′)]} = (r ∧ r′)[ad(θ ∧ θ′)− ad(θ)ad(θ

′)]. (2.11)

We reject H0 at the α significance level if Td > ‖Gd‖α,∞, where ‖Gd‖α,∞ is

the upper α-quantile of the distribution of ‖Gd‖∞. By a Monte Carlo method,

we have ‖G2‖0.1,∞ = 1.2937, ‖G2‖0.05,∞ = 1.4250, and ‖G2‖0.01,∞ = 1.6918,

which are used to test for spherical symmetry by T2. We also have ‖G3‖0.1,∞ =

1.5896, ‖G3‖0.05,∞ = 1.7184, and ‖G3‖0.01,∞ = 1.9719, which are used to test for

spherical symmetry by T3. In particular, we use ‖G2‖0.05,∞ and ‖G2‖0.05,∞ in

our simulation studies (i.e., Section 3) to verify the asymptotic null distributions.

We use ‖G2‖0.05,∞ and the simulated distribution of ‖Gd‖∞ for the significance

and the p-value, respectively, of the test in our analysis of an earthquake data

set (see Section 4).

We specify Td for d = 2 and d = 3, and numerically evaluate the values
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of ‖G‖α,∞ using Monte Carlo methods. If d = 2, then a2(θ) = θ/(2π), where

θ = θ ∈ [0, 2π], indicating that

T2 =
1

ξ̂
√
N

sup
r∈R+,θ∈[0,2π]

∣∣∣∣N(Ar ∩Bθ)−
θ

2π
N(Ar)

∣∣∣∣ . (2.12)

If d = 3, then a3(θ) = (1 − cos θ1)θ2/(4π), where θ = (θ1, θ2) ∈ [0, π] × [0, 2π],

indicating that

T3 =
1

ξ̂
√
N

sup
r∈R+,θ1∈[0,π],θ2∈[0,2π]

∣∣∣∣N(Ar ∩Bθ)− (1− cos θ1)θ2

4π
N(Ar)

∣∣∣∣ . (2.13)

Although Td is presented on the entire space, it can be modified to a bounded

region W ⊆ Rd. If there exists an η, such that Aη ⊆ W , then we can restrict

N(Ar ∩Bθ) and N(Ar) in (2.10) within Aη, indicating that the supremum of Td
is computed under r ∈ [0, η] and θ ∈ Θ. In practice, we need to use the largest

η satisfying Aη ⊆W . We modify observations of the point process by excluding

points outside of Aη. To be consistent, we need to modify λ(s) by setting λ(s) = 0

if s 6∈ Aη. If we define κ = E[N(Aη)], then we still have κ < ∞ and a modified

Td is defined. This problem is considered in our simulation studies.

2.4. Asymptotic distribution

We provide the asymptotic null distribution and power function of Td under

the framework of increasing domain asymptotics with weak dependence. For a

bounded observed region Wη of the point pattern, the framework studies the

asymptotics under the condition that |Wη| → ∞ as η → ∞. This approach has

been widely adopted in many previous articles. Examples include Guan and Loh

(2007), Guan and Shen (2010), Waagepetersen and Guan (2009), Guan, Jalilian

and Waagepetersen (2015), Prekešová and Jensen (2013), and

Schoenberg (2005).

The weak dependence is described by the strong mixing condition. Let B(E)

be the collection of Borel sets generated by E. Denote the diameter of E by

ρ(E) and the minimum distance between E1 and E2 by ρ(E1, E2), where ρ(E) =

sups,s′∈E ‖s− s′‖ and ρ(E1, E2) = mins∈E1,s′∈E2
‖s− s′‖. Let

α(u, v) = sup{|P (U1 ∩ U2)− P (U1)P (U2)| : U1 ∈ B(E1), U2 ∈ B(E2),

ρ(E1, E2) ≥ u, ρ(E1) ≤ v, ρ(E2) ≤ v,E1, E2 ∈ B(Wη)}

be the mixing coefficients, where P (U) is generated by the distribution of N(U).
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We say that N is strongly mixing if α(hu, hv)→ 0 as h→∞, for any u, v > 0.

To control the performance of Wη as η →∞, one often assumes that Wη =

ηW = {ηs : s ∈W}, where W is a fixed measurable subset of Rd. Without loss of

generality, we assume that W = {s : ‖s‖ ≤ 1} and only points in Wη = {s : ‖s‖ ≤
η} are observed. The results of the asymptotics rely on properties of φη(C,D) =

π(AC ∩ BD) − aDπη(AC) for C ⊆ [0, 1] and D ⊆ Θ, where AC = {s : zs ∈ C},
BD = {s : βs ∈ D}, π(E) = πη(E) = E[Nη(E)]/κη, and Nη(E) = N(ηE), for

any E ∈ B(W ), κη = E(Nη), and Nη = N(Wη). If H0 holds, then φη(C,D) = 0;

otherwise, there exist C ∈ B(W ) and D ∈ B(Θ), such that φη(C,D) 6= 0. The

primary issue is to show the functional central limit theorem of

Mη(E) = η−d/2{Nη(E)− E[Nη(E)]}, E ⊆W,

under a few scenarios of φη(C,D) when η → ∞. These provide the asymptotic

null distribution, consistency, and local consistency of Td. We prove the conclu-

sions using the standard method, initially introduced by Ibragimov (1962), and

later modified by Herrndorf (1984). The idea is to split any E ⊆ W into two

collections of subsets, say C and D. Both C and D can be written as the sum of

blocks, where the counts in blocks of C are almost independent, and the counts in

blocks of D can be ignored. This is a popular idea in the proof of the functional

central limit theorem under weak dependence. We only state the theorems here.

The proofs of the theorems are given in the online Supplementary Material.

Theorem 2. Assume that N is strongly mixing and there exist positive c1 and

c2 such that c1 ≤ λ(s) ≤ c2, for all s. If the fourth-order intensity function of N
is uniformly bounded and ∫ ∞

0
hd−1/2α(hu, hv)dh <∞, (2.14)

for any positive u and v, then Mη(·) converges weakly to a mean zero Gaussian

process with independent increments, and there exists a measure ν on W such

that {Mη(Ar ∩Bθ) : r ∈ [0, 1],θ ∈ Θ} converges weakly to a d-dimensional mean

zero Gaussian process Bν(t), with a covariance function given by

E[Bν(t1)Bν(t2)] = ν(Ar1∧r2 ∩Bθ1∧θ2
),

where ti = (ri, θi1, . . . , θi(d−1)) ∈ W , for i = 1, 2. If there also exists a constant

ω2, such that
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ω2 = lim
η→∞

∫
Wη

[g(s, s′)− 1]λ(s′)ds′,

then ν = ξµ, where ξ = 1 + ω2 and µ is the mean measure generated by the

first-order intensity function of N .

Theorem 3. (Asymptotic null distribution). Suppose that all assumptions of

Theorem 2 and H0 hold. Let Gd be a mean zero Gaussian process on [0, 1]×Θ,

with a covariance function given by (2.11). Then, Td  ‖Gd‖∞.

Theorem 4. (Consistency). Suppose there exist C ∈ B([0, 1]) and D ∈ B(Θ),

such that |φη(C,D)| approaches a positive number as η →∞. For any consistent

estimator ξ̂2 of ξ2, if all assumptions of Theorem 2 hold, but H0 is violated, then

limη→∞ P (Td ≥ cκ
1/2−ε
η ) = 1, for any positive ε and c.

Theorem 5. (Local consistency). Suppose that supr∈[0,1],θ∈Θ |κ
1/2
η φη(Ar, Bθ)|

goes to a bounded constant as η → ∞. For any consistent estimator ξ̂2 of ξ2, if

all assumptions of Theorem 2 hold, but H0 is violated, then there exists a PDF

g(·) satisfying g(t) > 0, for any t ∈ R+, such that limη→∞ P (Td < t) =
∫ t

0 g(u)du

for any t ∈ R+.

We provide conclusions about the asymptotic null distribution, consistency,

and local consistency of our test in Theorems 3, 4, and 5, respectively. In particu-

lar, Theorem 3 points out that the p-value of the test can be approximately calcu-

lated by the distribution of ‖Gd‖∞, where Gd is a mean zero Gaussian process on

[0, 1]×Θ, with a covariance function given by (2.11). Theorem 4 points out that

the power function of the test approaches one if supC∈B([0,1]),D∈B(Θ) |φη(C,D)|
does not approach zero as η →∞. Note that limη→∞Nη/κη = 1. Together with

Theorem 4, Theorem 5 points out that the optimal rate of the test under the

alternative hypothesis is attained.

3. Simulation Studies

We carried out simulation studies to evaluate the performance of our testing

method at the 0.05 significance level. We simulated realizations from Poisson

and Poisson cluster SPPs in a bounded region Wη = {s ∈ Rd : ‖s‖ ≤ η}, with a

varied η. We selected these processes because they are popular in the modeling

of ecological and environmental data. We evaluated the type-I error probabilities

and the power functions of T2 and T3 as η varied. For a process in Wη ⊆ R2, we

chose the first-order intensity function of N as λ(s) = κfρ(s), with ρ ∈ [0, 1) and
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s = (s1, s2) ∈Wη, where

fρ(s) = f2,ρ(s) =
1

2(η/3)2π
√

1− ρ2
exp

{
− s

2
1 − 2ρs1s2 + s2

2

2(η/3)2π(1− ρ2)

}
. (3.1)

In (3.1), fρ(s) was derived by restricting the density of the bivariate normal

distribution on Wη, with both expected values equal to zero, both variances equal

to (η/3)2, and the correlation equal to ρ. For a process in Wη ⊆ R3, we chose

λ(s) = κfρ(s), where fρ(s) = f3,ρ(s) was derived by restricting the density of

the three-dimensional normal distribution on Wη, with all expected values equal

to zero, all variances equal to (η/3)2, and all correlations equal to ρ. Therefore,

λ(s) is spherically symmetric about 0 if and only if ρ = 0. We set κ = 40η2/9,

which is equivalent to η = (9κ/40)1/2, such that κ varies with η.

We followed the standard way to generate Poisson and Poisson cluster SPPs

(e.g Guan (2008)). To obtain a Poisson SPP, we first generated the number of

points from the Poisson(κ) distribution. We then identically and independently

generated the locations of these points from the distribution with density equal

to fρ(s). To obtain a Poisson cluster SPP, we first generated their parent points

from a Poisson SPP, with its first-order intensify function equal to λp(s) = λ(s)/γ.

Then, we generated offspring points based on their corresponding parent points,

where each parent point generated Poisson(γ) offspring points independently.

The position of each offspring point relative to its parent point was defined as a

radially symmetric Gaussian random variable with a standard deviation σ. We

chose γ = 5 and σ = 0.02 in all cases of Poisson cluster SPPs studied. We

removed points outside of Wη.

We computed our test statistic for processes on R2 (i.e., in Wη with d = 2)

and R3 (i.e., in Wη with d = 3). For a process on R2, we defined Ar = {s : ‖s‖ ≤
r} and Bθ = {β : 0 ≤ β ≤ θ}, for r ∈ [0, η] and θ ∈ [0, 2π]. For an individual

si = (si1, si2), we computed its Euclidean norm value using ‖si‖ = (s2
i1 + s2

i2)1/2,

and its angle value using βi = arccos(si1/‖si‖)+πI(si2 < 0). Then, we calculated

N(Ar ∩ Bθ) = #{si : ‖si‖ ≤ r, βi ∈ [0, θ]} and N(Ar) = #{si : ‖si‖ ≤ r}. We

defined our test statistic as

T2 =
1

ξ̂
√
N

sup
r∈[0,η],θ∈[0,2,π]

∣∣∣∣N(Ar ∩Bθ)−
θ

2π
N(Ar)

∣∣∣∣ ,
where ξ̂ was derived by (2.10) with K = [N1/2] (the highest integer not greater

than N1/2) equal partitions of [0, 2π] based on the βi values. We rejected H0 if
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Table 1. Simulations (with 1,000 replications) for Type-I error probabilities (ρ = 0)
and powers (ρ > 0) of T2 and T3 for selected κ on Wη, with η = (9κ/40)1/2, at the 0.05
significance level in Poisson and (Poisson) cluster SPPs, respectively.

Test ρ for Poisson Processes ρ for Cluster Processes
Statistic κ 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
T2 1,000 0.051 0.099 0.279 0.612 0.046 0.052 0.081 0.148

2,000 0.045 0.197 0.682 0.976 0.040 0.076 0.145 0.321
5,000 0.053 0.529 0.999 1.000 0.054 0.102 0.374 0.798

10,000 0.052 0.898 1.000 1.000 0.053 0.206 0.764 0.997
T3 1,000 0.053 0.111 0.539 0.933 0.042 0.061 0.076 0.124

2,000 0.038 0.242 0.950 1.000 0.041 0.070 0.148 0.363
5,000 0.055 0.774 1.000 1.000 0.053 0.111 0.458 0.889

10,000 0.048 0.996 1.000 1.000 0.040 0.218 0.878 0.998

T2 > 1.4250, which was the value of ‖G2‖0.05,∞ that we have derived via a Monte

Carlo method.

For a process on R3, we defined Ar = {s : ‖s‖ ≤ r} and Bθ = {β = (β1, β2) :

0 ≤ β1 ≤ θ1, 0 ≤ β2 ≤ θ2}, for r ∈ [0, η] and θ = (θ1, θ2) ∈ [0, π]× [0, 2π]. For an

individual si = (si1, si2, si3), we computed its Euclidean norm value using ‖s‖ =

(s2
i1+s2

i2+s2
i3)1/2, and its angle vectors βi = (βi1, βi2) using βi1 = arccos(si1/‖s‖)

and βi2 = arccos[si2/(s
2
i2 + s2

i3)1/2] + πI(si3 < 0). Then, we calculated the values

of N(Ar ∩Bθ) and N(Ar). We defined our test statistic as

T3 =
1

ξ̂
√
N

sup
r∈[0,η],θ1∈[0,π],θ2[0,2,π]

∣∣∣∣N(Ar ∩Bθ)−
(1− cos θ1)θ2

4π
N(Ar)

∣∣∣∣ ,
where ξ̂ was also derived by (2.10) with K = 2K2

0 and K0 = [N1/3] equal

partitions of [0, π] and [0, 2π], respectively, based on the values of βi1 and βi2.

We rejected H0 if T3 ≥ 1.7184, which was the value of ‖G3‖0.05,∞ derived using

a Monte Carlo method.

We simulated 1,000 realizations for each selected case. We obtained the

type-I error probabilities and power functions of T2 and T3 (Table 1). The results

show that the type-I error probabilities (i.e., when ρ = 0) are all close to 0.05,

indicating that our asymptotic null distribution provides an appropriate way

to test the significance. It also indicates that the asymptotic null distribution

provided by Theorem 3 is accurate. The power values (i.e., when ρ > 0) increase

as ρ increase, which is expected, because the strength of spherical asymmetry

increases with ρ. For the same ρ-value, the power increases with κ. This is

expected, because the expected number of points increases when κ becomes large.
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We find that the power values in the Poisson cluster SPPs are lower than those

in the Poisson SPPs. This is because the performance of the power functions

is controlled primarily by the intensity functions of the parent process. Because

the expected number of parent points was much lower than the value of κ, they

were lower than those simulated from the Poisson SPPs.

4. Application

We applied our test to an earthquake data set. Earthquakes are considered

the most important natural hazard events that results in death and damage.

This motivated us to apply our method to earthquake studies. Many sources of

earthquake databases have been established and are readily available via the In-

ternet. Examples include the websites of the United States National Geophysical

(USGS) data center, the Northern California Earthquake Data Center (NCEDC),

and many others. These databases contain the time and date, depth, locations

(given in longitude and latitude), and magnitudes, at either the regional or the

global level, for the past several hundreds years.

A critical issue in the analysis of earthquake data is to address the impact of

earthquake clusters caused by aftershocks. The presence of earthquake clusters

often makes it difficult to understand the overall patterns of earthquake activities.

Many statistical models have been proposed to account for earthquake clusters.

Among these, the ETAS model has gained much attention and been applied ex-

tensively in recent years. The ETAS model is specified by a conditional intensity

function. It models the occurrences of offspring (i.e, aftershocks) by clusters

triggered by their corresponding ancestors (i.e., mainshocks). Using (s∗k, t
∗
k,M

∗
k )

to represent individual mainshock earthquakes, the ETAS model expresses its

conditional intensity function for aftershock earthquakes as

λ(s, t,M |Ht) = j(M)[µ(s) +
∑
k:tk<t

ν(M∗k )u(t− t∗k)v(s− s∗k|M∗k )],

where j(M) is the standardized term, µ(s) is the background intensity function,

Ht represents the history of mainshock earthquakes that occurred before the cur-

rent time t, and ν(M∗k ) is the expected number of aftershocks from a mainshock

ancestor. If an extremely large mainshock earthquake occurs within a short pe-

riod, the performance of the ETAS model is dominated by its aftershock earth-

quakes, implying that the conditional intensity function can be approximately

expressed as (2.4). Because the ETAS model assumes that each mainshock
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earthquakes produces aftershock earthquakes independently, aftershock occur-

rences caused by an extremely large mainshock earthquake can be treated as an

approximately Poisson marked point process (MPP), with the first-order inten-

sity function λ∗(s, t,M), given by (2.4). If v(s− s∗|M∗) = v(‖s− s∗‖M∗), then

λ∗(s, t,M) is spherically symmetric in the spatial domain. Therefore, we can

test spherical symmetry by considering the spatial locations of the occurrences

only. Because spatial spherical symmetry is often used as an assumption of the

ETAS model, our test is important in the justification of the model. Because

earthquake hazard maps often fail (Stein, Geller and Liu (2012)), our test can

provide another way to understand earthquake mechanisms.

We collected historical earthquake data from the NCEDC website. We fo-

cused on Japan and its neighboring Pacific Ocean regions because this is con-

sidered the most risky area earthquakes in the world. We studied earthquake

occurrences after January 1, 2000, in these regions, and found that most earth-

quakes occurred in an area between 30◦N and 45◦N, and 130◦E and 150◦E. This

area has been studied previously for earthquake occurrences (Zhang and Zhuang

(2014); Zhang (2017)). Using this as the study area, we collected data on earth-

quake occurrences with magnitudes greater than or equal to 4.0 from January

1, 2000, to December 31, 2016. The data set contained 16,441 earthquakes, in-

cluding 1,909 moderate (magnitude ≥ 5 but < 6), 201 strong (magnitude ≥ 6

but < 7), 20 major (magnitude ≥ 7 but < 8), and two great (magnitude ≥ 8)

earthquakes. The most serious was the Great Tohoku Earthquake, which occurred

in March 11, 2011, at 38.30◦N 142.37◦E with magnitude 9.1. It caused about

16,000 people deaths and a serious nuclear accident at the Fukushima Nuclear

Power Plants, affecting hundreds of thousands of residents within a few thousand

square kilometers of the disaster site.

Because the magnitude of the 2011 Great Tohoku Earthquake was extremely

large, we can use (2.4) to model its aftershock pattern. Note that M∗, t∗, and s∗

are only related to the information of the mainshock earthquake. They can be

treated as known constants in (2.4); therefore, the spatial margin of λ∗(s, t,M)

becomes

λ(s) = κv(s− s∗|M∗), (4.1)

where κ = ν(M∗)
∫∞

0 j(M)dM
∫∞

0 u(t − t∗)dt. Thus, λ∗(s, t,M) is spherical

symmetric if and only if λ(s) is spherical symmetric about s∗, indicating that we

can employ s0 = s∗ in our test.

We focused on earthquake aftershock activities within the first 180 days



1328 ZHANG AND MATEU

Figure 1. Aftershock earthquakes within the first 180 days of the 2011 Great Tohoku
Earthquake.

after the occurrence of the Great Tohoku Earthquake. The data set contained

4,503 earthquakes with magnitudes greater than or equal to 4.0, including zero

great, four major, 73 strong, and 652 moderate earthquakes. We used T2 to test

the spherical symmetry of λ(s) given by (4.1). To derive the value of T2, we

computed the spherical distance between the locations of the aftershocks and the

mainshock earthquakes and the angles between the directions of the aftershock

earthquakes and the mainshock earthquakes and the direction east. We also

computed the value of ξ̂2 using the same method as that in our simulation studies.

We calculated the p-value of T2 based on the simulated distribution of ‖G2‖∞.

We rejected H0, concluding that the test is significant if T2 > 1.4250, because the

upper 0.05 quantile of the simulated distribution of ‖G2‖∞ is 1.4250. We tested

the spherical symmetry of the aftershock earthquakes within a few options of

periods, starting from the occurrence of the Great Tohoku Earthquake (Table

2). We conclude that the spherical symmetry was correct, in general, at the

beginning, but slightly violated at the end of the period. Based on our results,

we conclude that the ETAS model is able to account for aftershock earthquake

clusters in Japan and its neighboring areas.

5. Discussion

We provide a Kolmogorov–Smirnov–type test to assess the first-order spher-

ical symmetry of SPPs. The test is modified from the classical Kolmogorov–

Smirnov test for multivariate distributions. The classical test is formulated un-
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Table 2. Test for spherical symmetry of aftershock earthquakes within the first m days
of the occurrence of the Great Tohoku Earthquake.

Number of Aftershock Earthquakes
m Total Major Strong Moderate T2 p-value
1 671 2 42 261 1.1088 0.2218
2 1,108 2 45 324 1.2688 0.1066
3 1,410 2 45 361 1.3684 0.0663
10 2,238 2 48 459 1.6928 0.0102
30 3,047 3 56 528 1.9090 0.0030
180 4,503 4 73 652 2.1782 0.0003

der the assumption that sampling data are independently and independently

collected. This assumption is violated because of the existence of dependence

in spatial point data. We propose a way to account for this dependence us-

ing a dispersion parameter. Using our asymptotic theory, we present a method

for approximately interpreting the dispersion parameter, using the well known

quasi-Poisson model in the statistical literature, which provides an estimator of

the parameter. Our test statistic is derived after the classical statistic is adjusted

by the estimator of the dispersion parameter. Because our test statistic does not

involve nonparametric smoothing techniques, our test is consistent with the op-

timal rate (i.e., Theorems 4 and 5). Therefore, our test is asymptotically more

powerful than any other test involving nonparametric smoothing techniques. Our

method can also be modified to the Cramér–von Mises-type approach.

An obvious advantage is that the asymptotic null distribution of our test

statistic does not rely on the unknown underlying intensity function. It has been

acknowledged that the asymptotic null distribution of an empirical statistic for

multivariate distributions, such as the Kolmogorov–Smirnov or the Cramér–von

Mises statistics, depends on the underlying distribution, making the computa-

tion of their asymptotical p-values complicated (Zhang and Zhuang (2017)). The

asymptotic null distribution of a goodness-of-fit statistic in the one-dimensional

case is often related to the distribution of a norm of the standard Brownian

bridge, which may have a closed-form expression van der Vaart (1998, p.297).

This nice property makes it easy to implement goodness-of-fit tests for univari-

ate distributions. Although the concept of the standard Brownian bridge has

been extended to its high-dimensional version, called Brownian sheets, it is still

difficult to implement goodness-of-fit tests for multivariate random variables, be-

cause neither the exact nor the approximate null distribution is available. Our

research provides a way to implement this approach.
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Testing the nice properties of intensity functions of SPPs is important, in

practice. The problem studied in this article is only related to first-order spher-

ical symmetry. It does not specify any second-order properties. Therefore, the

selection of statistical models for the second-order properties is flexible. Because

of the popularity of SOIRS, we can also model the second-order intensity func-

tion together with the first-order spherical symmetry, which provides a way to

jointly analyze the first-order and second-order intensity functions. This is left

to future research.

Supplementary Material

The online Supplementary Material includes the proofs of Theorems 1, 2, 3,

4, and 5, as well as their associated lemmas.
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Myllymäki, M. and Penttinen, A. (2009). Conditionally heteroscedastic intensity-dependent

marking of log Gaussian Cox processes. Statistica Neerlandica 63, 450-473.

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point

processes. Journal of the American Statistical Association 83, 9-27.

Ogata, Y. and Zhuang, J. (2006). Space-time ETAS models and an improved extension. Techono-

physics 413, 13-24.

Peng, R.D., Schoenberg, F.P and Woods, J.A. (2005). A space-time conditional intensity model

for evaluating a wildfire hazard index. Journal of the American Statistical Association 100,

26-35.
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